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Abstract: Smart Farming (SF) is an emerging technology in the current agricultural landscape. The
aim of Smart Farming is to provide tools for various agricultural and farming operations to improve
yield by reducing cost, waste, and required manpower. SF is a data-driven approach that can
mitigate losses that occur due to extreme weather conditions and calamities. The influx of data from
various sensors, and the introduction of information communication technologies (ICTs) in the field
of farming has accelerated the implementation of disruptive technologies (DTs) such as machine
learning and big data. Application of these predictive and innovative tools in agriculture is crucial
for handling unprecedented conditions such as climate change and the increasing global population.
In this study, we review the recent advancements in the field of Smart Farming, which include novel
use cases and projects around the globe. An overview of the challenges associated with the adoption
of such technologies in their respective regions is also provided. A brief analysis of the general
sentiment towards Smart Farming technologies is also performed by manually annotating YouTube
comments and making use of the pattern library. Preliminary findings of our study indicate that,
though there are several barriers to the implementation of SF tools, further research and innovation
can alleviate such risks and ensure sustainability of the food supply. The exploratory sentiment
analysis also suggests that most digital users are not well-informed about such technologies.

Keywords: smart farming; precision farming; unmanned vehicles; wireless sensor networks; senti-
ment analysis; computer vision; Internet of things (IoT)

1. Introduction

Agriculture is an indispensable field of study, as the continued survival of the human
race depends on it. New and updated technology has been implemented throughout the
ages in order to improve agricultural output and sustainability. The world’s population is
expected to grow to approximately 9.7 billion by the year 2050 [1]. To keep up with this
increase in population, food production needs to go up by 70%. However, the resources
available to produce the required food output are steadily decreasing due to climate change
and an increase in the number of settlements. Water levels are receding, arable lands are
shrinking, and the environment is being rapidly degraded. The agricultural industry is
also one the biggest contributors of greenhouse gases. The strain on the availability of
food across the world is predicted to increase drastically with the increase in the world
population over the next few decades [2,3]. Agriculture 4.0, or the fourth agricultural
revolution, was discussed by the World Government Summit in 2018 in the report titled
‘Agriculture 4.0—The Future of Farming Technology’ [4]. The report highlights the need for
more efficient food production practices that can overcome the increasing food demand in
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coming years. It would be nearly impossible to keep up with this increase in demand with-
out the integration of information and communication technologies (ICTs) and disruptive
technologies (DTs) such as remote sensing, Internet of Things (IoT), machine learning, big
data, etc., into the agricultural industry. Smart Farming is of great interest to researchers
and scientists as it has yielded great results in reducing the ecological footprint of farm-
ing [5], improving production efficiency [6], reducing human labor through unmanned
vehicles [7,8], detecting diseases through image processing [9,10], and more.

Precision farming is an approach that utilizes ICTs to monitor resources such as
crops, fields, and animals [11]. It aims to maximize resource usage and crop yield while
minimizing associated costs. The agricultural sector consumes a significant amount of
resources in the form of water, land, fertilizer, and energy. Precision farming is concerned
with calculating the exact amount of resources required to grow plants and sustain livestock.
Smart Farming (SF), which could be considered an extension of precision farming, focuses
on utilization of data obtained from precision farming in an intelligent way and making crop
production more efficient by predicting crop yield [12,13], reducing wastage of resources,
automating tasks [14], and providing agricultural management support [15]. It can also
be used to perform soil analysis [16], so that crops of optimal quality can be grown. There
have been several calamities in recent years that occurred due to climate change [17]. In
light of these calamities, there is great need for smart farming to help manage agricultural
activities. Due to the various risks and external factors associated with farming, such as
weather extremities and plant diseases, implementation of data-driven predictive tools,
which can be used to provide insights into farming operations such as crop yield, feed
intake, weather conditions, soil conditions, etc., is crucial for mitigation [18]. Decisions can
thereby be made based on real-time data rather than heuristic, thumb-rule data.

The availability of huge amounts of data from Internet of things (IoT) devices has
allowed for application of big-data tools. The development of Artificial Intelligence (AI)
tools has impacted the efficiency of a number of tasks associated with farming, suggesting
that data-driven agriculture is a good approach to ensure agricultural sustainability. Cli-
mate change is predicted to disproportionately impact smallholder farmers [19]. Even a
temperature variation of a few degrees will drastically affect smallholder farmers who are
not adequately prepared for the situation. A substantial amount of crop losses occur due to
weather events, which can be greatly mitigated through predictive weather modeling. This
approach can help farmers navigate the agricultural risks that arise from the unprecedented
deterioration of the environment, social and economic changes in the industry, and the
increase in demand for food production. The availability of big data has the potential to
revamp the entire food supply chain [20]. A global connectivity chain in farming will allow
for the use of correctly priced products, better market positioning, and improved means of
production. The use of ICT in farming will provide greater insight and advice on agricul-
tural practices to farmers. The increase in visibility that comes with inter-connectivity of
the supply chain is also likely to improve the productivity and confidence of farmers in
such practices.

Agricultural tasks such as fertilizer and pesticide spraying, crop monitoring, seed
planting, etc., can be automated through the use of Unmanned Aerial Vehicles (UAVs)
and Unmanned Ground Vehicles (UGVs) [21]. Robots can be trained to autonomously
plant saplings and move heavy pots, thus complementing human effort in the agricultural
industry and reducing the farmer’s workload [22]. Autonomous vehicles never tire and can
work around the clock. They also provide better accuracy and speed to improve the size of
yields. With computer vision, autonomous vehicles can identify if the crops are ripe, ready,
and disease-free. Lightweight sensors can be deployed on aerial vehicles to collect detailed
information about crops and soil parameters through hyper-spectral imaging [23]. Sensors
can also be used to map various parameters such as type of land, crop, vegetation index,
chlorophyll index, and water index [24]. Drones can help to create a precision map of a field
so that each part can precisely receive the resources it needs [25]. IoT is a major enabling
technology that allows communication between the various sensors installed on the farm.
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IoT makes use of Wireless Sensor Networks (WSN), which can collect a large amount of
data about the environment, crop production, cattle monitoring, and more [26]. Information
generated by IoT devices allows farmers to track farm operations and performance, and
make informed decisions to improve farm productivity and yield. The massive amounts of
data collected from the WSNs can be analyzed through technologies such as big data and
deep learning. These technologies provide the added advantages of predictive modeling,
real-time decision making, and adaptability to external factors. With the number of smart
devices increasing steadily, the implementation of IoT in farms will increase interoperability,
decrease losses due to human errors, and provide seamless unification of information.
Vertical farming, which is the practice of growing crops in a vertically stacked layer within
a controlled environment for maximum growth, is one way to grow crops independently
of local soil and climate conditions [27].

The widespread implementation of smart farming tools faces several limitations
and challenges depending on the geographical location of the project. One prominent
barrier is the lack of internet connectivity, especially in rural areas. Such technology is not
affordable for everyone. Without a stable internet connection agricultural sensors cannot
communicate with each other. The initial cost of installation is high for any SF project,
making it especially difficult for smallholder farms to accept the risks. Further, the farmers
implementing smart farming technologies may not fully understand the operation, find the
system too complex to use, or may be skeptical about its benefits. Older farmers usually
prefer traditional farming and are unwilling to learn to operate new technology [28]. The
security and privacy of the data generated by sensors is also a concern, as there has to be
an accountable party in case of mishandling or misuse [6]. This review paper highlights
the current state-of-the-art ICTs and DTs that are applicable to the agricultural sector. The
practical implementation of these technologies in particular projects across the world has
also been covered, along with the limitations of the approaches and their potential to
alleviate significant concerns faced by farmers. Exploratory sentiment analysis has also
been performed on comments collected from YouTube videos relevant to smart farming
in order to determine public opinion regarding the implementation of these tools. This
work aims to serve as a reference and motivation for further research in the adoption of
technological tools in the agricultural industry.

2. Motivation

In this study, an in-depth exploration of recent advancements in the field of smart
farming is performed. It has always been a human endeavor to revolutionize agriculture
by domesticating animals, planting crops in rotations, using pesticides and fertilizers, etc.
The advent of ICTs has brought about the fourth agricultural revolution, or Agriculture
4.0, which focuses on the use of limited resources on targeted areas. As discussed in
the previous section, this is achievable with the help of sophisticated technologies such
as unmanned vehicles, satellite imagery, sensors, and more. DTs such as AI have also
greatly impacted the agricultural sector by improving efficiency, providing predictive
analysis of yield, and mitigating production and market risks. Studies have shown several
benefits of using smart solutions in farming practices, such as reduction of necessary
manpower, increase in yield, effective management of livestock, monitoring of crops and
weather conditions, predictive analysis, and cost reduction. Several initiatives have been
undertaken across the world that support the use of precision farming and smart farming
while also providing insight on the specific limitations that were encountered. It is crucial
that the ever-increasing global food demand is met, as the survival of the human race
depends on it. Smart farming is capable of providing essential assistance to farmers to
ensure sustainable food production. It can help farmers manage risks by providing specific
weather forecasts, yield projections, likelihood of diseases, and more. It can thereby also
increase profits for the farmer, as the availability of data on risk assessment and external
conditions can allow for optimal cultivation of crops. The motivation for conducting this
study is to streamline the current state-of-the-art ICTs and DTs applicable to the farming



AgriEngineering 2022, 4 427

sector, analyze components of various smart farming projects, discuss potential uses of
such components, and list the common challenges that face the large-scale adoption of such
techniques. The considerations for using smart farming in different geographical regions
also needs to be discussed. The general attitude of people towards the adoption of any
new technology is a great indicator of its perceived benefits. To determine the consensus of
the opinion on smart farming, we have performed a surface-level sentiment analysis on
comments collected from YouTube channels relevant to smart farming. Thus, this work can
serve as a point of reference for future research in the area of smart farming and can help
researchers explore diverse technologies that are relevant to the topic.

