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Biomolecules as Model Indicators of
In Vitro and In VivoCold Plasma Safety
Caitlin Heslin1, Daniela Boehm1*, Brendan F. Gilmore2, Julianne Megaw2,
Theresa A. Freeman3, Noreen J. Hickok3, P. J. Cullen1,4 and Paula Bourke1,5,6*

1School of Food Science and Environmental Health, Technological University Dublin, Dublin, Ireland, 2School of Pharmacy,
Queens University Belfast, Belfast, United Kingdom, 3Department of Orthopaedic Surgery, Sidney Kimmel Medical College,
Jefferson University, Philadelphia, PA, United States, 4School of Chemical and Biomolecular Engineering, University of Sydney,
Sydney, NSW, Australia, 5School of Biological Sciences, Queens University Belfast, Belfast, United Kingdom, 6Plasma Research
Group, School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland

The potential applications for cold plasma in medicine are extensive, from microbial
inactivation and induction of apoptosis in cancer cells to stimulating wound healing
and enhancing the blood coagulation cascade. The safe bio-medical application of
cold plasma and subsequent effect on complex biological pathways requires precision
and a distinct understanding of how physiological redox chemistry is manipulated.
Chemical modification of biomolecules such as carbohydrates, proteins, and lipids
treated with cold plasma have been characterized, however, the context of how
alterations of these molecules affect cell behavior or in vivo functionality has not been
determined. Thus, this study examines the cytotoxic and mutagenic effects of plasma-
treated molecules in vitro using CHO-K1 cells and in vivo in Galleria mellonella larvae.
Specifically, albumin, glucose, cholesterol, and arachidonic acid were chosen as
representative biomolecules, with established involvement in diverse bioprocesses
including; cellular respiration, intracellular transport, cell signaling or membrane
structure. Long- and short-term effects depended strongly on the molecule type and
the treatment milieu indicating the impact of chemical and physical modifications on
downstream biological pathways. Importantly, absence of short-term toxicity did not
always correlate with absence of longer-term effects, indicating the need to
comprehensively assess ongoing effects for diverse biological applications.

Keywords: cold atmospheric plasma, cytotoxicity, mutagenicity, safety, In vivo toxicity

INTRODUCTION

The biological effects of cold plasma are complex and occur at the biological interface between
biophysics, biochemistry and cell biology. Cold plasma is produced by applying energy to a gaseous
environment. As the gas is ionized a complex mixture of reactive components is generated. The
application of cold plasma technology to biological targets has revealed effectiveness in a diverse
range of activities from promoting cell proliferation [1], blood coagulation [2], cancer treatment [3,
4], and inducement of specific cell senescence [5]. Other noteworthy applications of cold plasma have
included disinfection potentially with reduced risk of antimicrobial resistance [6–8],
decontamination of fresh produce [9], bio-decontamination of heat sensitive products [10],
seeds and grains with an aim for human consumption [11, 12] and areas key to the
sustainability of food and agriculture [13, 14].
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The biological effects of plasma and plasma generated
chemistry are dependent on the surrounding liquid
environment [15–18]. In fact, studies have indicated immense
variability in the biological effects attributed to cold plasma,
depending on both the composition of the sample substrate
and that of the ionized gas. Thus, for successful application of
cold plasma technology it is important to not only understand
interactions at the bio-plasma interface during treatment, but also
to understand the short-term and long-term consequences of
plasma induced biomolecule alteration and the effect this may
have on biochemical processes. In fact, plasma induced chemical
modification of proteins and amino acids [19, 20] and lipids [21]
have been studied in isolation. Additionally, both simulated,
modeling studies and direct experimentation have shown how
interactions of cold plasma chemical species modify amino acids
[22, 23], change protein structure and function [19, 24–26] and
oxidize lipids [27, 28] but these studies are limited in their ability
to examine or understand the long-term biological effects of the
plasma induced modifications in a complex biosystem.

