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A B S T R A C T   

In this study, superparamagnetic iron oxide nanoparticles (MNPs) were synthesized via exposure 
of fungal cell filtrate from Aspergillus flavus to aqueous iron ions. The extracellular synthesis of 
MNPs was monitored by UV–Vis spectrophotometry and showed an absorption peak at 310 nm. 
The morphology of MNPs was found to be flake-like, as confirmed by Field Emission Scanning 
Electron Microscopy (FESEM), while the average crystallite size was ~16 nm, as determined by X- 
ray diffraction (XRD). Energy dispersive X-ray (EDX) analysis was performed to confirm the 
presence of elemental Fe in the sample. Pectinase and xylanase were covalently immobilized on 
MNPs with efficiencies of ~84% and 77%, respectively. Compared to the free enzymes, the 
immobilized enzymes were found to exhibit enhanced tolerance to variation of pH and temper
ature and demonstrated improved storage stability. Furthermore, the residual activity of the 
immobilized enzymes was about 56% for pectinase and 52% for xylanase, after four and three 
consecutive use cycles, respectively.   

1. Introduction 

Immobilized enzymes are of prime importance for some commercial processes, with the key advantage of biocatalyst recycling 
often being complemented by higher operational stability, and a lower risk of product contamination with enzyme [1]. However, 
depending on the immobilization method employed, such advantages can be offset by additional process costs, up to 25 times that of 
the free enzyme [2]. Therefore, there is considerable interest in exploring the potential of nanoparticles as a low-cost platform for 
enzyme immobilization. 

Nanoparticles (1–100 nm in size) have gained prominence in the modern era, as they constitute the building blocks for tailored 
nanocomposites that can be exploited in a wide range of novel applications. In 2017, nanocomposites had a market value amounting to 
nearly $2 billion (USD) worldwide, and this is projected to increase to over $7 billion (USD) by 2022 at a compounded annual growth 
rate (CAGR) of 29.5% during the forecast period of 2017 to 2022 [3]. Driven by global environmental challenges, the industrial 
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revolution in the 21st century is likely to be based on renewable biological resources. In this regard, bio-nanotechnology has emerged 
as a promising field of research that builds on nanotechnology and biotechnology. 

Of all the nanoparticles studied so far, magnetic nanoparticles (MNPs) are of interest for enzyme immobilization owing to their ease 
of separation in a reaction and chemical inertness [4]. Moreover, the advent of microbially-produced MNPs has created a paradigm 
shift in enzyme immobilization technology, providing favorable process economics and offering the additional advantage of mild 
reaction conditions for their production [5,6]. Therefore, microbial production of nanoparticles is rapidly becoming a favored 
approach in this field [7]. In this respect, filamentous fungi have been used chiefly in the synthesis of metal nanoparticles due to their 
wide array of extracellular enzymes and high metal tolerance [8]. 

A review of the literature in this field indicates a degree of heterogeneity in terms of fungal species being investigated in the 
biosynthesis of magnetic nanoparticles (e.g. Fusarium oxysporum [9], Fusarium incarnatum [10], Trichoderma asperellum [10], Phiale
moniopsis ocularis [10], Verticillium sp. [9], Aspergillus niger [11,12], Aspergillus oryzae [13], and Aspergillus japonicus [14]). However, to 
the best knowledge of the authors, no work in this field has yet been reported using Aspergillus flavus for synthesis of MNPs. Therefore, 
the present study investigates the use of A. flavus to produce MNPs and explores their application in enzyme immobilization. To date, 
MNPs have been extensively studied for immobilization of pectinase [15–20] and xylanase [21–29] for easy separation and reuse. 
Therefore, pectinase and xylanase were used as model enzymes in this study for immobilization on MNPs. Hence, the novelty of this 
study lies in the utilization of A. flavus to produce MNPs and its subsequent application in pectinase and xylanase immobilization (as 
model enzymes). 

2. Materials and methods 

2.1. Chemicals 

Pectinase (912 U/ml) and xylanase (455 U/ml) were produced from Mucor hiemalis AB1 (GenBank accession number: JQ912672.1) 
in our laboratory [30]. Enzyme activity was determined by the dinitrosalicylic acid (DNS) method of Miller [31] using pectin (citrus 
peel) or xylan (beechwood) as standard. Unless stated, all other chemicals including pectin, xylan, ferric chloride, ferrous chloride, 
glutaraldehyde, Sabouraud dextrose broth and agar were purchased from Sigma Aldrich (Ireland), and were of analytical grade. 