During this exploratory study, we formed the following two hypotheses, each with
their respective research questions for further investigation:

Hypothesis 1. ICTs and DTs can be used in the agricultural sector to make significant improve-
ments in several farming applications. The following research question was crafted to accept or
reject the hypothesis:

1. What are the state-of-the-art ICTs and DTs currently used in smart farming?

Hypothesis 2. There are certain significant challenges to the widespread adoption of smart farming
tools, such as lack of awareness about the topic amongst the general population. The following
research questions are explored in this context:

1. What are the challenges associated with the widespread adoption of smart farming tools?
2. What are the current opinions and expectations of the digital user with regards to smart

farming?

For this study, Google Scholar was used to perform exploratory analysis. Specific key-
words, such as ‘plant disease detection’, ‘unmanned ground vehicles’, ‘precision livestock’,
‘big data’, etc., were selected. The searches were performed in the format [technology][smart
farming]. For example, in order to search for articles that provided an overview of big-
data applications in farming, the search phrase was ‘big data smart farming’. A total of
30 keywords were grouped into six groups to analyze the number of citations for the top
five results for each search. We attempted to exclude review papers that covered a few or
all of the keywords. The number of citations for the top five results for each keyword is
graphed in Figure 1 in six groups. The average number of citations for the top five results
was calculated. The documents where the number of citations was greater than the average
for that keyword were considered for the study.

The rest of this paper is structured as follows: Section 3 covers the various ICTs and
DTs, such as big data, IoT, cloud computing, AI, unmanned vehicles, blockchain, and
decision support systems, that enable smart farming initiatives. Research efforts and
projects that utilize such technologies in the agricultural sector are also discussed. Section 4
covers state-of-the-art smart farming projects that have been launched and completed in the
European Union and across the world. A brief overview of user sentiment towards smart
farming technologies is conducted through comments collected from YouTube videos about
smart farming in Section 5, in order to better encapsulate user perception towards such
tools. Section 6 highlights the various challenges present in the widespread adoption of
precision and smart agricultural practices. In Section 7, we discuss the findings of our study
with respect to the two hypotheses formulated, followed by the conclusion in Section 8.
The structure of the paper is displayed in Figure 2.
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Figure 1. Number of citations per keyword for each of the 6 groups (a–f) of 5 closely related keywords.
The number of citations are compared for the top 5 search results.

Figure 2. Structure of the paper.
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3. Technologies

This section provides a thorough discussion of the key technologies that assist in the
evolution of smart farming. These technologies include sensing systems, wireless sensor
networks, IoT, unmanned vehicles, decision support systems, blockchain, and more. One
or more of these tools has been used in collaboration for smart farming projects worldwide.
The development of new sensors with improved sensitivity has allowed for the collection
of higher-quality spatial and temporal data, which can be be analyzed for more timely and
efficient decision making. The advancements in remote sensing translate to reducing human
time and effort, as less human intervention is required. Over the past few years, UAVs
and UGVs have drastically improved in precision and have become more lightweight and
cheaper, allowing for their easy adaption on large-scale farms. Wireless sensor networks
can help the seamless functioning of sensors, autonomous vehicles, and decision-support
systems to impact production at all stages. IoT platforms can allow control of daily farm
activities through remote devices. Figure 3 classifies the technologies implemented in smart
farming, along with their most common applications. Table 1 provides a brief description
of each technology along with some related works and applications.

Figure 3. Technologies and applications.

Table 1. Overview of ICTs in smart farming.

Technology Description Applications

Sensors
A sensor is a device that detects changes
in the physical environment and records
this information for future analysis.

Smart collars for monitoring cattle well-being [29]; Hyperspectral
imaging of crop field [24]; Greenhouse monitoring [30]

IoT platforms IoT is a network of physical objects which
share information across the internet.

Real-time monitoring and management system for wheat diseases,
pests, and weed [31]; IOT platforms using sensors to measure and
monitor humidity using the NETPIE protocol [32]; Monitoring
health status of dairy cows using IoT and wireless body area
networks (WBANs) using LoRa [33]; AgriTech- framework of
optimizing resources using IoT [34]; IoT-based system for remote
monitoring of soil characteristics using DS18B20 sensor [35];
Agri-IoT framework for IoT-based smart farming [36]; An
IoT-based greenhouse monitoring system with Micaz motes [37];
IoT-based agricultural stick integrated with Arduino technology
and Solar technology for temperature and moisture monitoring [37]
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Table 1. Cont.

Technology Description Applications

Decision
support
systems

DSS is an information system that assists
in operational decision making by
providing additional predictive insights.

DSS for automatic climate control and minimizing diseases for
greenhouse tomatoes [38]; AgriPrediction-LoRa IoT
technology-based support system using ARIMA prediction
model [39]; AgroDSS-cloud-based DSS for farm management [40];
Web-based decision support system capable of supporting farmers
in selecting appropriate alternative crops [41]

Cloud/edge
computing

Cloud computing is the online delivery of
hosted services, such as software, storage,
and computation power. Fog/edge
computing is a decentralized computing
architecture between the cloud and
connected peripheral devices that allows
computation and storage closer to the
edge devices.

Cloud-computing-based system for early detection of borer insects
in tomatoes [42]; cloud-computing-enabled spatio–temporal
cyber–physical infrastructure (CESCI) for soil monitoring [43];
Cloud-based farm management system (FMS) developed within
FIWARE [44]; IoT-based smart farming system built upon FIWARE
for fruit quality control [45]; IoT platform based on edge and cloud
computing for soil-less culture needs in greenhouses [46];
Fog-computing-based framework designed to provide a complete
farming ecosystem [47]

Blockchain
A distributed, immutable ledger that
keeps a record of all transactions of
digital assets over a network.

Smart contract-based authentication scheme [48]; model ICT
e-agriculture system with a blockchain infrastructure and
evaluation tool [49]; Blockchain-based secure smart greenhouse
farming [50]; Ecological food traceability system based on
blockchain and IoT technologies [51]

3.1. Sensors

The implementation of ICTs and DTs in farming is dependent on the availability of
wireless connectivity. Remote sensing is crucial for IoT devices to function. Sensors serve
as the basic building block in a wireless sensor network (WSN), which then handles the
seamless communication between IoT devices. The advancements in sensing technology
translate to the use of additional wavelengths in the light spectrum to remotely monitor
crops, manage weeds, capture imagery, and more. Satellites and UAVs are equipped with
thermal, visual light (RBG), and near infrared (NIR) cameras to capture multi or hyper-
spectral images of the crop field [24]. Hyper-spectral imaging divides light into thousands
of smaller bands, which captures a lot of detail. Lightweight, hyper-spectral cameras can
be used to monitor crop health, water and nutrient levels, and symptoms of a disease over
large areas, which can be difficult to access by other means. The availability of detailed and
precise data also allows for spot application of resources and better decision making.

The choice of technology to be used in a project relies heavily on the available band-
width, transmission distance, and energy requirements. Wireless technologies that have
been utilized in smart farming operations over the years include Bluetooth Low Energy
(BLE), ZigBee, WiFi, 3G/4G/5G, LoRa, and more. Cellular networks (3G/4G/5G) serve
the purpose of aggregating data from various sensors in a smart farming environment.
Bluetooth Low Energy (BLE) provides coverage of 100 m and consumes less power than
Bluetooth. It can be implemented in systems for livestock positioning [52], greenhouse
monitoring [30], and more. BLE is not suitable for transferring large amounts of data [53].
ZigBee is a WSN protocol that provides a smaller coverage area and low energy con-
sumption. It can be used for scenarios such as solar power monitoring [54], greenhouse
monitoring, etc. WiFi is beneficial where high bandwidth and large amounts of data trans-
fer is required. Cellular 3G/4G/5G networks offer wide coverage and low latency, but
they drive up the cost and power consumption. LoRa can cover an area of 20 km and
consumes less energy. Specialized sensors have been introduced for tasks such as pest
identification and control, plant health monitoring, resource level monitoring, etc. Bug
detection and classification can be performed using acoustic sensing devices and cameras,
which capture factors such flight behavior and humming sound [55]. Similarly, parasite
detection was performed in study [56] using a spectral sensor that measures light waves.
The difference in the reflected light pattern can be an indicator of infestation in the plant.
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López et al. [57] propose an autonomous monitoring system that uses a low-cost image
sensor for visually inspecting bug traps deployed across the field. Bioacoustic sensors
have also been deployed to detect red palm weevil infestation in palm trees [58]. Wireless
sensors can be installed on leaves to monitor parameters such as humidity, water content,
temperature, etc., to estimate the plant’s health and required amount of resources [59]. The
growth rate of the plant stem and trunk can also be used to determine its health. Various
sensors, such as the stem micro variation sensors, sap flow relative rate sensors, stem flux
relative rate sensors, auxanometers, and trunk dendrometer, are used for this purpose [60].
Environmental factors such as atmospheric pressure, solar radiation, wind speed, rainfall,
temperature, and humidity can also be measured by wind speed and direction sensors,
ambient seismic energy sensors, precipitation sensors, etc. [61]. Global navigation satellite
systems (GNSS) can help increase efficiency in smart dairy farming. Smart collars can be
worn by cows and can be used to collect data on the health and well-being of livestock [29].
Farmers can program GPS collar trackers to keep cattle in a certain area. The cattle can then
be sent to autonomous milking robots when their udders are full. The amount and quality
of milk is then analyzed by the robots. Virtual fences can also prevent cattle from getting
hurt on electric fencing and allow for rotational grazing [62].

3.2. IoT Platforms

IoT can enable devices and sensors to collect data about physical parameters of a
farm. The functionalities provided by IoT, such as smart processing of data and real-time
communication between devices, enable it to optimize agricultural practices [63]. IoT
blends the usage of physical devices such as actuators and sensors with a WSN to allow for
seamless communication [26]. Sensors can serve as the peripheral devices that can gather
information over a WSN which can then be analyzed with an IoT platform. There are
currently several commercially available IoT platforms that aim to greatly reduce manual
labor. They are utilized in various functions of crop monitoring. Zhang et al. [31] propose
a monitoring system for wheat diseases, pests, and weed. The system collects data from
IoT terminals and attempts real-time monitoring and management of crops. Lee et al. [64]
implement a predictive system for effective pest control and proper utilization of pesticides
and fungicides. Correlation is calculated between the pests and weather data relevant to
the control of pests. Chieochan et al. [32] implement IoT sensors to monitor the humidity
of a mushroom farm. The system controls sprinklers and fog pumps and provides push
notifications to the user. Benaissa et al. [33] implement Wireless Body Area Networks
(WBANs) in conjunction with IoT to monitor the health of dairy cows. Timely detection of
health issues in the cattle is a costly and challenging task that was automated in the study
through the use of a Long-Range (LoRa) off-body wireless channel and IoT. Garcia et al. [65]
implement WSNs to monitor the presence of pests such as snails. The system is also capable
of predictive analysis based on environmental factors such as temperature and humidity.

