Document Type

Theses, Ph.D

Rights

Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Disciplines

Electrical and electronic engineering

Publication Details

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy, Technological University Dublin, 2022.

Abstract

This research focuses on the electrification of the transport sector. Such electrification could potentially pose challenges to the distribution system operator (DSO) in terms of reliability, power quality and cost-effective implementation. This thesis contributes to both, an Electrical Vehicle (EV) load demand profiling and advanced use of reactive power compensation (D-STATCOM) to facilitate flexible and secure network operation. The main aim of this research is to investigate the planning and operation of low voltage distribution networks (LVDN) with increasing electrical vehicles (EVs) proliferation and the effects of higher demand charging systems. This work is based on two different independent strands of research.

Firstly, the thesis illustrates how the flexibility and composition of aggregated EVs demand can be obtained with very limited information available. Once the composition of demand is available, future energy scenarios are analysed in respect to the impact of higher EVs charging rates on single phase connections at LV distribution network level. A novel planning model based on energy scenario simulations suitable for the utilization of existing assets is developed. The proposed framework can provide probabilistic risk assessment of power quality (PQ) variations that may arise due to the proliferation of significant numbers of EVs chargers. Monte Carlo (MC) based simulation is applied in this regard. This probabilistic approach is used to estimate the likely impact of EVs chargers against the extreme-case scenarios.

Secondly, in relation to increased EVs penetration, dynamic reactive power reserve management through network voltage control is considered. In this regard, a generic distribution static synchronous compensator (D-STATCOM) model is adapted to achieve network voltage stability. The main emphasis is on a generic D-STATCOM modelling technique, where each individual EV charging is considered through a probability density function that is inclusive of dynamic D-STATCOM support. It demonstrates how optimal techniques can consider the demand flexibility at each bus to meet the requirement of network operator while maintaining the relevant steady state and/or dynamic performance indicators (voltage level) of the network. The results show that reactive power compensation through D-STATCOM, in the context of EVs integration, can provide continuous voltage support and thereby facilitate 90% penetration of network customers with EV connections at a normal EV charging rate (3.68 kW). The results are improved by using optimal power flow. The results suggest, if fast charging (up to 11 kW) is employed, up to 50% of network EV customers can be accommodated by utilising the optimal planning approach. During the case study, it is observed that the transformer loading is increased significantly in the presence of D-STATCOM. The transformer loading reaches approximately up to 300%, in one of the contingencies at 11 kW EV charging, so transformer upgrading is still required. Three-phase connected DSTATCOM is normally used by the DSO to control power quality issues in the network. Although, to maintain voltage level at each individual phase with three-phase connected device is not possible. So, single-phase connected D-STATCOM is used to control the voltage at each individual phase. Single-phase connected D-STATCOM is able maintain the voltage level at each individual phase at 1 p.u. This research will be of interest to the DSO, as it will provide an insight to the issues associated with higher penetration of EV chargers, present in the realization of a sustainable transport electrification agenda.

DOI

https://doi.org/10.21427/3y75-vs66


Share

COinS