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Abstract
Improving the data descriptor calculation of crystal’s physical properties requires 
sophisticated imaging techniques and algorithms. It has been possible to construct 
2D population balance models benefiting from characteristic measurements of 
both crystal’s length and width, compared to the single representative sizes used 
in 1D models. Our aim is to ameliorate the procedure of determining shape (and 
not only size) factors, in an automated fashion and directly from the process, for 
implementation in future models. Here, approaches suitable for real-time applica-
tions were employed including engineered imaging sensors and adaptive algorithms. 
We described the latter in detail for varying 2D image datasets. Their basic concept 
is similar. Each is applicable to an entire dataset, thus demonstrating efficacy for a 
variety of particle environments. While the challenge of particle segmentation for 
higher concentrations was not scrutinized here, this approach reduced processing 
time, steps and supervision, for the benefit of certain applications requiring process 
monitoring and automation.
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1 Introduction

1.1  Crystallization Modelling

Several spectroscopic, laser and imaging methods now permit access to information 
in real-time and directly from the reaction (in situ) due to developments in Process 
Analytical Technology (PAT) [1, 2]. This information may be crystal size distribu-
tions (CSD) and particle size-shape distribution (PSSD), and many physico-chemi-
cal properties, found to influence population balance equations (PBEs) and models 
(PBMs) [3]. 2D models supported by size and shape information, mainly possible 
using imaging, have large advantages over basic 1D models and less assumptions.

One of the main approaches employed to measure 1D information has been based 
on the chord length, represented by the scanned distance, in a random part across a 
particle. The method is highly rapid and efficient for a wide range of applications 
and concentrations. The CSD may be calculated based on necessary transformations 
from the chord length distribution (CLD). The chord length is a random scan of 
a particle that may result in different values for the same particle, according to its 
shape, rotation, physical properties, scan direction, as well as the optical properties 
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of the system [4] (Table 1). More recently, improved models were produced to sup-
port the calculation of 1D CSD through an optimized relationship between CLD, 
geometry and size [5], along with considerations of sample properties, laser inten-
sity, refractive indices, crystal velocity, and mathematical optimizations based on 
the working principles of the laser beam in operation. As for the 2D CSD, additional 
parameters to the CLD are necessary [6], and this can be supported by using optical 
imaging.

Video microscopy permits not only the determination of length and width, but 
the shape (in 2D), including symmetry, convexity/smoothness, and circularity. Some 
challenges can be the performance, algorithms for image processing and understand-
ing, sensitivity (e.g., based on resolution, refractive index, particle properties), and 
particle concentration. Yet, developments in microscopy have been significant and 
for a wide range of applications, due to an amalgamation of lenses, prisms, illumina-
tion sources, cameras, and many engineering and electronic approaches. Image and 
data analysis methods have also evolved [15, 16]. Therefore, imaging-based PAT has 
become more suitable to support monitoring, continuous crystallization and screen-
ing platforms [17, 18].

1.2  Image Processing: Developments and Challenges

An image processing workflow typically applies a series of prebuilt equations 
and calculations on information obtainable and accessible in the image. Several 
functions and plugins are available with programs like ImageJ, Rgui, Matlab and 
OpenCV. Certain algorithms may provide limited prediction, such as using an auto-
complete function for partially complete features, sometimes with matching with a 
database, part of a large decision tree of sophisticated steps and loops. However, 
the ‘interpretation’ of complex images remains a challenge for machine vision as 
demonstrated by the inability to solve a Captcha for example, which requires human 
intervention.

Basic edge detection and watershed operations (e.g., Canny edge detection, 
Trainable Weka Segmentation (TWS)) also require significant computing times, 
training, use of templates [19], and/or iterative procedures. Employing a series of 
assumptions and line assignments (model-based) has been applied for in situ images 
of α-glycine crystals [20]. The technique was based on linear features, VIGs (View-
point-invariant groups) as properties of an object that are maintained irrespective of 
the camera’s position, and model fitting. A method for particle recognition [21], in 
particular overlapped particles that are simple-shaped (e.g., rectangles) was demon-
strated and used time-zero background image subtraction, multi-scale edge detec-
tion, filtering, and salient corners (intersection of two lines). More recently, the 
detection of simple-shaped (needles), overlapped crystals was also demonstrated 
for in situ applications [22]. A few studies commented on the difficulty with more 
complex crystal scenes including the presence of several shapes (especially not pre-
known), unfocused objects, high particle concentration, semi-transparent particles, 
and strong particle attrition. Overall, it is frequent to identify in the literature studies 
employing methods in parallel with microscopy, such as the CLD [14].
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1.3  Adaptive Background Correction