Giri et al. [34] introduce an automation framework called AgriTech for adequate uti-
lization of water, fertilizer, and pesticides. AgriTech allows the farmer to monitor the field
and perform actions such as spraying through the use of a mobile device. Kodali et al. [66]
present the model of an IoT-based smart greenhouse that automatically carries out irri-
gation, temperature and air humidity control, and water management with the help of
sensors. In the study done by Na et al. [35], an IoT-based remote monitoring system is
implemented to monitor soil characteristics such as pH, temperature, and moisture content
using a DS18B20 sensor. Accurate measurement of such parameters can enable better
analysis and decisions regarding fertilizer usage and crops sown. Kamilaris et al. [36]
introduce Agri-IoT, a framework for analyzing real-time data streams from heterogeneous
sensors that also supports decision making. It supports integration for data streams from
multiple domains, data analytics, and interoperability for smart farming applications.
Akkas et al. [37] implement a prototype of a wireless sensor network made up of MicaZ
motes that monitor environmental variables such as temperature, light, pressure, and
humidity in a greenhouse. The study highlights the advantages of implementing a WSN
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over traditional cabling within an IoT platform, such as costs, vulnerability, and inability to
relocate the wiring system. Nayyar and Puri [67] propose the use of an IoT-based agricul-
tural stick integrated with Arduino technology and Solar technology to capture live data
on physical factors such as temperature and soil moisture. The system provided accuracy
of 98% in live feeds when tested on live agricultural fields.

3.3. Decision Support Systems (DSS)

Decision support systems (DSSs) add value to the smooth functioning of farming
practices by providing support to farmers, guiding them to correct information, assist-
ing in decision making, and laying out the best course of action for a given scenario.
The farm-wide availability of production rules and expertise can drastically improve effi-
ciency. Canadas et al. [38] propose a real-time decision support system implemented for
greenhouse tomatoes that facilitates better decision making by identifying sensor faults,
maintaining climate variables, and performing disease identification on crops. The study
highlights the effectiveness of the DSS in climate control and minimizing crop wastage
due to diseases. Taylor et al. [68] perform a case study on web of things that highlights
other useful applications of support systems such as environmental and livestock moni-
toring. Dos Santons et al. [39] present AgriPrediction, an IoT-based support system that
utilizes LoRa wireless network range system and the ARIMA predictive model to better
manage crop dysfunctions. The system presents promising results, and is also shown to
be applicable in rural areas with sparse connectivity. Kukar et al. [40] present AgroDSS,
a novel cloud-based decision support system that allows farmers to perform predictive
analysis on their own farm data. The system was implemented to study pest population
and provide a better understanding of interdependencies of various parameters in a sim-
ulated environment. The study done by Antonopoulou et al. [41] provides an approach
for continued sustainability by allowing farmers to select alternate crops for a region. The
system can be accessed through mobile devices to increase adoptability amongst farmers,
and supports the farmer throughout the cultivation process. Thakare et al. [69] provide
a DSS for remote monitoring that integrates smart sensing and smart irrigation systems
to monitor parameters such as temperature, moisture content, and efficient water use.
The study emphasizes the importance of smart farming with hydroponics, which allows
farming in unsuitable soil and water conditions.

3.4. Unmanned Vehicles

The advancement in robotics has led to the development of autonomous vehicles,
which are used extensively in farming for mechanical weeding, fertilizer spraying, and
harvesting. Unmanned vehicles have shown to decrease human labor, improve productiv-
ity, reduce costs, and increase accuracy of measurements. They could be further classified
into UAVs and UGVs. UAVs are aircraft embedded with wireless sensors, transmitters,
and/or cameras that can function autonomously or be controlled remotely. UGVs, on
the other hand, are autonomous machines that operate while in contact with the ground.
The use of lightweight cameras with autonomous aerial vehicles can allow for remote
monitoring of crops, which can allow for better decision making. Bareth et al. [70] per-
formed a study to examine the usability of UAV-based multi-temporal crop surface models
for estimating plant height, estimating the biomass through height measurement, and
combining vegetation indices for more accurate estimation. The results obtained from
field experiments imply that UAV-based RGB imaging can provide accurate modeling of
physical parameters of the plant. The review study done by Roldan et al. [71] highlights
the advancement of robots in smart farming for automation of labor-intensive tasks such as
planting, harvesting, monitoring, inspection, and treating crops. Unmanned vehicles are
able to collect information about the environment and navigate it by using machine vision
systems. They implement Global Navigation Satellite System (GNSS) technologies [72] to
navigate precisely. UAVs provide an added advantage for remote sensing in the form of
timely control and high spatial ground resolution. Remote imaging can capture several
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characteristics through different types of cameras, such as multispectral, thermal, and high
spatial resolution RGB camera, as demonstrated in the study done by Matese et al. [73] to
measure intra-vineyard variability and leaf temperature and to perform analysis of missing
plants. UAVs possess the potential to obtain high spatial resolution imagery without being
too affected by weather conditions.

Lu et al. [74] perform species classification in tall grassland with the use of high spatial
resolution imagery obtained from a UAV, and show that the method obtains higher accuracy
than other data from satellites. Tripicchio et al. [75] present a novel implementation of an
RGB-D sensor integrated with UAVs to differentiate between different plowing techniques
used on a field. The system provides the functionality of computer vision, navigation,
and data analysis and was shown to be a feasible technique for determination of soil
characteristics. Moribe et al. [76] provide an effective and synchronized technique for
measuring leaf temperature. Infrared thermometers attached to drones and sensor nodes
integrate seamlessly with the WSN. Lottes et al. [77] propose a system that utilizes a UAV
to detect vegetation, such as sugar beets, and performs feature extraction and maps the
distribution of weeds and crops. UAVs provide an autonomous solution for monitoring
large areas of agricultural land covering crops, livestock, and more. Unmanned vehicles
function through the use of technologies such as robotics, IoT, remote sensing, and big
data, and can automate labor-intensive tasks such as spraying, data collection, water
management, weed mapping, irrigation, fertilization, crop monitoring and management,
and field-level phenotyping.

3.5. Cloud/Edge Computing

Given the vast amount of incoming data from various sources, a centralized approach
to storing and managing large amounts of data is essential. A cloud-based architecture
can allow for the necessary computation power to analyze the plethora of data obtained
from the different types of sensors installed on a farm. Cloud computing facilitates flexible
storage and availability of data and resources, making them suitable for real-time implemen-
tation. Rupanagudi et al. [42] propose a novel solution to pest control in tomatoes by crop
monitoring using video processing, cloud computing, and robotics. Zhou et al. [43] present
a cloud-computing-enabled spatio–temporal cyber–physical infrastructure (CESCI) to per-
form comprehensive surface soil moisture monitoring, which can help reduce costs, increase
agricultural productivity, and boost farmers’ net income. FIWARE is an open-sourced cloud
platform that has shown potential in many smart farming applications. Kaloxylos et al. [44]
present a cloud-based farm management system that utilizes the FIWARE architecture and
was shown to be acceptable by farmers during evaluation. Corista et al. [45] introduce
an IoT-based smart farming system built upon FIWARE that aims to control fruit quality
during the entire fruit production chain. The system is developed using the vf-OS (virtual
factory Operating System) platform, which integrates various applications and allows
external producers and consumers to interact.

Another IoT platform based on cloud and edge computing is proposed by
Zamora et al. [46] and works in three tiers: the local plane collects data on crops, the
edge plane monitors and manages the main precision agriculture (PA) tasks, and the cloud
platform maintains records and performs data analytics. Fog computing, also called edge
computing, is a decentralized computing architecture between the cloud and connected pe-
ripheral devices and aims to enhance speed and performance [78]. Edge computing systems
provide a decentralized approach to automation of tasks by using pre-loaded field data
from edge locations [79]. Thus, fog computing is a promising architecture for smart farming
solutions, since it provides low latency and increased reliability for support systems [80].
In case of real-time operational decision making, time is of the essence. Malik et al. [47]
introduce a simulation platform that leverages fog computing to allow users to under-
stand sensor deployment and data collection in a complete farming ecosystem. Thus,
a cloud platform is essential if real-time analysis is to be performed. Use of additional
data-driven approaches can be invaluable depending on the application. Cloud computing
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architecture can be used to manipulate large amounts of heterogeneous data arising from
several sources. It can provide the necessary storage and computation resources, making it
complementary to big data tools.

3.6. Blockchain

Blockchain technology provides new modes of interaction between parties in a supply
chain. It is a distributed, immutable ledger that keeps a record of all transactions of digital
assets over a network. It also has the capacity to improve food safety by providing traceabil-
ity for purchased food products and monitoring for contamination. In order to avoid bias in
the data collected from ICT and DT devices, it is important that data manipulation is made
difficult or impossible. The addition of a new record in a blockchain requires verification
from a peer-to-peer network, ensuring its legitimacy. Similarly, the majority should agree
while making changes to records, making it difficult for unauthorized individuals to alter
the data. Thus, blockchain-based technologies for smart farming ensure that the data is
correct, transparent, and traceable. In conjunction with smart contracts, which are protocols
that are activated without human intervention when the terms of an agreement are met,
blockchain technology can ensure timely payments [81]. Vangala et al. [48] propose an
authenticated key agreement mechanism for smart farming that is based on smart contracts.
The system is shown to provide more security and functionality than other authentication
protocols. Patil et al. [50] present a security framework that combines blockchain technol-
ogy with IoT devices and allows sharing of a digital ledger of transactions among the nodes
on an IoT network. Lin et al. [51] introduce an ecological food traceability system that
incorporates blockchain technology and IoT and aims to improve food safety while also
establishing trust between the parties involved. The use of smart contracts is also consid-
ered for the timely management of problems in the system. An ICT and DT e-agricultural
system with blockchain technology that distributes water quality data over a network
is proposed by Lin et al. [49]. They also present an evaluation tool that can be used to
determine the specific requirements and suitability of this technology. A simulated model
of blockchain technology is proposed by Widi Widayat et al. [82] and can be implemented
in a smart farming environment. The parties in a smart farming system, namely farmers,
food suppliers, and customers, are connected to a global blockchain network and appear
as a node account in the smart contract. Another potential application of blockchain tech-
nology is for providing agricultural insurance. Nguyen et al. [83] present a smart contract
developed on NEO to provide drought-based crop insurance. This could be invaluable
to farmers who work in extreme weather conditions, as it can reduce their damages and
vulnerability while also avoiding excess evaluation costs.