2.2. Isolation of Aspergillus sp. SR2 

The fungus, Aspergillus sp. SR2, was isolated from spoiled strawberry (variety: Rociera) in a previous study [30]. In the latter, the 
isolated strain was preliminarily identified to the genus level based on macroscopic morphology and microscopic features (results not 
shown). The isolate was stored at 4 ◦C on SDA slopes (Sabouraud dextrose agar; 40 g/l dextrose, 10 g/l mycological peptone, and 15 g/l 
agar) for further study. 

2.3. Molecular Identification of Aspergillus sp. SR2 

Initially, the genomic DNA was extracted using PrepMan® Ultra Sample Preparation Reagent following the instructions of the 
manufacturer (Thermo Fisher Scientific Inc., Waltham, MA, USA). The internal transcribed spacer (ITS) regions of ribosomal DNA were 
then amplified using universal primers: ITS1 (forward, 5′-CTTGGTCATTTAGAGGAAGTAA-3′), ITS4 (reverse, 5′-TCCTCCGCTTATT
GATATGC-3′), and MyTaq™ DNA Polymerase Kit (Bioline, London, UK) [32]. The PCR products were then purified using ExoSAP-IT® 
(Thermo Fisher Scientific Inc., Waltham, MA, USA), followed by Sanger sequencing (LGC Genomics GmbH, Berlin, Germany). Finally, 
the resulting nucleotide sequences were processed with the software Chromas (V 2.6.6, Technelysium, Brisbane, Australia) and 
compared using a Basic Local Alignment Search Tool (BLAST) with sequences deposited in the National Center for Biotechnology 
Information (NCBI) Nucleotide database (blast.ncbi.nlm.nih.gov). 

2.4. Biosynthesis of magnetic nanoparticles 

The protocol reported by Mahanty et al. [10] was followed with minor modifications. Briefly, the fungal isolate was grown in potato 
dextrose broth (PDB; 250 ml Erlenmeyer flask with a working volume of 20%) with orbital shaking (120 rpm, 25 ◦C). After 14 days of 
incubation, the culture fluid was separated from fungal biomass by filtration through Whatman filter paper no. 1, followed by 
centrifugation at 5000 rpm for 5 min. The final filtrate (10 ml) was later utilized for the reduction of iron salts in aqueous solution (5 
ml) consisting of 2 mM Iron (III) and 1 mM Iron (II) chloride mixture (2:1). The reaction mixture was agitated for 5 min at room 
temperature, and color changes were observed and considered as a positive result for the development of MNPs. Next, the MNPs were 
collected by centrifugation at 12,000 rpm for 15 min and washed three times with deionized water. Finally, MNPs were obtained after 
magnetic separation and immediately re-dispersed in deionized water and sonicated (Fisher Scientific TI-H-10 Ultrasonic bath, output 
750 W) for 1 hour to separate the MNPs into individual particles. The culture filtrate (without iron salts) and salt solution (without 
culture filtrate) were considered as positive and negative controls, respectively. 

2.5. Characterization of MNPs 

The absorption spectra of MNPs were measured in the wavelength range from 200 to 800 nm using a UV-1800 UV–VIS 
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spectrophotometer (Shimadzu Scientific Instruments, Columbia, USA). Powder X-Ray diffraction (XRD) analysis was carried out with a 
Siemens D500 diffractometer (Berlin, Germany) to study the crystal structure of the MNPs. XRD data was analyzed using the Origin Pro 
8 software (Trial version, Microcal Software Inc., USA), and the average crystallite size of the MNPs was estimated using the Scherrer 
equation [33]. The morphology (particle shape) of the MNPs were observed using a Hitachi SU 70 (Hitachi High Technologies, Japan) 
field emission scanning electron microscope (FESEM). The FESEM system was equipped with an X-Max silicon drift detector (Oxford 
Instruments, UK) for energy dispersive X-ray (EDX) analysis to confirm the presence of iron in the particles, as well as to characterize 
the other elementary composition of the particles. 