Background correction is a major task for in situ image processing for the purpose 
of quantitative analysis of size-shape. Most often, users subtract time-zero blank 
images for correction. However, typical backgrounds from in  situ images are not 
identical throughout an entire dataset, coupled with varying noise distributions, 
shadows, and inhomogeneities (Figs. 1, bottom and 3). Basic median filter to sub-
tract standard backgrounds may eliminate noise and non-homogeneity [23], but 
with rejection of particles smaller than 24 μm (30 × 30 pixels2). Moreover, several 
methods of data transformation exist (e.g., linear, convolution, Gaussian, smoothing, 
Fourier transform). Fortunately, an adaptive approach adopted here permits normali-
zation of such backgrounds [24] while also smoothing the image. In this paper, the 
technique employed is compatible with gradients, observable in certain relief con-
trast methods (Fig. 1, bottom) used to observe texture particularly for small and thin 
entities.

A gradient of light and 
color distributions is 
present in certain 
optical configurations

Objects out of focus

Edges are darker than 
the rest of the particle

“Shadows”

Overlapped/visually 
discontinued crystal Out of focus

Agglomerate is 
recognized as a single 
particle

Particles at the borders
are statistically excluded 

Weakly visible edges

Fig. 1  Classic challenges of processing images of particles such as crystals. Top: Crystals are optically 
active causing difficulty compared to opaque particles. Bottom: Challenges with optical engineering set-
ups like prism intensity and gradient. These are two examples of limitations for classic algorithms that 
follow a sequence of calculations, unable to resolve visually overlapped particles versus agglomerates, 
watershed/segmentation, out-of-focus particles, gradients of lights, and high concentrations
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Visibility conditions in general impact on many measurement technologies [25]. 
The signal to noise and signal to background ratios (can be due to the imaging 
approach and/or the camera sensor [26]), illumination, gradients, and color varia-
tions, are important to optimize. Furthermore, in situ imaging challenges (Table 2) 
are a focus of the macro algorithms developed here.

The Rolling Ball (RB) algorithm [24] is an adaptive method for background cor-
rection, independently of time-zero/blank images or of one image to another. With 
the optimized sliding paraboloid (SP) approach it has been applied in the biomedi-
cal, cell biology, geophysical, and materials science sectors [31–33]. It is sufficiently 
fast for real-time analysis and suitable for non-uniform backgrounds (e.g., illumina-
tion, intensity, brightness, gradient). The code was successfully implemented ini-
tially in the NIH Image Pascal, which has since been superseded by ImageJ. The 
term “ball” describes the correcting shape that passes (‘rolls’) over the bottom sur-
face of the image. It has a certain limit in reaching inside the peaks, depending on 
the sizes of the correction ball and the peaks. Nearly a decade ago, Michael Schmid 
released a variant of this algorithm, more suitable for certain images in terms of 
intensities and shapes, known as the “Sliding Paraboloid” of approximation (same 
curvature at the apex as the ball of a given radius) (Fig. 2). To be more precise, this 
is sometimes described as “Sliding Parabolae” in four directions (x, y and 2 × 45°), 
for practicality and speed reasons. The code was also optimized to correctly pro-
cess objects in image corners. The parabola (or paraboloid) has a different symme-
try and shape than a circle (or ball), hence the term ‘sliding’ rather than ‘rolling’ 
when applied. Smoothing and correction are calculated via approximate values also 
depending on the surrounding local average, using a pre-specified radius. A “Sepa-
rate colors” option permits for RGB images to correct not only based on brightness 
but also on hue and saturation, which are strong visual appearance properties [34]. 
This possibility was key in the success of certain studies shown later, when color 
information was necessary from the start (Fig. 2), for in situ images containing spa-
tial variations, blurriness, out of focus and in focus objects, shadows, and noise. It 
was also useful when applying an Enhanced local contrast (CLAHE) or a general 
‘Enhance contrast’ function, via adjustments of their settings such as Blocksize, His-
togram pins, Maximum slope, Mask, Histogram equalization, and Saturation.