3.7. Big Data and Artificial Intelligence

IoT devices and sensors capture various types of data from all over the field that can
then be analyzed through big data tools. Big data refers to larger and more complex datasets
that consist of a greater variety of data from multiple data sources and can also be mined
for opinions and information [84]. Data modeling techniques such as machine learning and
deep learning can help enhance the entire food production cycle by performing predictive
analysis, providing real-time decision making, and refining the business model of the farm
to cut loses. AI is a research sub-field of computer science that utilizes robust datasets to
solve problems by performing classification or predictions based on the input data [85].
Machine learning is a sub-field of AI that allows models to learn from experience without
being explicitly programmed. Deep learning is a sub-field of machine learning that further
eliminates some of the human intervention required in training by automating feature
extraction from larger datasets [86]. Currently, there are also several types of state-of-the-
art conversational systems being used to assist farmers in agricultural operations [87].
Table 2 summarizes some notable research works in smart farming that have performed
image processing using Convolutional Neural Networks (CNNs). CNNs are a class of
Artificial Neural Networks (ANNs) that are used to perform classification tasks on images
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by adjusting learnable weights and biases [88]. Table 3 provides a summary of various
studies that have utilized other AI models in smart farming, along with their respective
outcomes.

AI can help reduce resource wastage through monitoring and predictive modeling.
Varghese and Sharma [89] propose a hardware-based system that helps monitor factors
such as moisture content in soil, humidity, and atmospheric conditions. The system also
determines the appropriate crops for given soil and environmental conditions through the
use of IoT and machine learning. Arvindan et al. [90] introduce an automated irrigation
system that measures moisture content in the soil and provides remote control through
an Android smart phone. This can help with the sustainable and automatic farming of
certain crops that require different degrees of irrigation depending on their growth stage.
Khaki et al. [91] introduce WheatNet, which is a CNN that collects field observational data,
such as wheat head counts. The system achieves a Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) of 3.85 and 5.19, respectively, in the wheat head counting task
with fewer parameters, implying that the approach is robust and crucial for observation and
decision making. Deep learning algorithms are used extensively to reduce crop wastage
and optimize crop yield. The development of systems for accurate prediction of crop yield
is essential, especially in developing countries, as it can secure food availability, prevent
famine, and provide further assistance to the sustainable development of agriculture. Crop
yield can depend on several factors, such as genotype, environment, etc. Wang et al. [12]
present a deep-learning-based system for predicting soybean crop yields based on data
collected from remote sensing. Long Short-Term Memory (LSTM) cells were trained and
tested on 4 years of Argentinian soybean harvest data. The model’s transferability was
then tested by using soybean harvest results from Brazil. Khaki et al. [13] implemented
Deep Neural Networks (DNNs) for yield prediction of maize. The dataset consisted of
the genotype and yield performance of 2267 maize hybrids. The best-performing model
provided an RMSE of 12% of the average yield and 50% of the standard deviation for the
validation dataset in imperfect weather conditions.

Alfred et al. [92] provide a survey of the implementation of big data and machine learn-
ing on paddy rice production in the Asia–Pacific region. The integration of sensors, satellites,
and drones complements machine learning tools in improving productivity. Machine learn-
ing tools utilize the big data collected from these devices for estimating rice yield [93,94],
monitoring growth [94], and providing a smart irrigation system [95]. Kiruthika et al. [96]
propose a system to detect paddy rice crop diseases such as leaf blast disease, brown spot
disease, and bacterial blight disease. A Gray-Level Co-occurrence Matrix (GLCM) is used to
recognize disease from the input image; two classifiers are used for recognition: ANN and
Support Vector Machine (SVM). ANN performs better than SVM, with a precision of 90.60%
and accuracy of an 93.33%. Dahane et al. [97] propose a novel EDGE–fog–IoT–cloud-based
architecture that utilizes WSNs to support farming activities in three steps: data collection
from sensors (soil moisture, temperature, humidity, water level, etc.), data cleaning and
storage, and predictive analysis through AI tools. Performance of Gated Recurrent Unit
(GRU) and LSTMs on live data from three parameters is compared, with varying results.

Jhuria et al. [9] propose a tool that utilizes ANNs to identify diseases in grapes and apples.
Image processing is performed on an image dataset, and an accuracy of 90% is obtained based
on color and texture. The study also provides a tool to determine the quality of fruit by
weight. Bhange et al. [98] present a web-based tool for identification of fruit diseases trained
on images of pomegranate fruit. The system processes an image uploaded by the user for
parameters such as color and morphology, and classifies it as infected or non-infected using
SVMs. Accuracy of 82% was recorded using the ‘morphology’ parameter in the experiment.
Guo et al. [10] propose a system for identification of plant diseases through the use of deep
learning. The model identifies black rot, bacterial plaque and rust diseases by implementing
a Region Proposal Network (RPN) for leaf localization, the Chan–Vese algorithm for leaf
segmentation, and VGG-13 [99] architecture for disease identification. This method provides
an accuracy of 83.57%. In the study by Ferentinos [100], image classification through a VGG
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CNN is performed on a database of 87,848 photographs of leaves of healthy and infected
plants in a set of 58 distinct classes of [plant, disease] combinations, and a success rate of
99.53% is achieved. Similarly, smartphone-assisted crop disease diagnosis is performed by
Mohanty et al. [101] on the PlantVillage dataset consisting of 54,306 images of plant leaves.
The GoogleNet architecture performed the best out of all models tested, resulting in an
accuracy of 99.35% on 14 crop species and 26 diseases. The prevention of fruit tree diseases
can also significantly impact overall agricultural production. Li et al. [102] conducted a study
comparing the performance of three ensemble learning classifiers and two deep learning
classifiers. The stacking ensemble learning classifier provides the highest validation accuracy
of 98.05% and test accuracy of 97.34% on a dataset of 10,000 images of pear black spot, pear
rust, apple mosaic, and apple rust. Figure 4 displays a generalized example of plant disease
identification through the use of CNNs. The network takes input in the form of segmented
images and classifies them as ‘Diseased’ and ‘Not Diseased’.

Figure 4. Disease identification through image processing.

Due to the rapid increase in global meat consumption, technologies such as precision
livestock farming [103] have become essential to ensure the quality of meat products and
reduction of the environmental impact. AI tools can also prove beneficial in livestock
management by monitoring cattle health and behavior. Xu et al. [104] propose a system for
individual identification of cattle through face detection, performed using the RetinaNet
object detection algorithm. Fine-tuning was performed on seven different CNN models,
and transfer learning was used for this study. RetinaNet incorporating the ResNet 50
provided the highest average accuracy of 99.8% and an average processing time of 0.0438 s.
Gjergji et al. [105] evaluated the following neural networks for the regression task of cattle
weight prediction: CNNs, Recurrent Neural Networks (RNN)/CNN networks, recurrent
attention models, and recurrent attention models with CNNs. CNNs were shown to
provide the best performance with MAE of 23.19 kg, significantly outperforming the top
linear regression models, which reached an error of 38.46 kg. Jung et al. [106] present a
deep learning-based system for classification of cattle vocals and real-time monitoring of
livestock. The voice parameter of cattle can signal valuable information such as gender
of cattle, distress, and disorders in the cattle [107]. The voice was converted to Mel-
frequency cepstral coefficients (MFCCs) and given as input to a CNN for classification
with an accuracy of 91.36%. The accuracy increased to 94.18% when short-time Fourier
transform-based noise filtering was used to reduce background noise. In the context of
smart farming practices, deep learning has also been shown to be widely beneficial in
the field of aquaculture. Fish production contributes to a great portion of the food source
in any area. Zhang et al. [108] propose the use of DNNs for fish identification, species
classification, analysis of fish behavior, feeding decisions, and water quality prediction. The
method provided an accuracy of 96% and recognition rate of 98% when trained on the Fish 4
knowledge dataset, which contains 8487 images of fish with different conditions. The study
done by Rohani et al. [109] proposes a model consisting of multi-layer perceptron (MLP)
and SVM for classification of rainbow trout as dead or alive. Both classifiers provided
an average accuracy of 100% during the training phase and average of 99.45% during
the testing phase. Zambrano et al. [110] propose the use of machine learning tools to
forecast water quality variables such as dissolved oxygen, pH, and pond temperature. A
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comparison is performed between Random Forests (RF), ANNs, and multivariate linear
regression, out of which RFs performed the best.

