Author ORCID Identifier
https://orcid.org/0000-0002-9868-8338
Document Type
Conference Paper
Rights
Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence
Disciplines
Computer Sciences, Geosciences, (multidisciplinary)
Abstract
Keeping crowdsourced maps up-to-date is important for a wide range of location-based applications (route planning, urban planning, navigation, tourism, etc.).We propose a novelmap updatingmechanism that combines the latest freely available remote sensing data with the current state of online vector map data to train a Deep Learning (DL) neural network. It uses a GenerativeAdversarial Network (GAN) to perform image-to-image translation, followed by segmentation and raster-vector comparison processes to identify changes to map features (e.g. buildings, roads, etc.) when compared to existing map data. This paper evaluates various GAN models trained with sixteen different datasets designed for use by our change detection/map updating procedure. Each GAN model is evaluated quantitatively and qualitatively to select the most accurate DL model for use in future spatial change detection applications.
DOI
https://doi.org/10.1007/978-3-031-06245-2_3
Recommended Citation
Niroshan, L., Carswell, J.D. (2022). Post-analysis of OSM-GAN Spatial Change Detection. In: Karimipour, F., Storandt, S. (eds) Web and Wireless Geographical Information Systems. W2GIS 2022. Lecture Notes in Computer Science, vol 13238. Springer, Cham. DOI: 10.1007/978-3-031-06245-2_3
Funder
Technological University Dublin College of Arts and Tourism
Publication Details
Conference: 19th International Symposium on Web and Wireless Geographical Information Systems
Type: Virtual
Published by Springer
https://link.springer.com/chapter/10.1007/978-3-031-06245-2_3