In this study, we have listed the macros of algorithms in detail and for the respec-
tive datasets. Furthermore, the development was also explained step by step, and 
for several challenging experiments using explanatory figures. The study shows the 
main advantage of the adaptive background correction procedure employed here 
and the potential application opportunities to monitor processes containing particles 
such as cells, emulsions, bubbles, crystals, and particles in general.

2  Methods

2.1  Imaging

The imaging experiment of thiamine hydrochloride shown in Figs. 3 and 4 was car-
ried out based on a benchtop optical system [27] under weak polarization, with a 
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camera resolution of 2592 × 1944 pixels2 and a field of view of 1.25 mm × 1 mm. 
Crystals were imaged as semi-opaque in low light bright field. Other experiments 
were imaged in bright field, moderate or strong relief contrast, on a slide (in-line) 
or in situ, as indicated, based on the sensor probe systems developed [27, 35] with 

Fig. 2  The importance of continuously improving adaptive background correction algorithms. A method 
comparison is shown based on 3D surface plots (original raw image: bottom left) between the rolling ball 
(a) and sliding paraboloid (b) correction functions

Fig. 3  A simple procedure for enhancing in-line image processing of particles. Comparison of a classic 
approach (raw image, top left) with an optimized one (treated image, bottom left). The resulting binary 
images are shown to the right
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a 10X objective and a camera sensor of 3376 × 2704  pixels2. More specifically: 
(Sect. 3.1) thiamine hydrochloride crystals were imaged in a microfluidic slide with 
a pump system; (Sect. 3.2) lysozyme crystals were imaged statically in a large drop 
on a slide in bright field mode; (Sect. 3.3) particle size standards, l-glutamic acid 
crystals, and taurine crystals were imaged in situ with full probe immersion in relief 
contrast mode; finally (Sect. 3.4) taurine crystals were imaged in a large drop on a 
slide in relief contrast mode.

2.2  Crystallization Protocols

Thiamine hydrochloride crystals were used from a stored slurry with solvent, pro-
duced by re-crystallization.

Lysozyme was selected for the transparent crystal imaging studies with bright 
field mode. Lysozyme powder was first dissolved at 50  mg/mL in 0.1  M sodium 
acetate pH 4.5. 1 µL was then added onto a glass slide with 1 µL of precipitant (30% 
w/v MPEG 5000, 1 M sodium chloride and 50 mM sodium acetate pH 4.5). Addi-
tional microliters may also be used for different protein:precipitant ratios (e.g., 1:2, 
1:3, 2:1). Evaporation started as the drop was visualized and crystals began forming 
while recording an image every 4 s.

To obtain the images shown in Fig.  7, particle standards of 15–150  μm glass 
beads (Malvern, Cat. QAS3002) were added to  H2O at 1% w/v and imaged during 
stirring. As for l-glutamic acid crystallization, it was carried out by dissolving pow-
der at 3.5% w/v into  H2O at 65 °C, with a temperature decrease to 47 °C at a rate 
of 0.14 °C/min. For taurine crystallization, 100 g was added into 700 mL  H2O at 
42 °C, and crystallization from supersaturation occurred over 2 h.

The last example, based on in-line imaging with a strong gradient, was carried 
out by adding taurine powder to 10 mL of  H2O at 95 °C until supersaturation was 
reached. A drop of a few μL was pipetted from the supernatant onto a microscope 
slide. Crystallogenesis began immediately due to evaporation and temperature 
decrease.

Fig. 4  A semi-adaptive approach for in-line particle image datasets. Examples are chosen from a single 
run whereby a single macro was applied to correct backgrounds, noise, large variations (bubbles, shad-
ows), while preserving the signals of microparticles
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2.3  Software

Images were automatically captured using certain settings and procedures [16, 27, 
35] during long experiments, or manually saved. For processing, ImageJ Fiji [36] 
was used for batch processing and applying the series of functions described under 
“Macros” below and in full detail in the Online Appendix section. For the back-
ground removal in ImageJ through the rolling ball/sliding paraboloid function, the 
“Separate color” function is a visible option in older versions (e.g., v. 2014 Jun 02 or 
v. 2014 Nov 25) possibly compared to the more recent versions some of which were 
heavily transitioned to Java (e.g., v. 2017 May 30 or v. 2015 Dec 22). After binary 
conversion and export of the particle size-shape data, Microsoft Excel was used for 
binning and graph generation (Fig. 6).