CNNs can also be used to perform object detection and pattern recognition on images
collected by aerial vehicles to detect anomalies such as weed clusters, standing water, etc.
Chiu et al. [111] introduce ‘Agriculture-Vision’, a large-scale dataset of aerial farmland
images, designed for semantic segmentation of agricultural pattern recognition. The dataset
consists of 94,986 high-quality aerial images consisting of RGB and near-infrared (NIR)
channels. The study proposed a Feature Pyramid Network (FPN)-based model with a
ResNet encoder to classify 9 field anomaly patterns. The mean intersection-over-union
(mIoU) was 43.40% for the validation set and 43.66% for the test set. The first Agriculture-
Vision Challenge [112] encouraged further development of novel algorithms for pattern
recognition in agriculture. The challenge dataset consists of 21,061 aerial and multi-spectral
farmland images, and six anomaly patterns were to be recognized in the task. The best-
performing model, Residual DenseNet with Squeeze-and-Excitation (SE) block, introduced
by Team DSCC, achieved a modified mIoU of 63.9%. The study by Kussul et al. [113]
performs classification of crops using MLPs, RFs, and CNNs. The dataset consisted of
19 multitemporal scenes acquired by Landsat-8 and Sentinel-1A RS satellites, and the
highest classification accuracy of 94.6% was achieved by 2-D CNNs. Another crop vision
dataset for species classification and detection is the CropDeep [114] dataset, which consists
of 31,147 images and at least 1500 samples for each of the 30 classes. A baseline study
showed the best performing model was ResNet50, with an accuracy of 99.81%. The study
further suggests the YOLOv3 network with modification to achieve higher accuracy on
the dataset. Anand et al. [115] present ‘AgriSegNet’, which is a multi-scale hierarchical
attention network for semantic segmentation using UAV-acquired aerial images for IoT-
assisted precision agriculture. The mIoU on the test set of the Agriculture-Vision dataset
for the six anomaly classes are: Background: 78.10%; Double Plant: 46.40%; Planter Skip:
8.60%; Standing Water: 61.20%; Waterway: 44.90%; Weed Cluster: 50.20%.

Table 2. Summary of applications of CNNs in smart farming.

Applications Results

Plant disease detection through CNN [100] 99.53% success rate

Plant disease detection by CNN trained on 14 crop
species and 26 diseases [101] 99.35% accuracy

CNN for identification of 6 diseases in tomato
leaves [116]

AlexNet accuracy: 97.49%; VGG16
net accuracy: 97.23%

Plant disease detection by CNN trained on 13 crop
species and 26 diseases [117]

MobileNet accuracy: 99.62%;
InceptionV3 accuracy: 99.74%

Cattle face detection through CNN: Object detection
algorithm RetinaNet incorporating ResNet 50 [104]

Average precision score: 99.8%;
Average processing time: 0.0438 s

Beef cattle body weight prediction through CNN [105] Mean absolute error: 21.64 kg

Holstein Friesian cattle detection and individual
identification through CNN [118] 99.3% accuracy

Species classification and detection on the CropDeep crop
vision dataset done by CNNs [114]

Baseline study: ResNet50 average
accuracy of 99.81%

Classification of crop types (maize, soybeans, etc.) done
by MLPs, RFs, and CNNs [113]

Highest accuracy of 94.6% by
ensemble of 2-D CNNs

FPN-based model for semantic segmentation of
agricultural land on the Agriculture-Vision dataset [111]

mean intersection-over-union (mIoU)
was 43.40% for the validation set and
43.66% for the test set.

Residual DenseNet with squeeze-and-excitation (SE)
block on the Agriculture-Vision challenge dataset [112] modified mIoU of 63.9%.
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In this subsection, we emphasize several points regarding the opportunities provided
by AI in the field of smart farming. Image processing is of great importance to the agricul-
tural sector. Images captured by UAVs, UGVs, satellites, and sensors need to be analyzed so
that relevant insight can be extracted from them to assist in farm operations. Depending on
the requirements, different types of cameras, such as visible spectrum, NIR, hyperspectral,
or multispectral may be used. In conjunction with several ICTs, AI can efficiently perform
functions such as crop monitoring, livestock monitoring, disease detection, pest detection,
etc. Predictive modeling can help farmers to prepare for extreme weather conditions and
market fluctuations, thereby lowering their vulnerability. Current state-of-the-art models
have provided promising results, implying that further research in the area with more
advanced AI tools can help to bridge the gap in food production.

Table 3. Summary of applications of Artificial Intelligence in Smart Farming.

Applications Results

K-means for clustering; SVM for classification of
pomegranate diseases [98] 82% accuracy (morphology)

ANN for disease detection in grapes and apples [9] 90% accuracy (morphology)

RPN for localization of leaves; ChanVese algorithm for
segmentation; transfer learning model for disease
identification [10]

83.57% accuracy

ANN for paddy crop disease detection [96] 93.33% accuracy

Fruit disease identification by stacking ensemble learning
classifier trained on apple and pear diseases [102]

Accuracy of 98.05% on validation
dataset and 97.34% on test dataset

UAV-based plant/weed classification with Random
Forests [77]

Crop vs. weed classification accuracy
of 96% and 90% recall

Soybean crop yields in Argentina using LSTMs; Transfer
learning approach for Brazil soybean harvests [12]

RMSE of 0.54 for Argentina and 0.38
for Brazil (transfer learning
from Brazil)

Deep neural network (DNN) for yield prediction of
maize hybrids [13]

Yield prediction: training
RMSE = 10.55, validation RMSE:
12.79 for DNN

Classification of fish in aquatic fish farms through
DNN [108]

Accuracy = 96%, recognition
rate = 98%

Random Forests for forecasting water quality variables
such as dissolved oxygen, pond temperature, etc. [110]

RMSE for pond temperature = 0.5971,
RMSE for dissolved oxygen = 1.616.

Recognition and classification of dead and alive rainbow
trout eggs done by MLP and SVM [109]

Training accuracy = 100%; average
testing accuracy = 99.45%

4. Initiatives Worldwide

This section includes the various research initiatives that have been undertaken in
smart farming in the European Union [119] and across the world. The initiatives usually
employ several of the ICTs and DTs discussed in Section 3. The European Union has
funded many projects to allow for the integration of ICTs and DTs into the agricultural
sector. Crop monitoring is one of the major functions performed in farms that utilize
smart farming tools. Table 4 provides an overview of the recent projects concerning the
implementation of SF tools for crop monitoring that have been undertaken in the European
Union. Table 5 lists the projects that perform other functions such as harvesting, water
management, satellite imagery, and more. The corresponding technologies for each project
have also been listed along with their application. The Echord++ [120] project, which
lasted from 1 October 2013 to 30 September 2018, involved various field operations such as
monitoring, harvesting, and grafting for crops such as tomatoes, asparagus, and peppers.
Cloud computing is utilized by many projects that require monitoring operations. These
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include Vinbot [121] (crop monitoring and yield prediction in a vineyard), Ermes [122] (crop
monitoring for rice), Fractals [123] (monitoring, disease detection, and fertilization of olive
trees), and more. The importance of UAVs and UGVs is apparent, as they have been utilized
in several projects. Implementations of UGVs include Vinerobot [124] for a vineyard,
Sweeper [125] for harvesting peppers, Flourish [126] for monitoring and spraying sugar
beets and sunflowers, PANtHEOn [127] for monitoring hazelnuts and water management,
and Romi [128] for crop monitoring and weed management. UAVs are utilized for crop
monitoring of rice in Ermes [122], potatoes and vineyard in Mistrale [129], and more.
Seamless communication between different technologies has been executed through the use
of WSNs, such as Water-Bee [130] and Figaro [131], for the purpose of water management.

Table 4. Smart Farming projects in EU for crop monitoring.

Project Name Technologies Operations

Echord ++ [120] Cloud computing; Image processing; Machine
learning; UAV; UGV

Crop monitoring; Harvesting; Weed
management

Vinerobot [124] Image processing; Machine learning ; UGV Crop monitoring; Disease detection;
Water management

Vinbot [121] Cloud computing; Image processing; UGV Crop monitoring; Yield prediction

Flourish [126] Image processing; UAV; UGV Crop monitoring; Spraying

PANtHEOn [127] Big data; UAV; UGV; WSN Crop monitoring; Water management

Ermes [122] Big data; Cloud computing; UAV; WSN Crop monitoring

Fractals [123] Cloud Computing; WSN Crop monitoring; Disease detection

Mistrale [129] Image processing; UAV Crop monitoring; Water management

Romi [128] UAV; UGV Crop monitoring; Weed management

Apollo [132] Aerospace sensing Crop monitoring

AgriCloud P2 [133] Cloud computing; Edge computing; Information
systems; Terrestrial sensing Crop monitoring

Sensagri [134] UGV; Terrestrial sensing; Aerospace sensing Crop monitoring

IoF2020 [135] Cloud computing; UAV; UGV; Big data; Aerospace
and terrestrial sensing; Information systems

Crop monitoring; Livestock farming;
Dairy monitoring

DataBio [136] Machine learning; Big data; Aerospace and
terrestrial sensing; Cloud computing Crop monitoring; Forestry; Fishery

Apmav [137] Big data; Machine learning; UAV; Terrestrial
sensing; Cloud computing Crop monitoring

AfarCloud [138] Big data; Terrestrial sensing; UGV Crop monitoring; Livestock farming

BigDataGrapes [139] Machine learning; Big data; UAV; Terrestrial
sensing; Cloud computing; Information systems Crop monitoring

Dragon [140] Machine learning; Big data; UAV; UGV; Aerospace
and terrestrial sensing; Information systems Crop monitoring

There have been several research projects on smart farming taken up all over the
world, in part inspired by the positive outcomes of the EU projects. Table 6 provides a
summary of government projects and start-ups that focus on the development of innovative
solutions for smart farming. Some projects, such as the Villages of Excellence (VoE),
have been launched in collaboration between two governments to ensure the sharing of
technology and expertise and provide better outcomes for both. Smart irrigation plays
an important role in ensuring crop sustainability in dry areas. Startups such as Madar
Farms [141] and Responsive drip irrigation [142] aim to provide smart irrigation solutions
to tackle water challenges and food security in the United Arab Emirates and the United
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States respectively. SunCulture [143] is a Kenyan AgriTech company that provides solar-
powered irrigation systems for smallholder farms, and also provides the option of a drip
irrigation system. In Morocco, the government introduced the Green Generation 2020–2030
strategy [144], which focuses on the digitization of agriculture through initiatives such as
the installation of solar pumps for irrigation. Food security and sustainability are of great
concern worldwide. Startups such as AbyFarm [145] in Singapore aim to implement urban
farming by employing ICT and DT tools such as IoT and blockchain. Lack of resources
in rural areas could be a hindering factor in crop yield. Ossian Agro Automation [146] is
an Indian company working towards rural automation and the development of wireless
automation systems. All year round production of crops can be achieved by vertical
farming, which is the practice of growing crops in many layers in a controlled environment.
Ground vertical farming [147] in Lebanon implements vertical farming and aims to reduce
water wastage by re-circulation. Figure 5 displays the various smart farming projects taken
up across the world, classified according to their primary function.