2.6. Immobilization of biocatalysts on MNPs 

A two-step procedure was followed to immobilize pectinase and xylanase on MNPs adopted from previously reported methods, 
with minor modifications [34, 35]. The first step was the activation of the MNPs (50 mg) by suspension in glutaraldehyde solution (1.0 
M, 5 ml) for 2 h at 37 ◦C under constant mechanical stirring. The next step involved the covalent binding of the 
glutaraldehyde-activated MNPs (50 mg, MNPs@GLU) to pectinase or xylanase (1 mL) by incubating the suspension for 24 h at 37 ◦C 
under constant mechanical stirring. Finally, enzyme-functionalized MNPs (MNPs@GLU-ENZ) were obtained after magnetic separation 
and washed with deionized water to remove loosely or unbound proteins. The immobilization yield, and activity recovery of 
immobilized pectinase or xylanase, were calculated as follows: 

Immobilization yield (%) =

(
Cinit − Cfin

)

Cinit
x 100  

where Cfin is the amount of protein in the supernatant (enzyme solution) after magnetic separation and Cinit is the total protein 
available for immobilization, as determined by the Bradford assay [36, 28, 37] 

Activity recovery (%) =
Aimmob

Ainit
x 100  

where Aimmob is the immobilized enzyme activity and Ainit is the initial (free) enzyme activity as determined by the Miller DNS assay 
[38]. 

2.7. Evaluation of the nano-immobilized enzymes (MNPs@GLU-ENZ) 

The optimum reaction pH of MNPs@GLU-ENZ was determined over the range between 2.0 and 11.0 using glycine-HCl buffer (0.1 
M, pH 2.0), citrate buffer (0.1 M, pH 3.0–6.0), phosphate buffer (0.1 M, pH 7–8) and glycine-NaOH buffer (0.1 M, pH 9–11), while the 
optimum temperature was investigated between 20 ◦C and 80 ◦C [30]. To evaluate the storage stability, MNPs@GLU-ENZ were held 
for 30 days at 4 ◦C [39]. For a reusability assessment, MNPs@GLU-ENZ were recovered with magnetic separation after each cycle of 
use, washed with deionized water, and then a new cycle was run under the same conditions for a total of 6 cycles [19]. The enzyme 
activity in the first cycle was assigned a relative activity of 100%, and relative activity was calculated for the successive cycles. All 
experiments were performed in triplicate. 

3. Results and discussion 

3.1. Molecular Identification of Aspergillus sp. SR2 

Aspergillus sp. isolate used in the current study was previously isolated in our lab from spoiled strawberry (variety: Rociera). 
Molecular identification of fungal isolate was carried out by analyzing the sequences of the ITS region of ribosomal DNA (ITS1–5.8S- 
ITS2) and pairwise sequence alignment using the BLAST algorithm. The resultant nucleotide sequence in this study (Table 1) matched 
100% with the published sequence of Aspergillus flavus (Accession No. MN238861.1) available in GenBank. The aforementioned taxon 

Table 1 
Nucleotide sequences of Aspergillus flavus SR2.  

1 GAGGAAGTAA AAGTCGTAAC AAGGTTTCCG TAGGTGAACC TGCGGAAGGA TCATTACCGA 

61 GTGTAGGGTT CCTAGCGAGC CCAACCTCCC ACCCGTGTTT ACTGTACCTT AGTTGCTTCG 
121 GCGGGCCCGC CATTCATGGC CGCCGGGGGC TCTCAGCCCC GGGCCCGCGC CCGCCGGAGA 
181 CACCACGAAC TCTGTCTGAT CTAGTGAAGT CTGAGTTGAT TGTATCGCAA TCAGTTAAAA 
241 CTTTCAACAA TGGATCTCTT GGTTCCGGCA TCGATGAAGA ACGCAGCGAA ATGCGATAAC 
301 TAGTGTGAAT TGCAGAATTC CGTGAATCAT CGAGTCTTTG AACGCACATT GCGCCCCCTG 
361 GTATTCCGGG GGGCATGCCT GTCCGAGCGT CATTGCTGCC CATCAAGCAC GGCTTGTGTG 
421 TTGGGTCGTC GTCCCCTCTC CGGGGGGGAC GGGCCCCAAA GGCAGCGGCG GCACCGCGTC 
481 CGATCCTCGA GCGTATGGGG CTTTGTCACC CGCTCTGTAG GCCCGGCCGG CGCTTGCCGA 
541 ACGCAAATCA ATCTTTTTCC AGGTTGACCT CGGATCAGGT AGGGATACCC GCTGAACTTA 
601 AGCATAT       
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is one of the most common fungi that are found on strawberry fruit, as previously reported [40]. 

