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The impact of fatigue on train drivers is one of the most important safety-critical issues in rail. It affects drivers’ performance, 
significantly contributing to railway incidents and accidents. To address the issue of real-time fatigue detection in drivers, most reliable 
and applicable psychophysiological indicators of fatigue need to be identified. Hence, this paper aims to examine and present the current 
state of the art in physiological measures for real-time fatigue monitoring that could be applied in the train driving context. Three groups 
of such measures are identified: EEG, eye-tracking and heart-rate measures. This is the first paper to provide the analysis and review of 
these measures together on a granular level, focusing on specific variables. Their potential application to monitoring train driver fatigue 
is discussed in respective sections. A summary of all variables, key findings and issues across these measures is provided. An alternative 
reconceptualization of the problem is proposed, shifting the focus from the concept of fatigue to that of attention. Several arguments are 
put forward in support of attention as a better-defined construct, more predictive of performance decrements than fatigue, with serious 
ramifications on human safety. Proposed reframing of the problem coupled with the detailed presentation of findings for specific 
relevant variables can serve as a guideline for future empirical research, which is needed in this field. 
 
Keywords: Train drivers, Rail, Physiology, Fatigue, Attention, EEG, Eye-tracking, Heart rate. 
 

1. Introduction 

The safety implications of the European rail network are 
becoming pivotal due to the increase in passenger numbers 
witnessed in recent years (Sangiorgio et al., 2020). The 
current year of 2021 has been declared as ‘the European 
year of rail’ by the European Commission initiative 
promoting trains in favor of other means of transport in 
order to reduce greenhouse gas emissions.  In addition, the 
SARS-CoV-2 pandemic, currently reshaping the global 
travel and transportation landscape as we know, could lead 
to a further increase in the use of railway in both national 
and international post-pandemic-era travel. To 
accommodate the expected upcoming augmentation in rail 
travel demands, the railway industry needs to ensure it 
maintains its status as one of the safest means of 
transportation (ERA, 2020, 27). 

Train drivers are one of the most important safety-
critical roles in railway. A substantial amount of research 
has been conducted on the human factors involved in it, 
especially fatigue (e.g. Branton, 1979; Hamilton & Clarke, 

2005; Naweed, 2014; McLeod et al., 2005). Fatigue is 
regarded as a major risk in all transport industries due to 
its strong link with performance impairment (Horrey et al., 
2011). The UK Rail Accident Investigation Board 
identified 74 accidents and incidents between 2001 and 
2009 in which fatigue was a contributory factor (Young & 
Steel, 2016). Furthermore, train drivers have very irregular 
working hours and they cannot take a break whenever they 
need it (Kecklund et al. 1999), which can increase their 
fatigue levels. A recent study (Fan & Smith, 2020) 
demonstrated the association between work-related fatigue 
and impaired performance in train drivers and other 
railway staff. Restricted train maneuverability, significant 
amount of action planning, and long monotonous periods 
with minimum required activity have also been recognized 
as major risks for instigating fatigue and reducing alertness 
or vigilance in train drivers  (Filtness & Naweed, 2017).  

To manage fatigue, it is of essence to identify it 
promptly i.e. in real time, and objectively. A growing 
number of studies are using various psychophysiological 
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measures for detecting fatigue in drivers, as they have 
three main advantages: 1) They provide continuous rather 
than discrete measurements, which is a prerequisite for 
real-time fatigue monitoring; 2) They do not interrupt the 
process of driving unlike the inclusion of secondary tasks, 
nor do they exert additional time and energy resources, 
like the use of Psychomotor Vigilance Task; 3) They are 
not subject to manipulation as are self-assessment 
methods, allowing for more objective comparison. Hence, 
this review aims to examine the current state of the art in 
physiological measures for real-time fatigue monitoring 
that could be applied in train driving context. 
 