Figure 5. Smart Farming initiatives worldwide

In several developing countries, there is a lack of government-funded projects. The
initiative is rather taken up by individual startups, with the goal to provide assistance to
farmers, conduct further research, and educate farmers and learners about the potential
of agricultural technology. There is an increased interest amongst consumers, who want
to ensure that the end product they receive is unadulterated. Public opinion in Europe
skews in favor of healthy products grown with minimum pesticides. Consideration of the
socio–economic impact of smart farming projects is also necessary. Certain participating
farms have reported average cost savings of over €5000 and reduction of climate impact by
10% [148]. Thus, these initiatives have been greatly beneficial to farming operations by de-
creasing costs, reducing greenhouse emissions, and improving soil conditions. The projects
contributed significantly to their objectives of reducing resource wastage, environmental
impact, and energy consumption, and demonstrated measures to mitigate issues resulting
from climate change and the shortage of skilled labor.
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Table 5. Smart Farming projects in EU.

Project Name Technologies Operations

Sweeper [125] Image orocessing; UGV Harvesting

Figaro [131] WSN Water management

Enorasis [149] WSN Water management

WEAM4i [150] Cloud computing; WSN Water management

CHAMPI-ON [151] Image processing; Machine learning Harvesting

Auditor [152] Aerospace sensing Satellite imagery

RUC-APS [153] Cloud computing; Edge computing; Information
systems Management; Optimization

AfriCultuReS [154] Big data; Aerospace and terrestrial sensing;
Cloud computing; Information systems Food security

SWAMP [155] Big data; UAV; Terrestrial sensing; Cloud
computing; Information systems Water Use

Water4Agri [156] Aerospace sensing Water Use

Table 6. Smart Farming initiatives worldwide.

Project/Company Country or Countries Objectives

Villages of Excellence (VoE)
(2021–2023) [157] India and Isreal Improve the productivity and quality of

horticulture; Increase income of farmers

Nosho Navi 1000
(2014–2016) [158] Japan Large-scale smart rice farming

AbyFarm [145] Singapore IoT, blockchain and machine learning for urban
farming to ensure sufficiency of crops

Smart Farming for the
Future Generation
(2019–2023) [159]

Vietnam and Uzbekistan
Development of policies, enhancement of skills
and knowledge. Support farmers through
post-harvest handling and markets

AgriEdge [160] Morocco
Precision agriculture platform for practices such
as efficient use of water and fertilizer, monitoring
weather data, and satellite imaging.

Generation Green
2020–2030 [144] Morocco

Introduction of new technologies for sustainable
agriculture; Installation of over 100,000 solar
pumps for irrigation

Baramoda [161] Egypt Sustainable agriculture; Maximize the efficiency
of agri-waste management

Ground–Vertical
farming [147] Lebanon Improve efficiency of agricultural yield; Reduce

water consumption and costs.

Robinson Agri [162] Lebanon Greenhouse technology; Distribution of
agricultural resources

Kenya Climate Smart
Agriculture Project
(KCSAP) [163]

Kenya Improve productivity in case of climate change
risks and provide response in emergencies

MimosaTek [164] Vietnam IoT platforms for precision farming solutions

Ossian Agro
Automation [146] India Wireless automation systems (Nano Ganesh) for

irrigation in rural areas

SunCulture [143] Kenya Solar-powered irrigation systems (RainMaker2)

Madar Farm [141] United Arab Emirates Ensure food and water security

Responsive Drip
Irrigation [142] United States of America Smart irrigation

Lentera Africa [165] Kenya Technology enabled farmer advisory services;
Farm inputs and equipment
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5. Sentiment Analysis

In order to ensure successful integration of new tools and technologies available for
smart farming, it is necessary to understand how knowledgeable the general public is
about the topics and how the innovations are perceived. Public sentiment can be a strong
determinant of whether or not a project is approved for implementation in an area [166].
It can also be indicative of the various socio–economic, behavioral, and cultural issues
that arise by the advancement and implementation of such technology [28,167]. In light of
this, we performed sentiment analysis on the comments of YouTube videos pertaining to
smart farming technologies. This section provides details about the dataset, experimental
methodology, and the results and analysis of the experiment.

5.1. Dataset

The dataset was constructed by scraping YouTube comments left by users on 16 YouTube
videos that were relevant to our study [168–172]. The videos were selected by searching
the relevant keywords, such as ‘smart farming IoT’, and then filtering the ones with most
views and comments. Table 7 provides a list of the video titles, the channels, upload date,
and the total number of likes and views on each video. For this study, only comments
in English were considered. A total of 7311 comments were included in the dataset from
videos about smart farming.

5.2. Experiment

Two approaches were used for performing sentiment analysis. In the first approach, two
annotators assigned one of the following six labels to the comments: ‘Praising’, ‘Queries’,
‘Suggestions’, ‘Undefined’, ‘Hybrid’, and ‘Opinion’. Cohen’s kappa coefficient, which is a
measure of inter-rater agreement, was calculated on the ratings of the two annotators. The
value of the kappa statistic ranges from 0 to 1, with 0 implying only a chance agreement and 1
implying perfect agreement between the two annotators. The formula to calculate Cohen’s
kappa for two raters is:

κ =
po − pe

1 − pe
= 1 − 1 − po

1 − pe
(1)

where: po = the relative observed agreement among raters, and pe = the hypothetical
probability of chance agreement.

A brief description of these labels is given in Table 8, along with the total number of
comments for each label, and an example of the label from the dataset. Table 9 gives the total
counts of each of the six labels that were assigned to the comments collected from the videos.

Table 7. Videos selected for sentiment analysis.

Video
Serial
No.

Video Title Channel
Total Likes
(Accessed
on—14 April 2022)

Uploaded On No. of
Views

1. How Japan Is Reshaping Its Agriculture By
Harnessing Smart-Farming Technology Science Insider 1100 8 March 2021 35,000

2. Europe has the best regenerative farmers in
the world Richard Perkins 543 8 October 2020 16,000

3. The Futuristic Farms That Will Feed the World Freethink 22,000 19 August 2019 805,000

4. Vertical farms could take over the world Freethink 26,000 22 May 2021 753,000

5. India’s largest Precision Farm—Simply Fresh Discover Agriculture 2500 12 March 2021 70,000

6. Solar Panels Plus Farming?
Agrivoltaics Explained

Undecided with Matt
Ferell 59,000 5 October 2021 1.9 million

7. 7 Israeli Agriculture Technologies Israel 35,000 21 January 2019 2 million
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Table 7. Cont.

Video
Serial
No.

Video Title Channel
Total Likes
(Accessed
on—14 April 2022)

Uploaded On No. of
Views

8. The CNH Industrial Autonomous Tractor
Concept (Full Version) CNH Industrial 17,000 30 August 2016 2.7 million

9. IoT Smart Plant Monitoring System Viral Science—the
home of creativity 6800 20 December 2020 341,000

10. Singapore’s Bold Plan to Build the Farms of
the Future Tomorrow’s Build 30,000 13 July 2021 1.8 million

11. Smart Vertical Farms in Sharjah Episode Up 1200 17 September 2020 59,000

12. Drones, robots, and super sperm—the future
of farming DW Documentary 6700 7 February 2019 919,000

13. Simply Fresh—India’s Largest State Of The Art
Precision Farm Simply Fresh 7100 10 October 2020 314,000

14. RIPPA The Farm Robot Exterminates Pests
And Weeds ABC Science 8800 14 May 2018 813,000

15. Top 10 Agritech Startups Empowering
Indian Farmers

Backstage With
Millionaires 11,000 9 June 2020 325,000

16. This Farm of the Future Uses No Soil and 95%
Less Water Stories 152,000 5 July 2016 152,000

The second approach was to apply transfer learning to perform surface level sentiment
analysis using the pre-trained Pattern library for Python. Pattern library can be used to
perform various natural language processing tasks such as parsing, N-gram generation,
and more. Polarity of a given text ranges from 1 to −1, with 1 representing a highly positive
sentiment and −1 representing a highly negative sentiment. The subjectivity ranges from
0 (Objective) to 1 (Subjective). It provides a measure of factual information or personal
opinion in the comments, with 1 being subjective and 0 being objective. For example, for
the following comment in our dataset: ’Fantastic. We need a lot of that here in Australia;
suffering from drought; really bad water management by those in authority etc.’ , the
polarity was calculated as −0.1499 and subjectivity was 0.7833. The negative value of
polarity indicates that the sentiment expressed by the comment was negative, whereas the
value of subjectivity is closer to 1 suggesting that the comment was mostly subjective.

Table 8. Label description.

Label Serial No. Label Description Example

1 Praising Simple positive response
This is amazing! Everyone is a
winner when we chose
sustainability!

2 Suggestion Any concrete suggestion
relevant to the topic

technology is really spectacular,
now just assess its viability.

3 Opinion Positive, negative, or
combined sentiment

Technology is taking over farming,
I like having to do it the way they
do it now

4 Undefined Could not be determined or
isn’t relevant

that would be like playing farming
simulator in real life!

5 Hybrid More than one of the
categories

best part of farming is driving
tractor. now get a robot to shovel
manure, do chores like that would
be sweet. why does the robot need
lights at night?

6 Queries Any concrete queries
relevant to the topic

i wonder how much this thing
costs
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Table 9. Number of comments of each label type.

