Author ORCID Identifier

0000-0002-4953-1131

Document Type

Article

Disciplines

Nano-materials, Nano-processes, Agricultural biotechnology and food biotechnology

Publication Details

https://www.mdpi.com/2409-9279/6/5/93

https://doi.org/10.3390/mps6050093

Abstract

The aim of this research is to define optimal conditions to improve the stability of gold and silver nanoparticles’ anti-zearalenone antibody conjugates for their utilisation in lateral flow immunochromatographic assay (LFIA). The Turkevich–Frens method was used to synthesise gold nanoparticles (AuNPs), which were between 10 and 110 nm in diameter. Silver nanoparticles (AgNPs) with a size distribution of 2.5 to 100 nm were synthesised using sodium borohydride as a reducing agent. The onset of AuNP and AgNP aggregation occurred at 150 mM and 80 mM NaCl concentrations, respectively. Stable Au and Ag nanoparticle–antibody conjugates were achieved at 1.2 mM of K2CO3 concentration, which corresponds to the pH value of ≈7. Lastly, the highest degree of conjugation between Au and Ag nanoparticles and anti-zearalenone antibodies was at 4 and 6 µg/mL of antibody concentrations. The optimisation of the conjugation conditions can contribute to better stability of nanoparticles and their antibody conjugate and can improve the reproducibility of results of bioreporter molecules in biosensing lateral flow devices.

DOI

10.3390/mps6050093

Funder

IRC and Marie Skłodowska-Curie grant

Creative Commons License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.


Share

COinS