2. Defining the scope and content of literature review 

Methods for real-time fatigue monitoring identified 
through the first stage of literature search encompass 
electroencephalography (EEG), eye-tracking (ET), heart-
rate- (HR), galvanic skin response- (GSR) also known as 
electrodermal activity- (EDA) monitoring, 
electromyography (EMG), and video-recordingsa. Having 
in mind the applicability to train driving, several of the 
mentioned methods have been excluded from further 
research. Due to the nature of hand- and body- movements 
involved in train driving, neither GSR nor video-
recordings could be applied. GSR is most accurately 
measured from the fingertips, but placing the sensors on 
them is obtrusive to the driving task and the signals would 
be affected by any pressure involved in button-pressing 
(Crowley & Balfe, 2018). Wrist-based devices for 
EDA/GSR monitoring are at present not reliable enough 
for field studies (Mehler et al., 2018). Train drivers have to 
frequently stand up and look outside the windows which 
also does not allow for the use of remote-based devices 
(detached from the driver) such as stationary eye-trackers 
and video-cameras. Video recordings also impose privacy 
issues and have the potential to cause mental discomfort. 
EMG is most useful in examining muscular or physical 
fatigue (e.g. Jagannath & Balasubramanian, 2014). 
Therefore, it is less suited for assessing train drivers’ 
fatigue, as train driving is predominantly a sedentary type 
of work. Thus, three remaining groups of measures for 
real-time fatigue assessment in train drivers are reviewed 
in this paper. These are electroencephalography (EEG), 
eye-tracking (ET), and heart-rate monitoring (HR), and are 
presented in respective sections below. Relevant findings 
and physiological variables are identified and discussed. 
For purpose of clarity, an overview of the steps involved in 
the review of the state of the art is presented below (Figure 
1). 
 

 
a Although video recordings are not physiological measurements, 
they do provide real-time and objective data. 

 
Fig. 1: Steps followed in the current review of the state of the art.  
 
2.1. EEG measures 
Electroencephalography (EEG) is a non-invasive method 
for measuring electrical brain activity originating mostly in 
the cortex. Electrical signals are registered with multiple 
electrodes, usually embedded in a cap or a net, placed on 
the scalp. EEG signals are most commonly analysed in the 
frequency or time-frequency domain (spectral-power 
analysis) and in the time domain (Event-Related Potential 
or ERP analysis) (Gramann & Plank, 2019).  
 
2.1.1. Spectral-power measures (frequency bands) 
Most of the spectral-power-based studies focused on the 
effect of fatigue on the changes in the alpha, theta, beta, 
delta, or derived indices from some combination of those 
bands (Lees et al., 2018; Jap et al., 2011; Jap et al., 2007; 
Lal & Craig, 2002; Lal & Craig, 2001; Lal & Craig 2000). 
Summarizing all the findings relating EEG activity to 
fatigue is challenging, as the studies vary greatly, even 
within the driving application context. The number of 
studies on this topic has significantly grown in recent years 
and the majority focused on employing machine learning 
algorithms to detect the occurrence of fatigue in drivers, 
with various degrees of success and variability in study 
design, measurement and analyses (see Sahayadhas et al., 
2012). They often do not report the direction of change in 
the parameters used, and focus on obtaining the highest 
possible accuracy of classification of fatigued states (e.g. 
Guarda et al., 2018) which are diversely defined. This 
approach can provide applicable results only when the 
basic understanding of the physiology of the fatigued brain 
is established. Therefore, we will present here only the 
papers that clearly indicated the direction of change in 
specific frequency band powers that occurred as a result of 
fatigue. 

According to Lal and Craig who have extensively 
researched the relationship between driver fatigue and 
physiology, “the literature abounds with EEG changes 
associated with fatigue but the results are quite variable” 

Scoping the literature
•Broad literature search: Identifying measures to be reviewed

Exclusion of inapplicable measures
•Based on feasibility and critical analysis of the train driving task
•Measures to be reviewed: EEG, ET, HR.