2.4  Macros

The image background processing and particle analysis functions applied in each 
experiment are shown in the Online Appendix part, Section (a). These macros (A 
to D) describe the procedure for each case based on the optical setting used with the 
crystal images they were applied on: (A) thiamine hydrochloride (Figs. 3, 4), (B) 
lysozyme (Fig. 5), (C) polydisperse particles, l-glutamic acid, and taurine (Fig. 7), 
and (D) taurine (Fig. 9).

3  Results and Discussion

3.1  In‑Line Bright Field Imaging of Semi‑opaque Particles

Thiamine hydrochloride crystals were observed at moderate concentrations in a low-
light setting. The particles are semi-opaque in this opto-illumination setup (Fig. 1), 
with a strong image noise (Fig. A.1). The general strategy succeeded by following 
the sequence: an adaptive background subtraction (rolling ball, light background, 
color separation), a CLAHE contrast algorithm, smoothing, Gaussian blur smooth-
ing, contrast enhancement, 8 bit conversion, specified thresholding (according to the 
brightness/contrast levels, and pixel intensities), and general binary/outlier removal/
filling holes tasks. This was found to be more adequate for particle extraction and 
analysis compared to applying a threshold directly (Fig.  3 and Fig. A.2), to over-
come the image to image variations in noise, shadows, intensities, and the presence 
of microcrystals or large obstructions (e.g., bubbles) (Fig. 4).

3.2  In‑Line Bright Field Imaging of Transparent Crystals

Crystals are optically active due to their inherent properties and the illumination 
and optical imaging setup. They may appear transparent with their inner parts dis-
playing similar intensities and color to those of the background (Fig. 5b) during 
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growth, as observed with benzoic acid [27]. For binary signal recovery in situa-
tions like these, a double background correction approach was found to be useful 
for transparent lysozyme crystals (Fig. 5c) by employing the adaptive rolling ball 
correction, but also a time-zero (blank image) background subtraction. This was 
compared against the situation whereby this double subtraction approach was not 
incorporated (Fig. 5). Therefore, the general procedure was to carry out a rolling 
ball correction of the image of interest (image 1), then, using the time-zero blank 
image (also rolling ball pre-corrected) (image  0), both images (0 and 1) were 
subtracted from each other using a ‘difference create’ calculation. The resulting 
image is then converted into 32-bit format, thresholded with specific parameters 

Fig. 5  Double background correction of static images of transparent crystals. Lysozyme crystals were 
grown by vapor diffusion. a The background at time zero (blank image), a′: the image in ‘a’ following 
correction with the rolling ball filter, b the crystal image (raw), b′ the image in ‘b’ after correction with 
the rolling ball filter, c thresholded and binary image of the a′ and b′ “Difference” calculation, d the non-
optimized final result if the second background correction operation (with the time-zero background) was 
not performed
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and transformed into binary, before applying the usual steps of outlier correction, 
filling holes, smoothing, and basic watershed.

This processing approach was useful for tracking size-shape changes over 800 
images (Fig. 6). During the initial stages (first 150 images), crystals grew rapidly 
while their positions were slowly changing (movement) before reasonably settling 
in the fixed optical field of view. Here, the particle analysis procedure excludes 
particles touching the image borders. Larger crystals were changing slightly in 
positions during imaging and subsequently became wholly captured within the 
image borders. Microcrystals decreased in counts, therefore influencing on the 
overall size average (jump of 3–4 μm) and counts (drop of 14%) (Fig. 6, top). Fur-
thermore, due to the resolution requirement and optical parameters in this experi-
ment, operating at a narrow focal plane range of < 20  μm causes certain parti-
cles to be out-of-focus. and thus strong vibrations or changes of the focal plane 
within the static drop may alter the processing outcome for the image recorded 
at that time (e.g., small peaks in images 214 and 345). Overall, rapid changes in 
the observed physical characteristics were most significant during the first 100 
images (Fig. 6, bottom), with circularity decreasing, and shapes becoming more 
defined. The average size also increased until frame #215, with the total count 
increasing gradually after frame #460 with some influence on the size average. 
Therefore, this image processing has advantages to track the size at a micrometer 
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Fig. 6  Size-shape tracking of lysozyme crystals by image analysis. Average per image for all particles is 
shown over 800 + images. Top: average size (feret) (1 A.U. = 0.38 μm) and total counts per image. Bot-
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resolution, and not only shape. Nevertheless, general challenges of the imaging 
and processing approach employed in this paper are listed in Table 2.