Video Serial No. Praising Suggestion Opinion Undefined Hybrid Queries

1. 14 5 3 5 0 2

2. 8 2 10 2 2 4

3. 33 7 83 14 20 21

4. 98 33 504 176 81 149

5. 8 0 5 3 0 4

6. 31 15 70 25 47 11

7. 61 1 17 50 12 16

8. 31 9 351 233 17 54

9. 39 4 5 29 15 110

10. 129 39 399 225 29 57

11. 26 2 4 2 4 3

12. 36 4 113 36 9 9

13. 94 0 24 4 24 32

14. 23 14 155 126 8 33

15. 54 14 45 23 13 15

16. 273 85 1455 438 218 466

5.3. Results and Analysis

In this section, we detail the results of our experiment and analyze our findings.
Evaluation has been conducted separately for the two approaches through user-based
analysis and transfer-learning-based analysis. Table 10 records the number of comments
under a video and the results obtained from sentiment analysis. The value of mean polarity,
mean subjectivity, and Cohen’s kappa coefficient is listed for each corresponding video
serial number.

5.3.1. User-Based Analysis

In user-based analysis, the mean Cohen’s kappa was calculated to be 0.9617, which
shows high inter-rater reliability. Figure 6 displays the Cohen’s kappa coefficient for each
video with respect to the mean value. The value is highest at 1 for videos no. 5, 9, and 12,
indicating perfect agreement between the labels assigned by both annotators. The value
is lowest at 0.8141 for video no. 2 titled ‘Europe has the best regenerative farmers in the
world’, implying a slight disagreement between the assigned labels. The high value of
kappa coefficient implies that the categories assigned by the annotators are correct.

Figure 7 plots the correlation matrix between the frequency of the six labels. We can
see the highest degree of correlation is 0.96 between the following labels: ‘Opinion’ and
‘Suggestion’, and ‘Queries’ and ‘Hybrid’, indicating that the frequency of one increases
with the other. The lowest degree of correlation is 0.81 between ‘Hybrid’ and ‘Undefined’,
suggesting that all labels show a relatively positive correlation amongst each other.
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Table 10. Results of Sentiment Analysis

Video Serial No. No. of Comments Mean Polarity Mean Subjectivity Kappa Coeff.

1 29 0.2143 0.3124 0.9061

2 28 0.2546 0.4956 0.8141

3 178 0.2262 0.4809 0.9609

4 1041 0.1420 0.4197 0.9890

5 20 0.3104 0.4197 1.0

6 199 0.2140 0.4942 0.9220

7 157 0.3404 0.4710 0.9467

8 695 0.0919 0.3838 0.9526

9 202 0.1743 0.2915 1.0

10 878 0.1417 0.4087 0.9698

11 41 0.3849 0.5369 0.9571

12 207 0.1172 0.4116 1.0

13 178 0.4360 0.5480 0.9827

14 359 0.1186 0.3734 0.9958

15 164 0.2736 0.4614 0.9921

16 2935 0.1942 0.4546 0.9995

Average Score 0.2092 0.4352 0.9617

Figure 6. Cohen’s Kappa Coefficient plotted against mean value of 0.9617.
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Figure 7. Correlation heatmap between assigned labels.

A word cloud is a data visualization technique used for representing text data where
the frequency or importance of each word is indicated by its size. It can help us highlight
and analyze significant textual data points. Pre-processing of the comments was performed
to remove stop words and punctuation from the text. Figure 8 displays the word clouds
for the comments collected from videos of serial number 1–8. We can see that on the word
cloud in Figure 8a, which is for the video titled ‘How Japan Is Reshaping Its Agriculture By
Harnessing Smart- Farming Technology’, ‘Japan’ is one of the most frequent and important
words in the text. Similarly, for Figure 8g for video no. 7 on the bottom left titled ‘7 Israeli
Agriculture Technologies’, the most significant word is ‘Israel’. Figure 9 displays the word
clouds for the comments collected from videos of serial number 9–16. The word 9b on the
top left for the video titled ‘Singapore’s Bold Plan to Build the Farms of the Future’ has
‘Singapore’ as the most prominent word. This indicates that several comments for these
videos included some text about the country in which the technology was implemented. For
videos demonstrating a particular technology, such as No. 7: ‘Solar Panels Plus Farming?
Agrivoltaics Explained’; No. 8: ‘The CNH Industrial Autonomous Tractor Concept (Full
Version)’; and No. 14: ‘RIPPA The Farm Robot Exterminates Pests And Weeds’, the name of
the technology (solar, tractor, robot, respectively) is of great prominence. Table 11 provides
a list of the top five most-relevant words in the comments dataset for each video, along
with their respective frequencies.

5.3.2. Transfer-Learning-Based Analysis

The results of sentiment analysis using the Pattern library are discussed in this sub-
section. Mean polarity and mean subjectivity are plotted opposite each other in Figure 10.
The overall polarity for all 7311 comments is 0.2092, suggesting that the overall sentiment
is slightly positive. The overall subjectivity of all comments is 0.4352, implying that the
comments were close to being neutral. Subjective statements generally contain personal
opinion, emotion, or judgment, whereas objective comments are factual information. Po-
larity determines the degree of positive or negative sentiment in the text. The highest
mean subjectivity score was 0.5480 for video no. 13 titled ‘Simply Fresh—India’s Largest
State Of The Art Precision Farm’, followed by 0.5369 for video no. 11 titled ‘Smart Vertical
Farms in Sharjah’. This shows that the comments were of a more opinionated nature, rather
than being factual. The lowest mean subjectivity score was 0.2915 for video no. 9 titled
‘IOT Smart Plant Monitoring System’, indicating that mostly facts were discussed in the
comments for this video. The score suggesting higher objectivity could be because the video
is discussing technical details about an IoT platform rather than explaining widespread
innovative concepts such as precision farms and vertical farms. The comments collected
from video no. 8 titled ‘The CNH Industrial Autonomous Tractor Concept (Full Version)’
resulted in the lowest mean polarity of 0.0919, indicating that the user sentiment was
generally neutral. The highest mean polarity of 0.4460 was achieved for video no. 13 titled



AgriEngineering 2022, 4 447

‘Simply Fresh—India’s Largest State Of The Art Precision Farm’, showing that user attitude
was generally positive towards the state-of-the-art precision farm highlighted in the video.

Figure 8. Word clouds for videos serial no. 1–8 corresponding (a–h) respectively.
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Figure 9. Word clouds for videos no. 9–16 corresponding (a–h) respectively.

In the investigation of user sentiment towards smart farming and precision agriculture,
the main objective was to analyze user opinion, which is the voice of masses. During
compilation of the dataset, it was observed that videos providing more in-depth and
case-study-based information about smart farming tools did not receive many views and
comments. This could be because the general public is not well-informed about novel
technology in the farming sector, as asserted in Section 6. The majority of the comments
were collected from videos about broader topics. The Cohen’s kappa coefficient indicated
that the labels assigned by the two annotators were mostly in agreement and valid. The
mean values of polarity and subjectivity in the comments was calculated through the
Pattern library, and the results suggest that there is a varying degree of subjectivity amongst
the comments. The polarity suggests that user opinion was mostly positive in the comments
analyzed. Thus, it can be safely inferred that training and education programs can increase
the visibility of innovations in smart farming, allowing the general population to form a
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well-informed opinion on the risks and benefits. Positive user sentiment can then serve as
a catalyst towards faster adoption of such tools.

Table 11. List of five most frequent words for each video with respective frequencies.

Video Serial No. Most Common 2nd 3rd 4th 5th

1. technology (6) japanese (5) japan (5) video (4) good (4)

2. richard (5) regenerative (4) love (4) farming (3) start (3)

3. food (66) farming (29) sustainable (21) energy (21) water (20)

4. farming (183) food (157) vertical (151) grow (109) people (97)

5. hands (2) environment (2) farmer (2) corporate (2) awesome (2)

6. solar (129) panels (101) energy (56) water (51) land (41)

7. israel (42) love (35) india (21) agriculture (13) technology (13)

8. tractor (109) farming (104) farm (61) farmer (57) work (56)

9. project (39) code (26) software (24) sir (24) error (22)

10. singapore (201) food (145) farming (88) people (83) firms (70)

11. great (9) video (8) good (7) farm (5) food (5)

12. farming (30) future (24) people (22) cow (18) nature (18)

13. great (36) farming (26) work (24) sir (24) farm (22)

14. robot (42) robots (30) people (27) farm (22) good (19)

15. video (36) great (25) farmers (24) india (24) good (19)

16. plants (430) food (429) farming (355) water (332) soil (319)

Figure 10. Mean polarity vs. mean subjectivity.

6. Challenges

There has been a significant increase in the number of smart farming initiatives being
taken up around the world, with promising results. However, with the advent of new,
innovative technologies there are always some unseen risks and associated challenges.
The agricultural sector has greatly impacted the environment by taking up about 40% of
the world’s available land [173] and consuming approximately 70% of the water [174].
Climate change and the growing population further exacerbate food and water scarcity,
making sustainable food production a challenging task. Thus, it is critical that current
agricultural practices need to evolve to ensure the efficient use of land and water resources.
To elaborate further on Research Question 2, we discuss the various challenges that hamper
the adoption of smart farming in the following bullet points:
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1. Training and awareness: Lack of technical expertise by the farmers implementing
new technology is a major setback to smart farming. Das et al. [28] conducted a
study to understand the views of Irish farmers towards adoption of cloud computing
and smart farming technologies. Surveys and interviews conducted with 32 farmers
revealed that the rate of adoption was higher among younger farmers and lower
amongst older farmers, who were hesitant to use new technology and preferred
traditional farming. The digital divide has to be reduced by providing guidance
and training to the farmers [175]. Lack of knowledge about the technology results
in greater skepticism towards its adoption amongst farmers, who may not realize
the value of the tool or consider it an unsuitable fit for their farm. In this current
study, we formed a dataset of YouTube comments related to smart farming operations
and performed surface level sentiment analysis of them. During the data collection
process, it was observed that very few comments were left under videos that provided
a technical and detailed framework for a smart farming project. Comments were
mostly collected from videos explaining broader topics, such as ‘Vertical Farming’.
This indicates that there is a general lack of awareness about these technologies and
their applicability to farming.

2. Technical considerations: Fixed and moving sensing technologies require further
improvements to be able to withstand extreme weather conditions in order to remain
fully functional [176,177]. Edge node devices may be battery dependent and run out
of power during operation [178,179]. Data is collected from various sensors and can be
analyzed through IoT platforms. There is a requirement for data storage, as there is a
huge amount of data being generated from IoT devices. IoT has improved connectivity
of all operations by leaps and bounds, but it does come with the added concern of
data privacy and security [180]. It also exposes the smart farming environment to
cybersecurity threats, which could result in significant loses [181]. Data encrypting
in the Industrial Internet of Things (IIoT) also presents a significant challenge for
farmers [182].