Research criteria used
•Database: Google Scholar
•Keywords: "name of the measure" AND "mental fatigue" AND "train 

drivers" OR "rail" - repeated 3 times for each measure separately

Identifying relevant articles
•Irrelevant articles were excluded (based on the title or abstract)
•Additional relevant articles found through "snowballing"

Identifying key findings and issues for each group of measures
•Synthesizing key finsdings and identifying key issues
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(Lal & Craig, 2001, 182). They state that increase in alpha 
and theta, and reduction of beta waves are considered 
indicators of sleepiness and fatigue. However, in their later 
study (Lal & Craig, 2002) they found an increase in theta 
and delta activity, but also an increase in alpha and beta, 
albeit smaller. With an increase of fatigue, a small increase 
in beta along with a more prominent increase in theta and 
lower-alpha band was also found in a controlled 
experimental study combining EEG and ERP analyses 
(Boksem et al., 2005). A potential explanation of such a 
pattern of results regarding beta is offered by Craig et al. 
(2012). Namely, with increasing fatigue, the activity of the 
brain slows down, so the fatigued individual increases 
their efforts to sustain vigilance, which in turn leads to 
increase in beta activity. A study on train drivers 
conducting a monotonous driving task in a simulator 
showed simultaneous decreases in beta and increases in 
theta, as the train drivers were becoming fatigued (Jap et 
al., 2011), which is in line with the expected pattern, as 
stated earlier. They also found that delta activity had 
started to increase and then fluctuated. In the same study, 
the authors compared various combinations of EEG 
indices attempting to determine which of them 
differentiates best between the alert and fatigued state. 
They concluded it to be the sum of theta and alpha divided 
by beta. Another study investigated the relationship 
between EEG activity of train drivers performing a 10-
minute monotonous simulated driving task and self-report 
fatigue and sleepiness scores (Lees et al., 2018). Delta, 
theta, and alpha were found to be negatively correlated 
with those scores. However, fatigue self-assessment was 
conducted prior to simulated driving and there was no 
experimental manipulation of fatigue. Therefore, these 
results are not informative of the changes in the EEG 
influenced directly by fatigue.  

In summary, not many studies have empirically 
demonstrated the relationship between specific EEG bands 
and fatigue. Researchers frequently a priori assume that 
different EEG frequencies or their combinations are 
related to fatigue (e.g. Jap & Lal, 2011), and that is 
probably part of the reason why there are many conflicting 
or unclear findings in this field. 
 
2.1.2. ERPs  
The ERP-based studies require a much more controlled 
experiment design and have low ecological validity. At 
this stage, the ERP method cannot be used in real-time 
fatigue monitoring. However, some of the most relevant 
conclusions of the ERP-based studies are mentioned here 
briefly as they provide deeper insight into the cognitive 
processes affected by fatigue. For instance, Boksem et al. 
(2015) have demonstrated a differential effect of fatigue 
over P1, N1, and N2b ERP components. This result 
suggests that the top-down (goal-directed) aspect of 
attention is adversely impacted by fatigue, whereas 
bottom-up (stimulus-driven) attentional processes are not. 
This agrees with the conclusion of an earlier study (Faber 
et al., 2012) that fatigued individuals are more susceptible 
to distractions and less able to suppress irrelevant signals, 
which can lead to more errors. Such findings are important 

in understanding which kinds of safety-critical tasks suffer 
most from the occurrence of fatigue.  

EEG is known to possess excellent temporal 
resolution compared to other neuroimaging techniques, but 
less precise spatial resolution. This overview has therefore 
focused solely on the direction of changes in frequency 
bands, disregarding the electrode sites. The lack of a 
standard experimental and reporting protocol also makes 
the attempt of summarising localisation results extremely 
challenging. Furthermore, different authors define the 
ranges of EEG bands differently, and the same issue 
occurs in defining fatigue, which can cause additional 
problems in the interpretation of the findings. 

Although EEG is often referred to as the ‘gold 
standard’ for assessing mental fatigue (e.g. Liu et al., 
2010), there is an obvious need for thorough and large-
scale systematization of various EEG findings relevant to 
fatigue and (train) driving. Future studies in this field 
should be more theory-based i.e. conclusions should not be 
driven solely by obtained data; they should be more 
methodologically rigorous; and the study design and 
analyses procedures should be reported thoroughly. 
 
