Document Type

Conference Paper


Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence


Computer Sciences

Publication Details

International Conference on Intelligent Data Engineering and Automated Learning - IDEAL 2018


Online novelty detection is an important technology in understanding and exploiting streaming data. One application of online novelty detection is First Story Detection (FSD) which attempts to find the very first story about a new topic, e.g. the first news report discussing the “Beast from the East” hitting Ireland. Although hundreds of FSD models have been developed, the vast majority of these only aim at improving the performance of the detection for some specific dataset, and very few focus on the insight of novelty itself. We believe that online novelty detection, framed as an unsupervised learning problem, always requires a clear definition of novelty. Indeed, we argue the definition of novelty is the key issue in designing a good detection model. Within the context of FSD, we first categorise online novelty detection models into three main categories, based on different definitions of novelty scores, and then compare the performances of these model categories in different features spaces. Our experimental results show that the challenge of FSD varies across novelty scores (and corresponding model categories); and, furthermore, that the detection of novelty in the very popular Word2Vec feature space is more difficult than in a normal frequency-based feature space because of a loss of word specificity.



Adapt Research Centre