3.2. Biosynthesis of magnetic nanoparticles 

Biosynthesis of MNPs using culture filtrate of A. flavus was initiated rapidly after treatment with iron salts, which was visualized by 
observing the change in color of the reaction mixture from yellow to black (Fig. 1), while no visible color change was observed for 
either positive and negative controls. 

Few studies to date have investigated the capability of fungi for the production of magnetic nanoparticles, and most of these studies 
have focused on Aspergillus species, such as Aspergillus niger [11,12], Aspergillus oryzae [13], and Aspergillus japonicus [14]. In the 
aforementioned studies on Aspergillus species, different iron salts were utilized, such as potassium ferricyanide and potassium ferro
cyanide salts solution [14], ferrous sulfate and ferric chloride salts solution [11,12], and ferric chloride solution [13]. Thus, our study 
brings a novel approach for the biosynthesis of MNPs by Aspergillus species where filtrate of A. flavus reduced the ferrous chloride and 
ferric chloride salts solution. According to the available literature, the exact mechanism for the biosynthesis of metal oxide NPs by 
fungi has not yet been elucidated. However, the biomineralization process could have occurred via reducing iron metal ions by 
extracellular redox enzymes from A. flavus [41]. 

3.3. Characterization of MNPs 

The detailed characterization of the mycosynthesized MNPs was performed using UV–vis spectrophotometry, Field Emission 
Scanning Electron Microscopy (FESEM), Energy dispersive X-ray (EDX) and X-ray diffraction (XRD). The UV–vis absorption spectra 
(Fig. 2) shows a characteristic absorption band at 310 nm, confirming the formation of MNPs [42]. Furthermore, the EDX spectrum and 
elemental mapping as shown in Fig. 3 detected the presence of Fe and O. The Fe and O element mapping further confirmed that the two 
constituent elements were well-distributed over the sample. However, the spectrum also revealed small traces of impurities which 
presumably originated from the iron salts and the A. flavus filtrate used for the synthesis of MNPs [43]. 

The SEM images (Fig. 4) of MNPs show clusters of flake-like morphology. Similar morphology was also observed by Chatterjee et al. 
[12], who studied MNPs produced by Aspergillus niger BSC-1. Bharde et al. [9] also reported the biosynthesis of irregular MNPs using 
Fusarium oxysporum. The observed flake-like morphology could be due to the binding activity of biomolecules of A. flavus on the 
growing particles of Fe3O4 [44]. Additionally, there is a possibility of imperfect drying of the MNPs using the vacuum drying technique 
(GeneVac EZ-2 Plus evaporator, Genevac Ltd, Ipswich, UK). Thus, one possible solution would be to use vacuum freeze-drying of liquid 
nanoparticle dispersions to produce a lyophilized MNP powder which may minimize aggregate formation; in turn, this could lead to a 
modified particle size distribution. Above all, MNPs tends to agglomerate into larger clusters in order to reduce their surface energy 
[45], in a phenomenon known as Ostwald ripening [46]. Thus, XRD was used to estimate the average crystallite size of individual 
(primary) particles . 

Fig. 5 shows the XRD patterns for MNPs with six characteristic peaks for Fe3O4 marked by their indices (220), (311), (400), (422), 
(511), and (440). The results of phase analysis agree with the reference magnetite Fe3O4 pattern from the Joint Committee on Powder 
Diffraction Standards (JCPDS card number 19–0629), and published literature [47,48]. Due to the size of the small crystallites, only 

