Document Type



Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence


3.3 HEALTH SCIENCES, Public and environmental health, Environmental sciences, Hydrology, 1.5 EARTH AND RELATED ENVIRONMENTAL SCIENCES


Globally, approximately 2.2 billion people rely on groundwater for daily consumption. It is widely accepted that groundwater is more pristine than surface water but while this assumption is frequently the case, groundwater is not ubiquitously free of contaminants; accordingly, this presumption can result in an unfounded and potentially hazardous sense of security among owners, operators and users. The current paper presents a review of published literature providing epidemiological evidence of the contribution of groundwater to global human enteric infection. An emphasis is placed on enteric pathogens transmitted via the faecal-oral route, and specifically those associated with acute gastrointestinal illness (AGI). The review identified 649 published groundwater outbreaks globally between 1948 and 2013 and several epidemiological studies that show there is an increased risk of AGI associated with the consumption of untreated groundwater. The review identified that the following five pathogens were responsible for most outbreaks: norovirus, Campylobacter, Shigella, Hepatitis A and Giardia. Crudely, the authors estimate that between 35.2 and 59.4 million cases of AGI per year globally could be attributable to the consumption of groundwater. Although groundwater is frequently presumed to be a microbiologically safe source of water for consumption, this review demonstrates that consumers served by an untreated groundwater supply remain at risk to enteric disease. The authors conclude that collaboration between microbiologists, hydrogeologists and epidemiologists is needed to better understand pathogen occurrence, persistence, detection and transport in groundwater as well as build stronger epidemiological evidence documenting the true magnitude of disease associated with groundwater globally.