Encouragingly, investigations of direct plasma jet [29] or surface
micro-discharge treatment on mammalian cells showed negligible
mutagenic effects [30] and nomutagenic potential using the in vivo
HET-MN model [31]. In fact, a range of investigations on human
or animal tissues in vivo and clinical application of several certified
plasma devices suggest that cold plasma treatment under these
conditions is well tolerated and safe [32] and no long-term adverse
effects have been reported to-date [33, 34]. However, other studies
have also demonstrated that cold plasma can be modulated to
become a powerful mutagenesis tool under appropriate conditions
[35, 36] and mutagenic effects of cold plasma treated complex bio-
fluids on mammalian cells have been documented, but not directly
elucidated [37], suggesting that genetic damage is possible where
cells experience exposure to intense plasma or plasma reactive
species over extensive periods of time.

In an effort to reconcile these differences, this study examines
the cytotoxic and mutagenic potential of plasma-treated
biomolecules using both in vitro and in vivo models chosen
for relevance to a range of biological environments which
incorporate protein, lipid and carbohydrate components.
Bovine serum albumin was selected as a representative protein
molecule and for its chemical similarity to human serum albumin
which is an abundant antioxidant protein in the blood.
Arachidonic acid was chosen as an essential omega-6
polyunsaturated fatty acid [38] with four cis double bonds that
contributes to mammalian cell membrane fluidity at
physiological temperatures and is a precursor of eicosanoids
[39]. Cholesterol, a sterol synthesised by all animal cells, is
required for membrane structural integrity and flexibility.
Cholesterol is a monounsaturated fatty acid precursor for all
steroid hormones and functions in intracellular transport and cell
signaling with the formation of lipid rafts in the plasma
membrane [40]. Glucose was selected as a model carbohydrate
and ubiquitous fuel source in biology. The safe application of cold
plasma and subsequent effect on complex biochemical pathways
requires precision and a distinct understanding of how
physiological redox chemistry is manipulated.

RESULTS

Cytotoxicity Dependent on Biomolecular
Structure
To assess the short-term cytotoxic effect of plasma treated
biomolecules, selected biomolecules were dissolved in
deionised water and subjected to plasma treatment. CHO-K1
cells were seeded at 2.5 × 104 cells/ml with 20% v/v of these
treated biomolecules and cell growth was assessed after 2–3 days
(Figure 1).

Prolonged plasma treatment of the bio-molecular solutions
induced cytotoxicity in the CHO-K1 cell line, which was
dependent on plasma treatment time (Figure 1). Plasma
treated cholesterol elicited the strongest cytotoxic reaction. The
growth of CHO-K1 cells cultured with plasma treated cholesterol
was reduced to 75% with 1 min of plasma treatment compared to
94% (BSA), 84% (arachidonic acid), and 96% (glucose) and was
less than 1% when cultured with cholesterol treated for 5 and
10 min. This is in contrast to arachidonic acid and glucose, where
cell growth was reduced to 62% and 74% with 5 min treatment
and decreased to 35% and 43% with 10 min of treatment
respectively. CHO-K1 cells cultured with BSA plasma treated
for 5 min were reduced to 30% and failed to grow when cultured
with BSA treated for 10 min.

Exposing aqueous solutions to cold plasma treatment leads to
the generation of hydrogen peroxide among other molecules,
which may be a useful indicator of plasma activity and potential
predictor of the cytotoxicity of the solutions. The aqueous
treatment environment provides the substrate to generate
complex plasma-liquid chemistry without the same quenching
effect that cell culture media provides. Measurements of pH and
hydrogen peroxide were used as an indicator of plasma-liquid
chemistry (Figure 2). The H2O2 quantification of the plasma
treated biomolecular solutions indicated that the surrounding
media influences the generated plasma chemistry and may have
an effect on the biomolecules or generation of secondary products
(Figures 2B,C). As hydrogen peroxide has been identified as a
major contributor to cytotoxic effects of plasma treated liquids,
cell growth was correlated to the hydrogen peroxide
concentration of the respective biomolecule solution used at
20% v/v and the IC50 was determined. Cell growth data
obtained from biomolecules dissolved in DMEM-F12 and used
at 10% v/v for the mutagenicity assays below, are plotted in the
same graphs for comparison purposes (Figure 3).