Fig. 1. The culture filtrate of A. flavus (A), iron salts solution (B), black coloration due to mixing of solutions A + B for 5 min (C), separation of MNPs 
from reaction mixture using an external magnet (D), and the magnetic behavior of dried MNPs in the presence of a magnet (E). 
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one major peak at 35.3◦ corresponding to the (311) plane was detected, while other peaks for magnetite were less distinctive [49]. 
Therefore, the full width at half maximum (FWHM) of the (311) peak was used to calculate the crystallite size. The average crystallite 
size of the MNPs was ~16 nm, as estimated by the Scherrer equation. Comparisons with the literature revealed that MNPs derived from 
fungi were in the size range of 10 to 40 nm [12,50]. MNPs smaller than the critical size of 20 nm are known to be superparamagnetic, 
with a high magnetization value [51]. The aforementioned superparamagnetic iron oxide nanoparticles are of industrial interest due to 
their low toxicity, and good biocompatibility [52]. Thus, superparamagnetic iron oxide nanoparticles are versatile carriers for realizing 
enzyme immobilization that facilitates catalyst separation. 

3.4. Immobilization of biocatalysts on MNPs 

Direct immobilization of pectinase and xylanase on MNPs is not effective because of surface oxidation and rejection [53]. Thus, 
MNPs were subjected to glutaraldehyde treatment for the activation of MNPs which facilitates the formation of the Schiff base linkage 
between the aldehyde group of glutaraldehyde and the terminal amino group of enzymes [54]. Finally, the activated MNPs 
(MNPs@GLU) were treated with pectinase or xylanase individually to produce enzyme-functionalized MNPs (MNPs@GLU-ENZ). 
Immobilization yields of pectinase- and xylanase-functionalized MNPs were about 84% and 77%, respectively. For pectinase, the 
immobilization yield of this work (84%) was much higher than that (51%) previously reported by Mosafa et al. [19] using silica-coated 
magnetite nanoparticles via a sol–gel approach. The use of the latter may result in composite particles with an ill-defined structure due 
to the formation of aggregates [61], and this may affect the enzyme immobilization yield. Another reason could be that these enzymes 
are of different origin, and therefore are most likely to be structurally different. It follows that the immobilization yield would most 
probably be different. This may also be the reason why a previous study reported a higher yield (92%) of xylanase from Bacillus sp. 
NG-27 when immobilized on glutaraldehyde-activated magnetic nanoparticles [28]. It is known that a wide number of factors can 
affect the immobilization yield using this method, including surface area activation, stirring speed, enzyme load, MNP proportion, and 
enzyme-MNP coupling time [54]. 

The recovery of enzyme activity remaining in immobilized pectinase and xylanase were about 74% and 68%, respectively. For 
pectinase, the activity recovery of this work (74%) was much lower than that (92%) previously reported by Nadar and Rathod [20] 
using amino-activated magnetite nanoparticles, and the 85% activity recovery reported by Muley et al. [55] using 
glutaraldehyde-activated magnetic nanoparticles. Also, the latter study reported higher activity recovery of xylanase (76%) compared 
to the activity recovery of xylanase (68%) in the present work. However, Perwez et al. [56] reported similar xylanase activity (69%) 
when immobilized on 3-aminopropyl triethoxysilane-activated magnetic nanoparticles. The use of 3-Aminopropyl triethoxysilane 
(APTES) for particle functionalization prior to glutaraldehyde cross-linking [20, 55] has previously proved to be a viable approach to 
achieve improved enzyme immobilization. However, an integral part of this work was the adoption of green chemistry immobilization 

Fig. 2. UV–vis spectrum of MNPs.  
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approaches, and so the option of silanization by APTES was rejected on grounds of toxicity. 
It is also worth noting that covalent immobilization may lead to changes in the native structure of the enzymes, causing serious loss 

of enzymatic activity [57]. Moreover, improving the covalent immobilization method would not only ultimately increase the activity 
recovery, but also suppress the enzyme leaching from the surface of MNPs [58]. 

Fig. 3. MNPs observed in EDX spectrum (A), electron micrograph region at 200 µm (B), distribution of Fe in elemental mapping (C), and distri
bution of O in elemental mapping (D). 