3. Costs: The costs associated with sensors needs to reduced so that they can be imple-
mented in small-scale farms as well. The solution needs to be designed specifically
for the project in question, and also needs regular updates and management. Farmers
may hesitate in implementing such technologies as they could create issues and cause
further losses instead of providing benefits. Research and development costs for the
implementation of such tools are also steep. There is also a significant amount of cost
associated with data transmission within a smart farm [183]. Market uncertainty adds
substantial risk to ensuring a sustainable income for farmers, as profit margins are
getting increasingly smaller. Farmers in small-scale agricultural fields are hesitant
to use upgraded technology because of the high initial costs, perceived risks, and
complexity of the system.

4. Government support: The laws and regulations in the area where smart farming is
being considered for implementation play a huge role in its eventual success or failure.
The local governments are responsible for taking initiatives and providing funding
and support training programs for the adoption of such tools [184]. Several successful
initiatives taken up in the European Union [119] and across the world [144] have
highlighted the importance of the effort taken up by regulatory bodies.

5. Ethical considerations: Human safety is also a concern in the operation of unmanned
vehicles [185]. Collisions with the ground or other objects may also cause damage
to the vehicle. It is also essential that the UAVs be flown in unrestricted areas. Cur-
rently, it is not clear where the accountability for the actions taken by autonomous
vehicles lies. Data need to be uploaded to cloud systems in a secure manner, keeping
regulations in mind. It is necessary for smart farming operations to be transparent so
that they are more trusted and accepted. The ownership of agricultural data is a huge
liability that needs to be kept in mind. There are also legal and ethical considerations
with the potential mishandling and misuse of these data [186]. Animal welfare is
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also a concern while making use of autonomous robots to perform functions such as
milking [187].

6. Regional considerations: Lack of proper infrastructure, such as roads, can be a major
hurdle towards the advancement of smart farms, as the necessary resources and
technology will not be successfully transported. There is limited availability of inter-
net in rural areas, where smart farming could be of greater significance. Standard
protocols and frameworks for wireless communication cannot be defined, as the
requirements rely heavily on the specific use case [188]. Further, communication
protocols implemented within the smart farm may only provide coverage over small
areas [189].

7. Discussion

This review study was conducted to assess the challenges and opportunities in smart
farming by exploring current state-of-the-art ICTs and DTs, analyzing global projects, and
understanding the perception of the general public towards such innovative practices. The
two hypothesis stated at the beginning of the study have been supported by the findings of
the research questions, which have been answered as follows:

Hypothesis 3. ICTs and DTs can be used in the agricultural sector to make significant improve-
ments in several farming applications.

The following research question were crafted to accept or reject the hypothesis:

1. What are the state-of-the-art ICTs and DTs currently used in smart farming?
Over the last decade, several smart farming projects have been launched across the
world that were powered by technologies such as IoT, wireless sensor networks,
unmanned vehicles, etc., as detailed in Section 3. The potential use cases for each
technology are discussed in Section 4, although several projects utilize more than one.
Several research projects in the European Union [18] and worldwide have also been
discussed. The development of precise sensors enables the capture of data with higher
accuracy, thus enabling better quality analysis and decision making [14]. Decision
support systems can guide the farmer with operational decisions about choice of crop,
frequency of fertilizer use, better utilization of resources, and more [69]. Autonomous
vehicles take care of labor-intensive tasks, thus freeing up farmers for other important
tasks [77]. Communication between various IoT devices through a WSN can allow
for effective monitoring of the farm throughout the day, making it easier for the
farmer to make operational decisions [36]. Blockchain technology can ensure that the
supply and raw materials purchased are of good quality and there is no adulteration
taking place [48]. DTs such as artificial intelligence also have an array of potential
applications in smart farming, building upon the availability of massive amounts
of heterogeneous data from sensors [20]. We have discussed the use of machine
learning and deep learning for disease identification in crops, fruits, and cattle in
Section 3.7. AI has also shown great potential in optimizing resource utilization by
automating timely irrigation, performing preemptive actions if a certain parameter
crosses a threshold, and predictive analysis of weather and crop conditions [188]. AI
can also be used to identify optimal conditions for growing crops and preventing crop
wastage. Image processing is of great relevance in smart farming, as there have been
several studies that implement CNNs [98]. Image processing can be used for livestock
management, guiding the decision-making processes of harvesting robots and pest
and weed elimination drones. It can also enable precision farming by collecting data
from sensors and deploying resources accordingly [9].

Hypothesis 4. There are certain significant challenges to the widespread adoption of smart farming
tools, such as lack of awareness about the topic amongst the general population.
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The following research questions are explored in this context:

1. What are the challenges associated with the widespread adoption of smart farming
tools?
Despite the increasing number of smart farming projects being launched all over
the world, there still exist many factors that hinder the widespread implementa-
tion of such tools [6,188]. As we have discussed in Section 6, the limitations can be
broadly categorized as lack of training and awareness, technical considerations, costs,
government support, ethical considerations, and regional considerations. Technical
difficulties arise due to the inability of current systems to withstand extreme weather
and atmospheric conditions, being too bulky and costly to implement, and not provid-
ing up-to-the-mark accurate data [176]. Another challenge is the proper infrastructure
required for storing and processing large amounts of data collected from sensors [181].
The privacy and security of this data is of great importance. Regional limitations
could be the lack of infrastructure and connectivity. Smaller farms in rural areas could
benefit greatly from the use of smart farming tools. However, most smart farming
practices require the use of internet connectivity, which is sparse in rural areas. Other
factors that hamper the development of smart farming may include lack of techni-
cal expertise by farmers, insufficient incentives provided by the government for the
implementation of such practices, and skepticism of farmers towards the benefits of
smart farming [28]. General awareness amongst farmers is generally low and can be
increased through training programs. Although smart farming tools are generally
black-box techniques, farmers making use of them still need to understand their
operations so that they can consider the process reliable. Cost considerations could
also make farmers skeptical towards installing new tools, as the upfront expenditure
may be too much [183].

2. What are the current opinions and expectations of the digital user with regard to
smart farming?
In order to better understand user perception of smart farming technologies [166],
we performed sentiment analysis on relevant English comments collected from
YouTube [168], as detailed in Section 5. The comments were collected from 16 different
videos that detailed innovative farming solutions. Then, two different approaches
to observe user sentiment were utilized. In the first approach, comments were man-
ually labeled by two annotators into one of the following six categories: Praising,
Queries, Suggestions, Undefined, Hybrid and Opinion. Cohen’s Kappa coefficient,
which is the measure of inter-rater reliability, was calculated as 0.9617. This shows a
high rate of agreement between the labels assigned by both annotators. The labels
also show high positive correlation with each other, as depicted in Figure 10. Word
clouds created for each video in Figures 8 and 9 highlight significant words, such as
‘technology’, ‘farming’, ‘solar’, etc. In the second approach, polarity and subjectivity
were calculated for each comment using Pattern library for Python. The polarity
score ranges from −1 (negative) to 1 (positive) and indicates whether the sentiment
is positive or negative. The overall polarity was calculated as 0.2092, indicating a
slightly positive sentiment. The subjectivity score ranges from 0 (objective) to 1 (sub-
jective) and indicates the degree of factual information or opinion in the statement.
The overall subjectivity was calculated as 0.4352, suggesting that the comments were
slightly objective. This implies that the comments discussed were fact-based rather
than opinionated. However, only a rudimentary study was performed to determine
user sentiment, and better results can be achieved using state-of-the-art models for
sentiment analysis. In the brief overview of user sentiment conducted in the study,
we noticed lack of user comments on informative and technical videos about smart
farming platforms, indicating that a knowledge gap and a digital divide exists for
such technologies [175], which can be detrimental to their widespread adoption. The
general attitude of users towards smart farming technologies is superficial, as the
public is not well-informed about these topics.
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8. Conclusions

Ensuring a sustainable food supply for the ever-increasing global population has
become a necessity due to the unprecedented changes in the environment. The agricultural
sector must update its practices in light of the worsening strain on land and water resources,
and data-driven approaches provide such an opportunity to ensure sustainability. This
study provided an overview of ICTs and DTs in automating and streamlining farming
operations, and demonstrated how smart farming can improve crop yields by monitoring,
disease prevention, automation of sowing and harvesting, etc. Examples of primary
technological tools available for smart farming are IoT, unmanned vehicles, remote sensing,
predictive analysis through big data, and so on. This shift towards data-driven approaches
enables farming facilities to utilize available resources for maximum yield. The study also
presents various challenges that are associated with large-scale implementation of smart
farming practices, such as poor connectivity in rural areas, insufficient funds and skilled
labor, skepticism from farmers, concerns with data privacy, and more. To analyze the
attitude of the public towards implementation of smart farming, we performed sentiment
analysis on comments from YouTube channels related to smart farming. Preliminary
findings in both user-based and transfer-learning based opinion mining suggest that a
better understanding of smart farming tools would help the public in forming an informed
opinion. Further advances are required to improve precision, cost, and efficiency of robots,
sensors, and unmanned vehicles before they are readily adopted. Keeping the barriers
to adoption for smart farming techniques in mind, the future scope of research would
be to develop techniques that provide greater adaptability, ensure food sustainability,
reduce cost, and counter the harmful affects of climate change on agriculture. Greater
connectivity in rural areas could accelerate the integration of ICTs in smallholder farms,
allowing them to prepare for unprecedented changes in farming conditions. Further
research and investigation of the possible uses of DTs and ICTs is necessary to understand
the challenges and opportunities in smart farming. A detailed sentiment analysis using
advanced language models and inclusion of non-English comments can also provide greater
insight into the expectations and opinions of digital users towards innovative farming
solutions. Multidisciplinary research also needs to be conducted to elucidate other socio–
economic, environmental, and technical factors that impede development and adoption of
such innovations.
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