A comparison of the plasma-treated biomolecule solutions as a
function of their hydrogen peroxide content, serves to indicate
whether the differences in cytotoxicity are based on differences in
their scavenging of hydrogen peroxide or on toxic modifications
of the biomolecules themselves. The IC50 values of hydrogen
peroxide for plasma treated biomolecules dissolved in deionised
water ranged from 22 µM for BSA (Figure 3A), 34 µM for
cholesterol (Figure 3B), to 60 µM for arachidonic acid
(Figure 3C) and 71 µM for glucose solutions (Figure 3D).
These data suggested that differences in hydrogen peroxide
concentration were not the primary determinant of differences
in toxicity. The dose-response curves obtained for biomolecules
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dissolved in DMEM displayed similar trends to those for
biomolecules treated in water with the notable exception of
BSA. The increased cytotoxicity associated with plasma treated

BSA-water solutions may be due to the lack of pH buffering
capacity accompanied by the more oxidative environment of the
water with less scavenging potential for plasma generated reactive
species. These conditions could potentially lead to the generation
of toxic bi-products in the plasma treated aqueous biomolecular
solutions that may not occur in the DMEM-F12 solution.

Mutagenic Effect of Plasma Treated
Biomolecules
CHO-K1 cells were cultured with 10% v/v of biomolecules
dissolved in DMEM-F12 to assess the long term mutagenic
effects of plasma treated biomolecules using the hypoxanthine
phosphoribosyl transferase (HPRT) assay. The growth of CHO-
K1 cells cultured in 10% v/v of plasma treated solutions was
assessed to ensure cells were growing in selected conditions
(Figure 4). Cell growth of CHO-K1 cells cultured in
arachidonic acid solution treated with plasma for 10 min was
reduced by 50%. Cells that were cultured with plasma treated BSA
and glucose were reduced to 75% and 78% respectively for the
10 min treated biomolecule (Figure 4). Plasma treated cholesterol
did not appear to exhibit the same degree of cytotoxicity following
prolonged plasma treatment as cell growth remained stable even
at the extended treatment time of 10 min. This is in contrast to
effects found for cholesterol treated in water above (Figure 3).
The cytotoxic effects observed were independent of pH as the
value of the buffered solutions did not decrease below a pH of 6.8
for the prolonged treatment time of 10 min for glucose and
cholesterol and a pH of 7.1 for BSA and arachidonic acid.

In order to assess the long-termmutagenic potential of plasma
treated biomolecules, CHO-K1 cells were cultured with plasma
treated biomolecule solutions over 34 days and monitored for
HPRT-deficient mutants through colony formation in selective
medium. Data is presented as cumulative data from experiments
performed in triplicate, with all replicates plated in three
independent plates at each time point and is displayed as
percentage positive plates of the overall plates assessed at each
time point (Original data available as Supplementary Table S1).
Plasma treated biomolecules caused an increase in mutant
colonies over time of culture and time of extended plasma
treatment of the biomolecule solution (Figure 5).

FIGURE 1 | Cytotoxicity of plasma treated biomolecules dissolved in deionised water over plasma treatment time.