2.2. Eye-tracking measures 
There are number of measures that can be obtained from 
monitoring the eyes. These measures are here divided into 
three groups: pupil-, blink-, and eye-movement-based 
measures. They will be discussed below in that order. 
 
2.2.1. Pupil-based variables 
Pupillometry is the term used for measuring changes in the 
pupil diameter. These changes serve to regulate the 
amount of light passing through the eyes: as the amount of 
light increases, the pupil size decreases. However, 
luminance is not the only factor that affects the size of 
pupil diameter; it is also influenced by attention and 
cognition (Peysakhovich et al., 2015), as well as emotional 
arousal (Bradley et al., 2008).  

Changes in pupil size are involuntary reactions that 
cannot be controlled (Leang et al., 2012). This qualifies 
them as an objective indicator of various physiological 
states, including fatigue. Pupil size was shown to decrease 
with time-on-task (Hopstaken et al., 2016). Moreover, 
when a person is experiencing fatigue, pupil size tends to 
decrease and have greater variability (Brisson et al, 2013 
& Gilzenrat et al, 2010, as cited in Sirois & Brisson, 
2014). The bigger variability of pupil size during fatigue is 
a consequence of the competition between the opposing 
effects of the sympathetic and parasympathetic nervous 
systems (Straeter, 2020).  

The challenge in the use of pupillometrics as an 
objective indicator of physiological state lies in the fact 
that pupil dilation and constriction can occur as a result the 
factors mentioned earlier (light conditions, mental effort, 
emotional arousal). The changes in pupil size that occur 
due to cognitive factors, such as mental fatigue, are small 
compared to those evoked by light conditions (Laeng et 
al., 2012). To circumvent some of those obstacles, Straeter 
(2020) proposed using the gliding average method for 
calculating the changes in pupil size over time, which 
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mathematically controls for the pupil diameter variation 
caused by the luminance changes. With the use of such 
corrections, pupillometry seems as a promising method for 
monitoring mental fatigue, especially since it is not 
controlled voluntarily. 
 
2.2.2. Blink-based variables 
The second group of measures comprises various blink 
parameters. Many studies assume the existence of a direct 
relationship between blinks and fatigue or drowsiness (e.g. 
Hsieh & Tai, 2013). A systematic review (Martins & 
Carvalho, 2015) summarized papers from 2010 onwards 
that used eye blinks as indicators of ‘fatigue or mental 
load’. However, it is not clear from the review how 
successful these studies were in detecting fatigue or mental 
load based on blinking patterns. The only measure 
reported was blink frequency. In one of the reviewed 
studies (Caffier et al., 2003), blink frequency or rate was 
shown to slightly decrease when participants were tired. 
On the contrary, another, more recent study (Maffei & 
Angrilli, 2018) found an increase in blink rate over time-
on-task, which the authors interpret as arousal decrement 
and an increase in mental fatigue. More importantly, they 
found that blink rate is affected both by task difficulty and 
time-on-task: blink rate increased over the course of easier 
tasks, but not over the course of a difficult task. The 
authors claim that blinking is supressed in difficult tasks as 
they require more attention, which confirms their validity 
as an index of (sustained) attention.   

Apart from blink frequency, blink duration can also 
be indicative of tiredness and fatigue. In one study, mean 
blink duration significantly increased from morning/alert 
compared to evening/drowsy condition, correlating 
positively with the subjective estimation of drowsiness 
(Caffier et al., 2003). Another study (McIntire et al., 2014) 
showed that as the performance declines, blink frequency 
and duration increase. Morris and Miller (1996) found the 
blink amplitude to be the best predictor of performance 
decrements due to fatigue, followed by blink rate, long 
closure rate, and blink duration; and proposed combining 
them to explain the maximal amount of variance in 
predicting the performance outcome.  

The percentage of eye closures, widely known as 
PERCLOS is a derived measure often used in assessment 
of driver fatigue. It was shown to increase as the levels of 
fatigue rise (Wang et al., 2010). Although PERCLOS was 
claimed to be a superior indicator of fatigue, Trutschel et 
al. (2011) found other measures (EEG and eye-tracking 
signals) more informative.  

