Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Medical engineering

Publication Details

Acta Biomaterialia, August 2015.

doi:10.1016/j.actbio.2015.08.022

Abstract

Fibrin has many uses as a tissue engineering scaffold, however many in vivo studies have shown a reduction in function resulting from the susceptibility of fibrin to cell-mediated contraction. The overall aim of the present study was to develop and characterise a reinforced natural scaffold using fibrin, collagen and glycosaminoglycan (FCG), and to examine the cell-mediated contraction of this scaffold in comparison to fibrin gels. Through the use of an injection loading technique, a homogenous FCG scaffold was developed. Mechanical testing showed a sixfold increase in compressive modulus and a thirtyfold increase in tensile modulus of fibrin when reinforced with a collagen–glycosaminoglycan backbone structure. Human vascular smooth muscle cells (vSMCs) were successfully incorporated into the FCG scaffold and demonstrated excellent viability over 7 days, while proliferation of these cells also increased significantly. VSMCs were seeded into both FCG and fibrin-only gels at the same seeding density for 7 days and while FCG scaffolds did not demonstrate a reduction in size, fibrin-only gels contracted to 10% of their original diameter. The FCG scaffold, which is composed of natural biomaterials, shows potential for use in applications where dimensional stability is crucial to the functionality of the tissue.

DOI

https://doi.org/10.1016/j.actbio.2015.08.022

Funder

This study has received funding from the Irish Heart Foundation (Grant number 1045940), the European Research Council under the European Community's Seventh Framework Programme (FP7/2007-2013) under European Research Council grant agreement n° 239685 and the School of Mechanical and Design Engineering, DIT; Allison Cudsworth; FOCUS Institute, DIT for SEM work


Share

COinS