FIGURE 2 | pH of plasma treated biomolecules dissolved in deionised
water (A) and hydrogen peroxide quantification of plasma treated
biomolecules dissolved in deionised water (B) and dissolved in DMEM-F12
(C).
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HPRT colony formation in CHO-K1 cells cultured with
plasma-treated BSA increased over cell culture period and
with the prolonged plasma treatment time of 10 min
(Figure 5A) and reached a maximum HPRT+ of 56% of
replicates for 10 min plasma treatment after 27 days of
exposure. Plasma treated arachidonic acid was consistently
HPRT+ after 13 days of culture for 5 and 10 min plasma
treatment times, with a maximum of 50% HPRT+ replicates
on day 34 of culture (Figure 5B). Glucose displayed the greatest
mutagenic potential aligned with plasma treatment time and cell
culture period (Figure 5C). There was a maximum of 78%
HPRT+ replicates for the 10 min plasma treated glucose after
27 days in culture. Plasma treated cholesterol exhibited low
mutagenic potential even with the extended treatment time of
10 min reaching a maximum of 22% HPRT+ after 27 days in
culture (Figure 5D).

Plasma treated glucose exhibited the greatest mutagenic
potential accounting for 36% of the total HPRT+ colonies
(Figure 6).

In vivo Model System to Test Plasma
Treated Biomolecule Toxicity
Larvae of the wax moth Galleria mellonella were used as a
model system to assess the toxicity of plasma treated
biomolecules in vivo through injection. The plasma treated
biomolecules were found to be well tolerated by the Galleria
larvae with ∼100% survival (Figure 7). Haemocyte density
was assessed as an indicator of overall larvae health. There was

no significant increase in haemocyte density as would be
observed if the larvae were under substantial stress (data
not shown). For comparison, larvae were also injected with
deionised water subjected to the same plasma treatment and
hydrogen peroxide solutions at concentrations between 100
and 900 µM. The larvae tolerated the plasma treated deionised
water well and haemocyte density was not affected (data not
shown). The larvae did not tolerate the higher concentrations
of hydrogen peroxide despite the concentrations being in the
same range as measured in the plasma treated biomolecules
(Figure 9). The surviving larvae were assessed for haemocyte
density and levels were not significantly different from the
control. This indicates that the immune system had not been
challenged and that the solutions did not stimulate a non-
selective immune response. Despite the equivalence in
peroxide concentrations, this study indicated that there was
no toxicity of the plasma treated biomolecules to the in vivo
model G. mellonella under the conditions tested.

As a comparative indicator of their susceptibility, the IC50/
LD50 for hydrogen peroxide was determined for both the
in vitro and in vivo model systems used. In the CHO-K1
in vitro model, the IC50 of H2O2 was 140 µM (Figure 8)
compared to the G. mellonella in vivo model that had an
LD50 of 675 µM (Figure 9) for 20 µl of injected hydrogen
peroxide. While the mode of exposure of the larvae/cells is
not comparable, this nonetheless supports the much higher
tolerance observed for G. mellonella larvae injected with
biomolecules compared to the direct exposure of CHO-K1
cells to biomolecule-supplemented medium.

FIGURE 3 | IC50 determination for plasma treated biomolecules dissolved in deionised water and DMEM (A) BSA, (B) Arachidonic acid, (C) Glucose, (D)
Cholesterol.
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DISCUSSION

Whilst eukaryotic cells have developed methods of dealing with
oxidative stress induced biomolecule modification and have
mechanisms to restore redox balance, detrimental effects due
to excessive ROS do occur. The downstream biological effects of
these structural changes remain to be investigated. To elucidate
the mechanisms of actions and potential long-term effects of cold
plasma, we chose four biomolecules involved in diverse
biochemical pathways and a multitude of bioprocesses
including; cellular respiration, intracellular transport, cell
signaling or cell membrane structural components to analyse
in this investigation. Plasma-induced chemical modifications of
proteins, DNA, lipids and carbohydrates and associated
structural modifications are dependent on gas composition,
plasma discharge characteristics and liquid environment [22].
Results indicate that plasma induced chemical alterations to the
biomolecular structure of these molecules has the potential to
cause repercussions in cellular processes or to generate toxic/
mutagenic metabolites.

