Document Type




Publication Details

A dissertation submitted in partial fulfilment of the requirements of Technological University Dublin for the degree of M.Sc. in Computing (Data Analytics) 6 March 2022.


Dysarthria is a motor speech disorder that results from disruptions in the neuro-motor interface and is characterised by poor articulation of phonemes and hyper-nasality and is characteristically different from normal speech. Many modern automatic speech recognition systems focus on a narrow range of speech diversity therefore as a consequence of this they exclude a groups of speakers who deviate in aspects of gender, race, age and speech impairment when building training datasets. This study attempts to develop an automatic speech recognition system that deals with dysarthric speech with limited dysarthric speech data. Speech utterances collected from the TORGO database are used to conduct experiments on a wav2vec2.0 model only trained on the Librispeech 960h dataset to obtain a baseline performance of the word error rate (WER) when recognising dysarthric speech. A version of the Librispeech model fine-tuned on multi-language datasets was tested to see if it would improve accuracy and achieved a top reduction of 24.15% in the WER for one of the male dysarthric speakers in the dataset. Transfer learning with speech recognition models and preprocessing dysarthric speech to improve its intelligibility by using general adversarial networks were limited in their potential due to a lack of dysarthric speech dataset of adequate size to use these technologies. The main conclusion drawn from this study is that a large diverse dysarthric speech dataset comparable to the size of datasets used to train machine learning ASR systems like Librispeech,with different types of speech, scripted and unscripted, is required to improve performance.C

Creative Commons License

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License
This work is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 4.0 International License.