Since blinking can be partially controlled by will, and 
is affected by time on task (Maffei & Angrilli, 2018; Stern 
et al., 1994),  time of the day (Barbato et al, 2000, as cited 
in Caffier et al., 2003), and temperature and humidity 
(Martins & Carvalho, 2015), blink-based measures do not 
seem reliable enough for fatigue assessment. 
 

2.2.3. Eye-movement-based variables 
The third group of measures is based on the monitoring the 
eye movements. For purpose of clarity, eye movements 
will be categorised here into fixations and saccades. 

Fixations represent the static gaze on a specific area 
with the duration of 200-300 milliseconds that are 
separated by saccades (Shrestha & Owens, 2008). There 
are not many papers that have investigated the relationship 
between eye-fixation variables and fatigue. One of the few 
exceptions is a study by Bodala et al. (2017). They devised 
a fixation score measure which can be used as an indicator 
of vigilance decrement with the aid of computer vision 
assisted eye-tracking. It basically shows how much the 
gaze deviates from the target area of interest.  

The ballistic movement of the eyes from one point of 
fixation to another are known as saccades (Di Stasi et al., 
2013). There are many different parameters that can be 
retrieved from analyzing saccades, the most common ones 
being their amplitude and velocity. Both were shown to 
decrease as the vigilance drops (Bodala et al, 2016). 
Saccadic peak velocity is considered a good index of 
arousal (Di Stasi, 2013). As opposed to saccadic amplitude 
and fixation duration, saccadic velocity is not subject to 
voluntary control (Leigh & Zee, 1999, as cited in Di Stasi 
et al., 2013), which qualifies them as a more objective 
indicator of fatigue.  

Various devices can be employed for recording 
ocular measures. Basic variables such as blink occurrence 
and duration or vertical and horizontal eye movements can 
be obtained with the use of electrooculogram (EOG) or 
even cameras. However, for more precise measurements 
and more promising variables for fatigue monitoring (such 
as fixations and saccades), eye-trackers are required.  

 
2.3. Heart rate measures 
Similar to EEG, heart rate signals can be analysed both in 
the time and the frequency domains, but also using other 
methods (for detailed overview of these methods and 
variables see Malik et al., 1996; Shaffer & Ginsberg, 
2017). Listing all these variables would exceed the scope 
of this paper, so we will focus here only on basic heart rate 
and heart rate variability. 
 
2.3.1. Heart-rate (HR) 
With regards to the basic variable of heart rate and its 
relation to fatigue, not many relevant studies have been 
found. In one study assessing the onset of driver fatigue in 
a simulator, HR decreased significantly during the course 
of monotonous driving (Jagannath & Balasubramanian, 
2014).  
 
2.3.2. Heart-rate variability (HRV) 
Heart rate variability is a more complex variable of cardiac 
activity that might be used as an indicator of fatigue. It is 
considered a measure of neurocardiac function as it 
mirrors the interaction between the brain and the heart 
(Shaffer et al., 2014). Basically, it represents “the changes 
in the time intervals between consecutive heartbeats called 
interbeat intervals (IBIs)” (Shaffer & Ginsberg, 2017, 1). It 
is defined as “an RR interval (RRI) fluctuation on an 
electrocardiogram trace” (Fujiwara et al., 2019, 1769), 
measured in milliseconds. The Rs represent the highest 
peaks on the ECG trace in each cardiac cycle. It seems that 
RR intervals are used interchangeably with the NN 
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intervals by many authors (e.g. Shaffer & Ginsberg, 2017), 
which are the intervals between normal R-peaks only (not 
affected by signal noise or underlying heart conditions). 
This is important as the Standard Deviation of NNs 
(SDNN) is a recommended time-domain variable to 
measure, according to European Heart Journal guidelines 
(Malik et al., 1996). Two other spectral-domain variables 
are also recommended: low and high frequency range of 
heart signals (LF and HF). Their ratio (LF/HF) is 
understood to be an indicator of the ratio between the 
sympathetic and parasympathetic nervous system activity 
(Shaffer & Ginsberg, 2017). This could be a useful 
parameter as the sympathicus is responsible for the “fight 
or flight” response activation, indicating the presence of a 
stressful situation, while the  parasympathicus is a 
dampening system activated in the “rest and digest” or 
stress-free conditions (LeBouef et al., 2020). Not many 
literature resources found were clear on which of these 
HRV variables were used. A recent study investigating the 
relationship between EEG and ECG signals is an exception 
(Lees et al., 2021). In that study, an association was 
established between LF HRV and increased delta and 
decreased beta during simulated monotonous train driving. 