The eukaryotic cell membrane is composed of two lipid
monolayers embedded with proteins. The effects of cold
plasma on cell membranes include transient pore formation
through lipid peroxidation due to hydroxyl radicals [41]. H2O2

and O3 are indirectly involved in lipid peroxidation through the

generation of hydroxyl radicals through the iron-catalysed
Haber–Weiss reaction [42] and the lipid radical is able to
propagate a chain reaction of lipid peroxidation of nearby
lipids. The direct exposure to oxidants such as hydrogen
peroxide or lipid hydroperoxides has been shown to directly
induce apoptosis in various cell types [43]. Cholesterol is a
monounsaturated fatty acid found in cell membranes and is
prone to oxidation by oxygen free-radicals generating products
such as hydroperoxides and oxysterols [40]. When cholesterol
dissolved in deionised water was treated with plasma, significant
cytotoxic effects were observed on CHO-K1 cells after just 5 min
of plasma treatment. The H2O2 measurement of plasma treated
cholesterol in H2Omeasured the highest of the biomolecules over
700 µM and can be correlated to the higher cytotoxic effects
observed. However, as the IC50 indicates, H2O2 is not the only
cytotoxic factor generated in the plasma treated solution. Despite
the short-term cytotoxic effects observed for plasma treated
cholesterol dissolved in H2O in vitro, the treated biomolecule
was well tolerated by the in vivo model of G. mellonella. Plasma
treated cholesterol also exhibited the lowest mutagenic potential
of the selected biomolecules despite oxidation products of
cholesterol such as epoxide demonstrating mutagenic potential
in vitro [44, 45]. The short-term cytotoxicity observed in this
study may be attributed to differences in the biochemical
structures of the biomolecules and the aqueous environment
they were treated in.

Arachidonic acid is an essential polyunsaturated fatty acid
released during epithelial disruption and wound healing and is a
crucial mediator of inflammation. Either directly or after
enzymatic conversion to eiconsanoids, arachidonic acid
modulates the function of various organs and systems
including the digestive, renal, reproductive and immune
systems [38]. The ability of arachidonic acid to induce
cytotoxic effects, which were apoptotic in nature, in liver
cells was predominantly attributed to lipid peroxidation and
oxidative stress, where lipid peroxidation endproducts were
detected and the exposure of cells supplemented with
arachidonic acid to exogenous antioxidants provided
protective effects [46]. The four double bonds make this
molecule more susceptible to lipid peroxidation compared to
the single double bond found in cholesterol and allow the lipid
to react readily with molecular oxygen promoting oxidative
stress [47] and may make it susceptible to lipid peroxidation by
plasma reactive species. However, even after 10 min of plasma
treatment when dissolved in H2O and used at 20% v/v in
culture, cell growth showed very similar responses to those
of cholesterol and remained just under 50%. Yet, arachidonic
acid was the only biomolecule which showed pronounced
cytotoxic effects at 10% v/v after plasma treatment in
DMEM-F12. Arachidonic acid metabolism has been
associated with the induction of genetic mutations by
triggering hydroperoxide dependent oxidation products
capable of inducing DNA damage and mutations [48].
Uncontrolled arachidonic acid lipid peroxidation and
superoxide production may explain the cytotoxic and
mutagenic potential of this bioactive molecule [39] and could
play a role in the plasma-mediated effects observed here.

FIGURE 4 |Growth of CHO-K1 cells in 10% v/v of physiological levels of
selected biomolecules after plasma treatment. Different letters indicate a
significant difference between treatment times (p < 0.05).
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Serum albumin is the most abundant blood protein and acts
as a circulating extracellular antioxidant. Its antioxidant
properties arise from the flexible nature of the three domain
design that enables the protein to adapt to a variety of ligands,

