Document Type

Conference Paper


This item is available under a Creative Commons License for non-commercial use only


Computer Sciences

Publication Details

This work will be published as part of the book "Emerging Topics in Semantic Technologies. ISWC 2018 Satellite Events. E. Demidova, A.J. Zaveri, E. Simperl (Eds.), ISBN: 978-3-89838-736-1, 2018, AKA Verlag Berlin"


In this paper we present RaScAL, an active learning approach to predicting real-valued scores for items given access to an oracle and knowledge of the overall item-ranking. In an experiment on six different datasets, we find that RaScAL consistently outperforms the state-of-the-art. The RaScAL algorithm represents one step within a proposed overall system of preference elicitations of scores via pairwise comparisons.