Heart rate measures are most precisely obtained with 
ECG electrodes, which is impractical in the context of 
train driving. Wearable devices (smart watches, fitness 
bands) are currently not precise enough for HRV analysis 
(Fujiwara et al., 2019). However, chest straps for ECG 
measurements might prove reliable enough for this 
purpose. 
 
3. Discussion of the literature findings 

The main findings of our review are summarized in Table 
1. All three groups of measures are evidently complex and 
a great number of variables can be defined within each of 
them. This ‘microscopic’ view serves to indicate not only 
the potentially relevant paths for future research, but also 
the heterogeneity and complexity of the phenomena. 

Although many of the reviewed variables seem 
promising, none of them have been demonstrated to be 
adequate indicators of fatigue that can be employed in real 
time monitoring of train drivers at present. This conclusion 
is in line with a statement from a recent article by 
Yuzhong et al. (2020, 560): “there are still many problems 
in the fatigue detection technology based on the 
physiological characteristics of the workers, and it is not 
possible to achieve a high accuracy rate in a short time”.  

We argue that one of the main issues behind the 
inconclusiveness of the presented findings is the 
heterogeneity of the concept of fatigue. It is often used 
synonymously with the terms ‘drowsiness’ or ‘sleepiness’ 
(e.g. Lees et al., 2018), indicating a lack of a precise 
operational definition. Many of the reviewed papers do not 
provide a definition of fatigue, and most that do, 
commonly define it through the concepts of attention and 
performance. For that reason, a suggestion to reframe and 
redefine the problem of real-time fatigue monitoring in 
train drivers is put forward. We instead propose the 
assessment of attention levels through the use of 
physiological parameters. 

 

Table 1. Summary of key findings and issues 

Physiol
ogical 

measur
e 

Key findings and issues 

EEG 
measur
es: 
frequen
cy 
bands 

Key findings: 
 Increase in theta (Lal & Craig, 2002; Boksem et al., 

2005; Jap et al., 2011) 
 Increase in delta (Lal & Craig, 2002); followed by 

fluctuation (Jap et al., 2011) 
 Increase in alpha (Lal & Craig, 2002)  
 Small increase in beta (Lal & Craig, 2002; Boksem 

et al., 2005); decrease in beta (Jap et al., 2011) 
 Combinations of these frequencies, e.g. (theta + 

alpha) / beta, may be more predictive of fatigue (Jap 
et al., 2011)  

Key issues: 
 Lack of sufficient empirical evidence for the 
relationship between specific EEG bands and 
specific mental states, such as fatigued state 

 Research relying a priori on the assumption that 
different EEG frequencies or their combinations are 
related to fatigue (e.g. Jap & Lal, 2011) 

EEG 
measur
es: 
ERP 

Key findings: 
 Goal-directed attention is adversely impacted by 
fatigue, unlike the stimulus-driven attention 
(Boksem et al., 2015) 

 Fatigued individuals are more susceptible to 
distractions and less able to suppress irrelevant 
signals (Faber et al., 2012) 

Key issues: 
 Low ecological validity; not applicable for 
continuous monitoring 

Pupil-
based 
measur
es 

Key findings: 
 Decrease and greater variability of pupil size 
(Sirois & Brisson, 2014) 

Key issues: 
 Luminance affects the size of pupil; correction 
method needs to be applied (Straeter, 2020) 

