Document Type



Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence


Meteorology and atmospheric sciences, Climatic research, 2. ENGINEERING AND TECHNOLOGY, 2.3 MECHANICAL ENGINEERING, Thermodynamics, Chemical process engineering, 2.7 ENVIRONMENTAL ENGINEERING, Energy and fuels, Occupational health

Publication Details

Applied Thermal Engineering, Volume 29, Issue 1, January 2009, Pages 105-115.


The experimental performance of an open industrial scale cooling tower, utilising small approach temperature differences (1–3 K), for rejection of heat at the low water temperatures (11–20 °C) typical of chilled ceilings and other sensible air–water heat dissipation systems in buildings, is examined. The study was carried out under temperate maritime climatic conditions (3–18 °C wet-bulb temperature range). Initially a theoretical analysis of the process at typical conditions for this climate was conducted, which indicated that a water to air (L/G) mass flow rate ratio of less than 1.0 was required for effective operation. Consequently for these low L/G ratios, the thermal performance of the experimental tower was measured and correlated. A new correlation is proposed which shows a significant increase in the NTU level achieved, for the required L/G ratios (0.3–0.9). As the cooling tower in this application is predominantly a mass transfer device under summer conditions, the evaluation of the total volumetric heat and mass transfer coefficient (kga s−1 m−3) is of particular relevance and is also determined.



CIBSE, Enterprise Ireland, DIT Seed Fund