3.3  In Situ Relief Contrast Imaging with a Gradient

A stronger detection of particle characteristics is desired in advanced applications 
aiming at texture studies or for the enhancement of weakly visible features. This 
may be possible via relief contrast methods including the classic DIC or more recent 
ones such as PlasDIC (Polarization optical differential interference contrast, or Plas-
tic DIC) [37]. In the latter, components in the optical assembly may be reduced 
compared to those in DIC, while providing improved imaging flexibility and a cer-
tain compatibility with anisotropic materials [38]. However, illumination recovery is 
not as strong as in the bright field mode. In low noise images the user may be able to 
detect the natural difference between (or within) the object, and its environment in 
terms of the refractive index. In DIC/PlasDIC, the optical settings, including those 
of the main prism (and its lateral translation), may result in a gradient in the cap-
tured image (Figs. 2 and 7). In our setup, this was significant when a strong contrast 
was required to enhance the observation of thin/transparent particles (Fig.  9) (via 
illumination and/or prism adjustments). Equally the gradient effect was especially 

Fig. 7  Imaging particles in  situ using a video microscopy probe equipped with a relief contrast imag-
ing mode. The gradient is caused by the prism properties which are beneficial in certain applications to 
visualize a stronger contrast/3D-like appearance particularly for imaging small or thin features. a Particle 
size standards (15–150 μm), b l-Glutamic acid crystals, c taurine crystals. Both raw (top) and processed 
(bottom, binary) images are presented (rotated here 90°)
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significant during in situ imaging mode (Fig. 7). Color information also appeared to 
be affected and contained signals that are important to recover successfully.

To correct the background in this case, the sliding paraboloid (based on the roll-
ing ball) method was employed. In particular, it has permitted another “color separa-
tion” option (refer to Sect. 1.3 for definition). For this application and assuming that 
the background is ‘light’ (bright mode) this approach was sufficient to process the 
images. The macro of the in situ image processing first and foremost started with a 
general, classic contrast enhancement based on a specified saturation level, with his-
togram equalization [39]. Combined with the relief contrast imaging approach, this 
proves the importance of appropriate contrast levels. Next, the background was sub-
tracted using the sliding paraboloid method (as in Fig. 2b), in light mode, with the 
color separation option. The image was then converted to binary, after which general 
operations were applied such as outlier removal, dilation and filling holes. This pro-
cedure permitted to obtain a balance between signal recovery and noise reduction. 
Yet, it was more favorable with the colored, contrast enhanced images (although 
these take longer to process than greyscale images), than with images converted to 
32 bit greyscale. Therefore, raw RGB images were necessary, to maintain the infor-
mation associated with object completeness contained in color channels.

The images obtained in relief contrast mode contained a gradient (Figs.  7 and 
9). In one side the taint was dark, which made the noise streaks more prominent, 
particularly at increasing crystal concentrations. This led to difficulties in extracting 
complete information. Nevertheless, examples shown here demonstrated that it is 
possible to extract signals into binary (Fig. 7), while the shape information is main-
tained. This supports the shape tracking in many applications, such as downstream 
processing optimization. However, the concentration challenge not only impacts on 
imaging (Table 2), but often on equipment, leading in some cases to the formation 
of a crust on the body of the probe. Yet, this happened more at the surface of the 
solution than inside the imaging gap, and during strong decrease from high tempera-
tures (Fig. 8).

3.4  In‑Line Relief Contrast Imaging at a Strong Prism Setting

Static drops containing transparent crystals in a single plane were used. In this 
experiment, it is possible to increase the relief contrast intensity via adjustment 
of the prism’s lateral translation on top of the sample. The corresponding images 
exhibit a strongly visible light and contrast gradient effect. In some instances, the 
visualization with a strong contrast may permit the early detection of shape changes 
and very thin and small particles.

