Document Type

Conference Paper

Rights

This item is available under a Creative Commons License for non-commercial use only

Disciplines

Information Science, Remote sensing

Abstract

The early and accurate detection of floods from satellite imagery can aid rescue planning and assessment of geophysical damage. Automatic identification of water from satellite images has historically relied on hand-crafted functions, but these often do not provide the accuracy and robustness needed for accurate and early flood detection. To try to overcome these limitations we investigate a tiered methodology combining water index like features with a deep convolutional neural network based solution to flood identification against the MediaEval 2019 flood dataset. Our method builds on existing deep neural network methods, and in particular the VGG16 network. Specifically, we explored different water indexing techniques and proposed a water index function with the use of Green/SWIR and Blue/NIR bands with VGG16. Our experiment shows that our approach outperformed all other water index technique when combined with VGG16 network in order to detect flood in images.

DOI

https://doi.org/10.1145/3341105.3374023

Share

COinS