Document Type



This item is available under a Creative Commons License for non-commercial use only

Publication Details

In Forum Mathematicum, 18 (2006), pp.1027-40.


Let R be a valuation domain. We investigate the notions of E(R)- algebra and generalized E(R)-algebra and show that for wide classes of maximal valuation domains R, all generalized E(R)-algebras have rank one. As a by-product we prove if R is a maximal valuation domain of finite Krull dimension, then the two notions coincide. We give some examples of E(R)-algebras of finite rank that are decomposable, but show that over Nagata domains of small degree, the E(R)-algebras are, with one exception, the indecomposable finite rank algebras.


Included in

Mathematics Commons