Fig. 4. SEM micrograph shows irregular flake-like clusters at magnification and scale bar of 500x and 100 um (a), and 1000x and 50 um (b), 
respectively. Operating conditions were accelerating voltage of 5.0 kV, and working distance of 10.0 mm. 
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3.5. Evaluation of the nano-immobilized enzymes (MNPs@GLU-ENZ) 

The effect of temperature on the activity of free and immobilized enzymes was evaluated by assaying the enzyme activity at 
different temperatures (20 - 80 ◦C) and pH 5.0. The results shown in Fig. 6a indicated that immobilization did not change the optimal 
temperature of pectinase and xylanase (50 ◦C and 60 ◦C, respectively). This agrees with the typical temperatures for optimum acti
vation of commercial pectinase (50 ◦C) and xylanolytic thermostable enzymes (60 ◦C). Additionally, the immobilized pectinase and 
xylanase retained 80% activity over a wider temperature range of 30–80 ◦C and 40–80 ◦C, respectively, compared to the free enzymes 
(which retained enzyme activity more than 80% over range of 30–70 ◦C and 50–70 ◦C, respectively). The improved retention of 
enzyme activity of the immobilized enzymes above the optimum temperature, with no shift in the optimum temperature, might be 
ascribed to the covalent bonding to MNPs, which in turn prevented the conformational change of enzymes at high temperature [55]. 

The influence of pH on the activity of free and immobilized enzymes was studied by assaying at varying pH values ranging from 2.0 
to 11.0 at 50 ◦C. The results shown in Fig. 6b indicated that immobilization did not change the optimal pH (5.0) of pectinase and 
xylanase. Moreover, the pH activity scope of the immobilized pectinase was expanded, retaining more than 80% activity over a wider 
pH range of 4.0–8.0, compared with that of the free form (pH range of 5.0–7.0). One possible reason for this could be the compact 
conformational structure of enzyme in the polymeric network of nanocarrier [15]. On the other hand, immobilized xylanase was 
slightly shifted toward the neutral range compared to the free form. Immobilized xylanase retained more than 80% activity in a pH 
range of 4.0–7.0 compared with that of the free form (pH range of 3.0–6.0). The slight shift of pH activity for immobilized xylanase 
might be attributed to partitioning effects of polyionic matrices [27]. 

Storage stability of the free and immobilized enzymes was evaluated at 5-day intervals by storing them at 6  ◦C for 30 days. As 
shown in Fig. 6c, the immobilization with magnetic nanoparticles improved the stability of enzymes. The immobilized pectinase and 
xylanase retained about 56% and 53% of their initial activity after 30 days and 25 days, respectively. This compares with the free 
pectinase and xylanase, which retained about 43% and 49% of their initial activity after 25 days and 20 days, respectively. These 
results suggested that the immobilization with magnetic nanoparticles might improve conservation and stabilization of the structural 
conformation of enzymes which preventing possible distortion effects on the active sites of enzyme [18]. 

From a process economics perspective, the reusability aspect of immobilized enzymes is a key consideration for industrial appli
cability. Thus, the useful lifetime of immobilized enzymes in the present work was assessed by subjecting the preparations to 6 suc
cessive process cycles (Fig. 6d). After one cycle was over, the immobilized enzymes were removed from the reaction medium with an 
external magnetic field and reused again to check durability. The residual activity of immobilized enzymes was 56% for pectinase and 
52% for xylanase, after four and three consecutive cycles, respectively. The activity loss of immobilized enzyme probably could be due 
to enzyme denaturation due to recurrent encountering of substrate to the active site of immobilized enzyme after each successive use 
[59]. Previous studies have shown that the activity of hydrolytic enzymes bound to MNPs show a 20% decrease after the second re-use 
[23], which may be explained by such factors as enzyme detachment, the effect of temperature on reducing the magnetization of MNPs 
and interference by components of the reaction mixture [60]. Encapsulation of MNPs in chitosan for the dual purpose of 

Fig. 5. X-ray powder diffraction patterns of the MNPs. Radiation source (Cu Kα1) operated at a voltage of 40 keV and current of 30 mA.  
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functualization and leachate reduction have been reported [62]. In such a case, enzymes can be immobilized on the surface of chitosan 
and achieve the magnetic separation and recycling of the immobilized enzymes from the reaction medium. 

4. Conclusions 

Superparamagnetic magnetite nanoparticles were biosynthesized using A. flavus. The particles were found to be flake-like, with 
average crystallite size of ~16 nm. Pectinase and xylanase were individually immobilized on the surface of MNPs. The immobilized 
enzymes were more stable at wider ranges of pH and temperatures. Furthermore, reusability and storage stability of the enzymes were 
improved by immobilization. Such promising results may open route for potential applications in fruit juice extraction and 
clarification. 
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