Blink-
based 
measur
es 

Key findings: 
 Slight decrease in blink rate of tired subjects 

(Caffier et al., 2003); blink rate increase as 
performance declines (McIntire et al., 2014) and 
over the course of easier but not difficult tasks due 
to attention allocation (Maffei & Angrilli, 2018) 

 PERCLOS increases with fatigue (Wang et al., 
2010); other measures more informative (Trutschel 
et al., 2011) 

 Blink amplitude, rate, long closure rate and blink 
duration combined explain the maximum amount of 
performance variance (Morris & Miller, 1996) 

Key issues: 
 Blinking can be controlled at will 
 It is heavily affected by time on task (Maffei & 
Angrilli, 2018; Stern et al., 1994),  time of the day 
(Caffier et al., 2003), temperature and humidity 
(Martins & Carvalho, 2015), and task difficulty 
(Maffei & Angrilli, 2018) 

 More suitable as an index of attention (Maffei & 
Angrilli, 2018) 
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Eye-
movem
ent-
based 
measur
es 

Key findings: 
 Fixation score can be used as an indicator of 
vigilance decrement (Bodala et al., 2017)  

 Saccadic amplitude and velocity decrease as 
vigilance drops (Bodala et al,  2016); Saccadic 
peak velocity is a good index of arousal (Di Stasi, 
2013)  

Key issues: 
 Not many papers on the relationship between eye-
fixation variables and fatigue 

 Saccadic amplitude and fixation duration are 
subject to voluntary control (Di Stasi, 2013) 

Heart-
based 
measur
es: HR 

Key findings: 
 Decrease during the course of monotonous driving 

(Jagannath & Balasubramanian, 2014) 
Key issues:  

 Not enough empirical studies have been found 
Heart-
based 
measur
es: 
HRV 

Key findings: 
 Potentially useful variables to explore further in 
future studies: SDNN; LF and HF, and their ratio 

Key issues: 
 Not always clear in the  literature which HRV 
method of calculation and variables were used  

 

4. Proposed reframing of the problem: From 
attempting to measure fatigue to measuring attention 

Four main arguments are presented here to support our 
proposed shift to investigation of the concept of attention. 
The first is related to the lack of clear operational 
definition of fatigue, which seems to be a quite diversely 
defined concept. This is further supported by Williamson 
et al. statement (2011, 498): “Fatigue is a hypothetical 
construct (. . .) inferred because it produces measurable 
phenomena even though it may not be directly observable 
or objectively measurable”. Narrowing down the literature 
review to mental fatigue still suffers from lack of 
operationalisation. Papers on mental fatigue (e.g. Shen et 
al., 2008; Lal & Craig, 2001) usually rely on the work by 
Grandjean (1979) which outlines the main symptoms of 
mental fatigue including reduced alertness and impaired 
performance, implying that mental fatigue is defined and, 
consequently, measured indirectly, through the concepts of 
attention and performance. Empirical evidence from the 
rail context also supports this view: Smith and Smith 
stated that “Fatigue was no longer a significant predictor 
of performance when [other] variables were included” 
(2017, 257). However, attention is a critical safety 
capability directly impaired by fatigue (Williamson et al., 
2011), and can be measured more objectively (see Towey 
et al., 2019). A challenge arising from this will be how to 
measure it in real time. 

The second argument concerns the biophysiological 
underpinnings of fatigue and attention. Since fatigue is 
usually operationalized through concepts of attention or 
vigilance (i.e. sustained attention), research should focus 
on finding the physiological proxies of attention lapses, 
rather than fatigue. Attention is a cognitive concept with a 
clear biological substrate in the brain (for detailed 
overview of attentional networks see Peteresen & Posner, 
2012). The closest proximity to measuring its activity is 
through EEG, which provides a more direct insight into it 

compared to other neuroimaging methods (Parasuraman et 
al, 2008). Since retina is considered to be ‘an approachable 
part of the brain’ (Dowling, 1987), we could expect eye-
tracking measures to be the next best proxy of brain 
activity involved in attentional processes. The further away 
from the brain the signal recordings are, the weaker the 
link to attention and performance measures can be 
expected.  This is well illustrated with the following 
empirical finding. An attempt was made to monitor 
attentional states with a wrist-wearable electrodermal 
potential (EDP), supposed to classify EEG states without 
the use of EEG cap (Mehler et al., 2018). Unlike HR data 
that was simultaneously measured, EDP-based attention 
metrics were not statistically significant in distinguishing 
between conditions varying in the level of attentional 
demand. 

