Author ORCID Identifier

https://orcid.org/0000-0003-3877-7432

Document Type

Article

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

1.2 COMPUTER AND INFORMATION SCIENCE, Computer Sciences

Publication Details

Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines.

Volume 2021 |Article ID 6619088 | https://doi.org/10.1155/2021/6619088

Abstract

With the rapid development of the internet technology, a large amount of internet text data can be obtained. The text classification (TC) technology plays a very important role in processing massive text data, but the accuracy of classification is directly affected by the performance of term weighting in TC. Due to the original design of information retrieval (IR), term frequency-inverse document frequency (TF-IDF) is not effective enough for TC, especially for processing text data with unbalanced distributions in internet media reports. Therefore, the variance between the DF value of a particular term and the average of all DFs , namely, the document frequency variance (ADF), is proposed to enhance the ability in processing text data with unbalanced distribution. Then, the normal TF-IDF is modified by the proposed ADF for processing unbalanced text collection in four different ways, namely, TF-IADF, TF-IADF+, TF-IADFnorm, and TF-IADF+norm. As a result, an effective model can be established for the TC task of internet media reports. A series of simulations have been carried out to evaluate the performance of the proposed methods. Compared with TF-IDF on state-of-the-art classification algorithms, the effectiveness and feasibility of the proposed methods are confirmed by simulation results.

DOI

https://doi.org/10.1155/2021/6619088


Share

COinS