including polyunsaturated fatty acids [38], long chain fatty
acids (LCFA) and oxysterols. Albumin is important in the
binding of the cationic ligands copper and iron preventing
them from generating hydroxyl radials via the Fenton reaction
with hydrogen peroxide. When BSA was dissolved in dH20,
treated with plasma and cultured with CHO-K1 cells at 20%
v/v, reduction of cell growth below 50% was observed after
5 min treatment time. BSA dissolved in DMEM-F12 and
treated with plasma before being cultured with CHO-K1
cells at 10% v/v displayed no significant cytotoxic effects
even at the prolonged treatment time of 10 min. The effects
of plasma on protein structure are well documented. Unfolding
and loss of activity in the model protein lysozyme was
hypothesised to be due to chemical modifications of amino
acids based on shifts in protein mass [49]. Oxidation of BSA
and free methionine has been demonstrated using a capillary
plasma jet [50] and investigations using a µAPPJ to treat BSA as
a model protein indicated oxidation of sulfur-containing
amino acids but no modification to cysteine involved in
disulphide bonds [51]. Other studies using DBD plasma
systems indicated that the thiol group of cysteine is
modified by reactive oxygen and nitrogen species [52] and
showed inactivation of proteins such as RNase by oxidation of
sulfur-containing amino acids and over-oxidation of disulfide
bonds [53].

FIGURE 5 | Colony formation (% HPRT+) for cultures supplemented with plasma treated biomolecules over the course of cell culture and according to plasma
treatment (A) BSA, (B) Archidonic acid, (C) Glucose, (D) Cholesterol. Data is presented as cumulative data from experiments performed in triplicate, with all replicates
plated in three independent plates at each time point. Plates were scored as positive or negative based on the presence of colony formation and are displayed as
percentage positive plates of the overall plates assessed at each time point.

FIGURE 6 | Colony formation (% total HPRT+) according to selected
biomolecules.
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Glucose was utilised in this study as a model carbohydrate and
ubiquitous form of energy in cells. Plasma treated glucose exhibited
the lowest cytotoxic potential under both treatment conditions but
the highest mutagenic potential. H2O2 measurements were no
different than the other treated biomolecules at 400 µM in H2O
and 600 µM in DMEM-F12. During carbohydrate oxidation, the
hydroxyl groups are oxidised to carbonyl groups and then carboxyl
groups. Li et al found that treating sugars including glucose in
solutions of water and PBS with DBD plasma caused the
decomposition of these sugars into formic acid, glycolic acid,
glyceric acid, tartaric acid and oxalic acid in time dependent
concentrations and these effects were attributed to reactive
oxygen species, primarily the hydroxyl radical [54].

In summary, a general increase in mutagenesis was observed
over time and with longer plasma treatment times in all
biomolecules. This was not unexpected as plasma technology
has proven to be a powerful mutagenesis tool in microbial
breeding in bacteria, fungi and microalgae, causing greater DNA
damage and higher mutation rate than conventional mutagenesis
methods [35, 36]. A possible limitation in this study was the ability
to detect mutations in mammalian cells which varies depending on
the locus examined using a single-copy gene whose inactivation by
the mutagen causes a detectable phenotype, allowing small-scale
detection of deletions, transitions or transversions.

All of the tested biomolecules were well-tolerated in the short-
term by the in vivo Galleriamodel after single exposure via injection

and importantly this suggests that higher organisms may possess
sufficient mechanisms for detoxifying toxic components in the
plasma treated liquids to prevent noticeable impacts on
morbidity or mortality. However, the injection of this larvae
model with lettuce broth treated with the same plasma system
showed severe toxicity of 5 min treated product in another study
[55]. The disparity between the short- and long-term effects and the
influence of the aqueous milieu in this study highlights the need for
more extensive investigations into the conformational changes on
biomolecules post-plasma treatment and the effect that such
intended or unintended changes would have on biological pathways.

