Document Type



Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence


1.3 PHYSICAL SCIENCES, Optics, Electrical and electronic engineering

Publication Details

Optics Communications


Recently, few-layer tungsten disulfide (WS2), as a shining 2D material, has been discovered to possess both the saturable absorption ability and large nonlinear refractive index. Here, we demonstrate versatile soliton pulses in a passively mode-locked fiber laser with a WS2-deposited microfiber. The few-layer WS2 is prepared by the liquid-phase exfoliation method and transferred onto a microfiber by the optical deposition method. Study found, the WS2-deposited microfiber can operate simultaneously as a mode-locker and a high-nonlinear device. In experiment, by further inserting the WS2 device into the fiber laser, besides the dual-wavelength soliton, noise-like soliton pulse, conventional soliton and its harmonic form are obtained by properly adjusting the pump strength and the polarization states. For the dual-wavelength soliton pulses and noise-like pulse, the maximum output power of 14.2 mW and pulse energy of 4.74 nJ is obtained, respectively. In addition, we also achieve the maximum harmonic number (135) of conventional soliton, corresponding to a repetition rate of ∼497.5 MHz. Our study shows clearly that WS2-deposited microfiber can be as a high-nonlinear photonic device for studying a plenty of nonlinear soliton phenomena.



Fundamental Research Funds for the Central Universities; National Natural Science Foundation; Key Program for International S&T Cooperation Projects of China; Key Program for Natural Science Foundation of Heilongjiang Province of China; Harbin Engineering University