Document Type

Theses, Ph.D


Available under a Creative Commons Attribution Non-Commercial Share Alike 4.0 International Licence

Publication Details

Thesis submitted for the degree of Doctor of Philosophy, to the College of Business, Technological University Dublin, 2017.


Over the years, one of the main concerns confronting hospital management is optimising the staffing and scheduling decisions. Consequences of inappropriate staffing can adversely impact on hospital performance, patient experience and staff satisfaction alike. A comprehensive review of literature (more than 1300 journal articles) is presented in a new taxonomy of three dimensions; problem contextualisation, solution approach, evaluation perspective and uncertainty. Utilising Operations Research methods, solutions can provide a positive contribution in underpinning staffing and scheduling decisions. However, there are still opportunities to integrate decision levels; incorporate practitioners view in solution architectures; consider staff behaviour impact, and offer comprehensive applied frameworks. Practitioners’ perspectives have been collated using an extensive exploratory study in Irish hospitals. A preliminary questionnaire has indicated the need of effective staffing and scheduling decisions before semi-structured interviews have taken place with twenty-five managers (fourteen Directors and eleven head nurses) across eleven major acute Irish hospitals (about 50% of healthcare service deliverers). Thematic analysis has produced five key themes; demand for care, staffing and scheduling issues, organisational aspects, management concern, and technology-enabled. In addition to other factors that can contribute to the problem such as coordination, environment complexity, understaffing, variability and lack of decision support. A multi-method approach including data analytics, modelling and simulation, machine learning, and optimisation has been employed in order to deliver adequate staffing and shift scheduling framework. A comprehensive portfolio of critical factors regarding patients, staff and hospitals are included in the decision. The framework was piloted in the Emergency Department of one of the leading and busiest university hospitals in Dublin (Tallaght Hospital). Solutions resulted from the framework (i.e. new shifts, staff workload balance, increased demands) have showed significant improvement in all key performance measures (e.g. patient waiting time, staff utilisation). Management team of the hospital endorsed the solution framework and are currently discussing enablers to implement the recommendations