The large-scale biomedical application of cold plasma or wider
applications in food preservation or disinfection require adequate
scientific research and technical data evaluating the overall safety
considerations of cold plasma treatment. Cytotoxic and
mutagenic responses of plasma treated biomolecules observed
in vitromay not carry over to the in vivomodel. This could be due
to numerous reasons, including metabolic transformation. Even if
a possible mutagen is produced, it may not reach the target organ
or cells in high enough concentrations to cause genetic damage.
Cells and especially more complex cellular structures and
organisms have developed a range of mechanisms to remove
defective molecules such as the degradation of damaged
proteins through the proteasome. The longevity of alterations to
the biomolecules and their purpose or elimination in a biological
system need to be considered, where their persistence may not be
long enough to cause systemic toxicity or long-term effects such as
genotoxicity. The in vivomodel presented in this study represents a
short-term toxicity study while the HPRT assay is a long-term
model of continuous and therefore excessive exposure to the
plasma-treated substances. Both approaches can add insight to
the overall question of plasma technology and applications safety.
Our short-term in vivo tolerance results agree with a number of
studies showing tissue tolerance to plasma and low in vitro toxic
and mutagenic risks, suggesting that plasma reactive species in
limited doses are safe. Adverse cyto- and genotoxic effects of high
cumulative doses over long-term nonetheless indicate the need for
further extensive studies to define the limits beyond which
treatments could pose risk. In vivo models on mammals to

FIGURE 7 | Galleria mellonella larvae survival rates 24 h post injection
with plasma treated biomolecules.

FIGURE 8 | Dose-response curve for CHO-K1 cells treated with H2O2.

Frontiers in Physics | www.frontiersin.org January 2021 | Volume 8 | Article 6130467

Heslin et al. Safety of Plasma Treated Biomolecules

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


examine possible mutagenic manifestations of direct plasma
treatment or indirect plasma treatment including ingestion of
plasma treated foods or liquids or application of plasma treated
solutions should also be performed [56].

MATERIALS AND METHODS

All chemicals were obtained from Sigma-Aldrich (Arklow,
Ireland) unless specified otherwise.

Plasma System
Cold plasma was generated using the previously described [57]
high-voltage dielectric barrier discharge atmospheric cold plasma
system, DIT-120, characterized in detail byMoiseev et al [58]. For
the generation of plasma activated model solutions, samples were
placed in Petri dishes inside a polypropylene container that
operated as the dielectric barrier and the sample holder. The
container was sealed in an air-tight film to ensure species
retention. Plasma was generated by sine-wave excitation at
80 kV RMS and 50 Hz (ac frequency) in air and the distance
between electrodes was kept constant at 3cm for all experiments.
Model solutions were subjected to 24-h post treatment storage
time within the sealed container before opening.

Preparation of Biomolecule Solutions
All biomolecules were dissolved within physiological ranges (BSA
530 mmol/l; glucose 4 mmol/l; cholesterol 5 mmol/l; arachidonic
acid 10 μmol/l). For the short term in vivo and in vitro cytotoxicity
study, biomolecules were dissolved in deionised water prior to
plasma treatment. For the long term mutagenicity study,
biomolecules were dissolved in DMEM-F12 prior to plasma
treatment. All solutions were filter sterilised with a 0.2 µm
syringe filter before and after plasma treatment.

Cell Culture
The Chinese hamster cell line CHO-K1 was used for the
cytotoxicity and mutagenicity studies. CHO-K1 cells were
cultivated in DMEM/F12 with 2 mM L-glutamine and 10%

foetal bovine serum [24]. Cells were grown at 37°C and 5%
CO2 in a humidified incubator. Cells were detached using
trypsin/EDTA and cell concentrations and viability were
assessed using trypan blue exclusion assay. Cell viability was
assessed by crystal violet staining: trypsinized cells seeded at 2.5 ×
104 cells/ml were left to re-adhere and grow for 3 days. Culture
supernatant was removed and cells were fixed with 70%methanol
for 1 min followed by staining with 0.2% crystal violet solution for
10 min. Cells were washed with water and allowed to air-dry.
Adherent crystal violet was dissolved with 10% acetic acid and the
absorbance was measured at 600 nm on a spectrophotometric
microplate reader (Biotek, Winooski, United States). Cell growth
was expressed as a percentage of control cells.