The third argument targets the core of the problem. 
As mentioned above, many studies interchangeably use the 
terms ‘fatigue’, ‘drowsiness’, and ‘sleepiness’. This not 
only brings conceptual confusion, but more importantly, 
addresses the issue when it is practically too late. If the 
real-time monitoring equipment provides feedback to the 
drivers only when they are drowsy or sleepy, the 
intervention can be ill-timed. It would be more useful if 
the monitoring system could recognize the onset of 
attention decline, which can be reversed. 

Finally, even when drivers are perfectly rested and 
not experiencing any symptom of fatigue, they can still be 
distracted. Distractions could be internal, such as thoughts 
regarding personal-life matters, or external, such as highly 
salient stimuli in the surroundings; and can lead to 
performance decrements. A train driver’s job “requires a 
high level of concentration and alertness when it comes to 
signals, information, the tracks and his immediate 
environment” (Kecklund et al., 1999, 5). In addition to 
this,  sustained attention was identified as a human factor 
that mostly contributed to all types of railway incidents, 
especially the inattentiveness to signals (Edkins & Pollock, 
1997). Thus, a measure of driver attention could capture a 
wider range of instances when a driver’s performance is 
reduced, compared to a measure of fatigue. 
 
5. General discussion and conclusion 

This paper has critically examined the current state of the 
art in real-time fatigue assessment that can be applied to 
monitor train drivers’ fatigue. Several groups of methods 
for continuous and objective assessment of fatigue have 
been identified in the literature. Measures assessed as 
inapplicable to train driving were excluded. Further 
structured literature research was confined to three groups 
of physiological measures: EEG, eye-tracking, and heart-
rate monitoring. Main variables that might be used to 
assess train driver fatigue are presented and analysed 
respectively. A summary table of key findings and issues 
in physiological assessment of fatigue across these 
measures and specific variables is provided. 

Conclusions from this overview can be summarized 
as follows: based on the current state of the art available in 
literature, the single best fatigue measure could not be 
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identified. Despite the constant advancements in driver-
monitoring technology, there are no clear indications of 
solving the real-time fatigue detection issue that can be 
applied to train drivers. This seems to be more tied to the 
problem of fatigue conceptualization than to the reliability 
of available technology. Fatigue, or rather, mental fatigue, 
is often not clearly differentiated from sleepiness and sleep 
onset. In an attempt to measure fatigue, most of the 
reviewed studies rely on the concepts of attention or 
vigilance, and performance. Thus, this paper has proposed 
to redefine the problem of fatigue monitoring to that of 
attention monitoring. Four arguments were presented in 
detail to support this proposal, summarized as follows: 1) 
As opposed to fatigue, attention is a concept that can be 
measured objectively; 2) Attention has clear anatomical  
underpinnings in the brain, which can be monitored with 
EEG and eye-tracking; 3) Detecting and predicting 
attention lapses would bring a timelier solution compared 
to detecting fatigue (i.e. when it is already too late to 
intervene); and 4) Inattentiveness can occur even in the 
absence of fatigue, which covers more situations relevant 
to driving context.  

More research endeavour is needed to determine the 
best way to measure and monitor attention levels of train 
drivers and explore if it is possible to do so unobtrusively 
and in real time. This paper can be useful for such future 
studies as it provides a critical overview of specific 
physiological variables that could be investigated in more 
depth in the context of monitoring train drivers’ alertness 
and fatigue. It has also indicated several problems both in 
literature and practice that need to be addressed in future 
studies aiming to improve railway safety. 
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