Taurine crystals were imaged and a macro of a double step ‘light + dark’ signal 
recovery was applied for binary extraction of signals for particle analysis purposes 
(Online Appendix, Algorithm D). A graphical representation of these steps is shown 
in Fig. 9. The raw image (left) was duplicated and then each copy was processed 
separately (as ‘light’ or ‘dark’). Binary information was recovered (in red, middle) 
for each light or dark part and both outputs were then merged into one final image 
(right).
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In this experiment, each copy was converted to 32 bit prior to full processing. 
This procedure was successful for these images which contained low noise, thin-
ner sample, and from a static drop. One copy had the background subtracted with 
the rolling ball, light mode, while the second copy had the correction with the roll-
ing ball, dark mode. Thresholding for each copy was then carried out with spe-
cific threshold values (as indicated in the algorithm), optimized based on the pixel 
intensity thresholds, and which work for the entire dataset. Both processed copies 

Fig. 8  Visible incrustation on an immersible probe during crystallization. The experiment included grad-
ual decrease of temperature during which there was continuous stirring in an open container and a nor-
mally occurring evaporation. A ‘crust’ due to the dissolved chemical formed on the stainless steel body

Fig. 9  Extracting transparent crystal signals from images with a strong gradient and light variation. Orig-
inal image (left) is duplicated and each copy is treated separately with an adaptive background correction 
algorithm based on light (bright) or dark information, and then thresholded (middle). The two resulting 
images are then merged by adding them together (right). The cyan and red colors (right) are to show the 
two groups of signals recovered in the previous step (Color figure online)
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were then converted to binary, merged together through the “Add” operation, and 
saved. Particle analysis and statistics were then carried out following general opera-
tions like smoothing, filling holes, removing outliers, dilation, etc. As previously 
explained, in most setups, including this one, background subtraction of time-zero 
image was not applied, or not beneficial. It is not uncommon to rely on the blank 
background [21, 40], but it is not ideal in automated applications as the image back-
grounds during the reaction differ from the time-zero background (particularly with 
in situ imaging and in the presence of an increasing particle concentration), due to 
light intensity changes, random particle positions, inhomogeneity and refractions, 
obstructions of light, etc.

4  Conclusion

An image processing workflow designated for a specific application does not ran-
domly apply to another one. Such a workflow may also not be applicable through-
out the same, entire dataset for all images. However, the background correction 
approach employed here was successful and time-efficient for real-time implemen-
tation (e.g., 10–30  s per image, with the possibility for multithreading images in 
parallel). It was possible to integrate and customize it in several procedures for dif-
ferent datasets. Example datasets contained varying levels of noise or distributions 
of pixels on different background types. These backgrounds also displayed varying 
gradients and intensities of brightness and colors, and with several particle trans-
parency levels. Therefore, challenges such as noise and shadows, while maintaining 
the signals of microparticles were overcome. Examples presented were for (a) dark 
images, (b) images of transparent crystals, (c) in situ images, and (d) images of thin/
transparent crystals in the presence of a strong contrast gradient.

Size-shape data descriptors were generated and their evolution between images 
was tracked. An additional advantage over 1D/spectroscopic/laser methods is that 
the reliability can be further verified by manually checking the raw images by direct 
observation. These descriptors do not only concern width and length (aspect ratio), 
as over 65% of APIs may have a median aspect ratio of 0.6–0.8 [41], but also further 
geometrical characteristics which are discussed including circularity and solidity (in 
2D). These data descriptors will be important for the advanced modelling, change 
tracking, and polymorph research. Finally the work is likely to support research 
related to co-crystallization and/or intensified downstream processing to improve 
crystal characteristics with impact on efficacy, quality, safety, dissolution and bio-
availability of a product [42–44].

The steps presented in this article may be also employed in the future with object 
classifications, decision nodes, and clustering techniques, and implemented into a 
large neural network [45–47], to minimize supervision and improve prediction. The 
major challenge to overcome remains particle segmentation. This requires advanced 
image understanding, recognition and continuous training. Yet, it may be case-spe-
cific when lacking the qualitative and predictive human’s brain capacities necessary 
to solve a Captcha as a previously mentioned example.
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