HPRT Assay
The hypoxanthine phosphoribosyl transferase (HPRT) assay was
employed to detect the potential of plasma treated biomolecules to
induce mutations in the CHO-K1 cell line. Cells were cultured in
T25 flasks or 6-well plates in DMEM/F12 medium supplemented
with 10% FBS and 10% biomolecule solution, treated at 80 kV RMS
for 0, 1, 5, and 10min with 24 h post-treatment storage time. Cells
were passaged every 3–4 days through trypsinisation and reseeded at
2.5 × 104 cells/ml into fresh 6-well plates. Once a week during
reseeding, cells were also plated at 1 × 104 cells/ml in 60mm round
dishes with DMEM/F12 10% FBS and 10 μg/ml 6-thioguanine (6-
TG) as a selection agent. Colony formation was determined after
10–14 days of incubation at 37°C and 5% CO2 by staining with
crystal violet. Plates were recorded as HPRT+ or HPRT-based on
the existence of colonies. CHO-K1 cells were cultured with
plasma treated solutions in three independent models and 6-
TG plates were set up in triplicate for each replicate. Data is
presented as cumulative data in the form of percentage positive
plates of total plates assessed at each time point. Control plates
were negative for colony formation at the start of the 40 days
exposure; ethyl methanesulfate (EMS) was used as a positive
control to induce colony formation.

Insect Larvae
Sixth-star G. mellonella larvae were obtained commercially from
livefoods.direct.co.uk and stored in wood shavings at 15°C prior
to use. Dead larvae and those showing signs of melanisation were
discarded. Three groups of ten randomly-selected larvae, each
weighing 0.2–0.3 g were used for each treatment.

Galleria mellonella Intra-haemocoel
Inoculation
The G. mellonella haemocoel was injected with 20 µl of selected
biomolecular solution using a 0.3 ml Terumo® Myjector® U-100
insulin syringe through the base of the last proleg. Three control
groups of ten larvae were injected with sterile deionised H2O.
Larvae were incubated at 30°C for 24 h. Larvae were assessed
visually for viability 24 h after injection with plasma treated
biomolecule solutions and percentage survival was noted.
Larvae were considered dead if they were unmoving, failing to
reorient themselves if placed on their backs or failed to respond to
stimuli [59].

FIGURE 9 | Dose-response curve for Galleria mellonella larvae injected
with H2O2.
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Harvesting of Insect Haemocytes
After 24 h incubation at 30°C, haemolymph was drained from five
larvae in each group by piercing the anterior region and draining
into chilled 1.5 ml microfuge tubes, which were kept on ice to
prevent melanisation of the haemolymph. All samples were diluted
by adding 100 µl haemolymph to 900 µl ice-cold PBS and for each
extract concentration, haemocytes were enumeratedmicroscopically
using a haemocytometer, and compared to haemolymph samples of
control larvae which were injected with 20 µl of sterile H2O.

Colorimetric Determination of Peroxide
Concentration
Concentrations of peroxide in plasma treated solutions were
ascertained via spectrophotometrically measuring the oxidation
of potassium iodide to iodine at 390 nm. 50 µl of phosphate buffer
and 100 µl of 1 M KI solution were added to 50 µl of plasma
treated biomolecule solution and incubated at room temperature
for 30 min. Absorbance was read at 390 nm and a standard curve
of known hydrogen peroxide concentrations was generated with
each plate to correlate absorbances with peroxide concentrations.

Statistical Analysis
Experiments were performed in triplicate and results are
presented as means with standard deviations and statistical
analysis where applicable was performed by analysis of
variance (ANOVA) using GraphPad Prism (GraphPad
Software Inc., La Jolla, United States). Results obtained from
the HPRT assay are presented as cumulative data of experiments
performed in triplicate with three plates per replicate.
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