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neural network in Credit Card Fraud Detection
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Luca Longo1[000−0002−2718−5426]

Artificial Intelligence and Cognitive Load Research Lab,
School of Computer Science,

Technological University Dublin,
Dublin, Republic of Ireland

bujar.raufi,luca.longo@tudublin.ie

Abstract. Financial institutions heavily rely on advanced Machine Learn-
ing algorithms to screen transactions. However, they face increasing pres-
sure from regulators and the public to ensure AI accountability and trans-
parency, particularly in credit card fraud detection. While ML technol-
ogy has effectively detected fraudulent activity, the opacity of Artificial
Neural Networks (ANN) can make it challenging to explain decisions.
This has prompted a recent push for more explainable fraud prevention
tools. Although vendors claim to improve detection rates, integrating
explanation data is still early. Data scientists recognize the potential of
Explainable AI (XAI) techniques in fraud prevention, but comparative
research on their effectiveness is lacking. This paper aims to advance
the comparative research on credit card fraud detection by statistically
evaluating established XAI methods. The goal is to explain and validate
the fraud detection black-box machine learning model, where the base-
line model used for explanation is an ANN trained with a large dataset
of 25,128 instances. Four explainability methods (SHAP, LIME, AN-
CHORS, and DiCE) are utilized, and the same test set is used to gener-
ate an explanation across all four methods. Analysis through the Fried-
man test indicates a statistical significance of the SHAP, ANCHORS,
and DiCE results, validated with interpretability and reliability aspects
of explanations such as identity, stability, separability, similarity, and
computational complexity. The results indicated that SHAP, LIME, and
ANCHORS methods exhibit better model interpretability regarding sta-
bility, separability, and similarity.

Keywords: Explainable Artificial Intelligence · Credit Card Fraud De-
tection · Interpretability · methods comparison · SHapley Additive ex-
Planations (SHAP) · Local Interpretable Model-agnostic Explanation ·
ANCHORS · Diverse Counterfactual Explanations
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1 Introduction

Credit card fraud costs the financial services industry billions of Euros in losses
each year [30] [3]. The need for ever more sophisticated Machine Learning ap-
proaches to tackle this problem has been well established in the academic commu-
nity [11], [38]. Research outlined in [2] and [8] is an example of work in this field
to improve fraud detection rates through neural network algorithms. However,
many researchers highlight the parallel challenge that these ‘black box’ models
need to be held ‘accountable’ for the individual fraud classifications that they
make [41]. This problem is also identified in a recent manifesto on eXplaibable
Artificial Intelligence [24], whereby AI-based solutions are used at scale to de-
tect fraud, diagnose investment portfolios for different optimization purposes and
predict credit risk [26]. The need for a more trustworthy AI, as well as the trans-
parency of automated decision-making, is gaining momentum as it becomes part
of European legal demands [20], [10]. The notion of ‘trust’ is not new, as many
computational trust and reputation models exist in the literature [13]. However,
trust is an ill-defined concept and assessing it objectively in current AI-based
technologies is not trivial [16]. Fortunately, eXplainable Artificial Intelligence, an
emerging interdisciplinary field of research, is focused on developing methods for
understanding opaque AI-based models developed within the larger field of Ar-
tificial Intelligence for diverse real-world applications. In turn, the development
of such methods also helps develop AI-based technologies that are assumed to
be more trustworthy, with practical and ethical benefits across various domains.
Producing an objective assessment of state-of-the-art ML explainers applied to
credit card fraud detection is essential [33]. This current research intends to
compare various XAI techniques and look for insights into each one’s relative
strengths in the context of fraud detection. The experiment focuses on apply-
ing XAI methods in a commercial dataset containing credit card transactions,
labelled into two classes indicating regular and fraudulent activities.

In detail, this research focuses on the explainability of machine learning-
driven software used within the financial services industry and whether differ-
ent XAI methods can be objectively rated to explain a given credit card fraud
classification behind artificial neural network (ANN) models. To further narrow
the field of interest, the research utilises a series of metrics to rate the perfor-
mance of four state-of-the-art XAI methods: SHapley Additive exPlanations
(SHAP), Local Interpretable Model-agnostic Explanations, ANCHORS, and
Diverse Counterfactual Explanations (DiCE). These methods are explicitly ap-
plied to the classification of individual credit card transactions. The scope of
experiments is on explanations for individual (‘local’) transactions and only con-
siders interpretability techniques that are agnostic about the type of the detec-
tion model. The research addresses the following research question: ‘To what
extent can some of the explanation techniques provide better explanations on the
classification of credit card fraud transactions by a ‘black box’ Artificial Neural
Network (ANN) Machine Learning Model?’
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The remainder of this research manuscript is organized as follows: section 2
outlines the related work on the model explainability research in the context of
financial fraud detection, section 3 provides the experiment design that tackles
the research question; section 4 elaborates the research results and finding and
5 concludes the paper together with future work.

2 Related Work

The use of Machine Learning (ML) models in detecting credit card fraud has
evolved significantly, focusing on increasingly sophisticated neural network ar-
chitectures [38] [7]. However, there are still challenges that need to be addressed,
particularly when it comes to measuring the effectiveness of explanations pro-
vided by neural network models [5]. For example, better ways are needed to assess
model outputs and account for their computational efficiency at runtime [4]. In
terms of measuring the effectiveness of explanations in interpretability of ML
models, particularly neural networks, which are often regarded as “black boxes"
due to the difficulty in understanding their inferential process, represents a chal-
lenge [35] [15]. This challenge of interpretability is echoed in various studies
across XAI community, underscoring the lack of a definitive approach to es-
tablishing trustworthiness in eXplainable Artificial Intelligence (XAI) systems
within the domain of credit card fraud detection [14], [19], [39].

Despite efforts to develop universal frameworks for interpreting Machine
Learning (ML) models and their predictions [25], there remains a notable absence
of consensus on what constitutes a satisfactory explanation for a prediction. This
gap is further emphasized by the absence of a standard definition for explainable
AI and explainability [1, 43]. Similarly, there is an evident lack of consensus in
the research community regarding the nature of explanations and the essential
properties required to make them understandable to end-users [42]. Evaluating
the usefulness of explanations through direct human assessment is valuable, but
it may not always be available and can come at a high cost [21]. It is also de-
sirable for humans taking part in XAI-based explanations to have some domain
knowledge. However, fraud detection experiments for explainability showed that
this can still be subject to user bias [22]. Research into explanations for ML
fraud classification often follows a more subjective survey style of experimenta-
tion involving the augmentation of human-based processes with model explainer
outputs. Occasionally, human bias can adversely impact the reliability of the in-
terpretation of the ML-generated model explanations [23]. In line with this, the
comparative experiment proposed in this research study will focus on generating
model explanations without direct human involvement to avoid bias and provide
more programmatic experiments with quantifiable metrics[12].

Much of the research on automated model explanation can be seen in anomaly
detection frameworks for explainability [31] and XAI applied to time-series, both
explained with the SHAP and LIME explainers [37]. Furthermore, a framework
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using local explanations generated with SHAP, LIME, and Counterfactual tech-
niques can be seen in [27] and [18]. A significant body of research on XAI ap-
proaches is witnessed in using Deep Learning (DL) techniques such as Deep
SHAP [29], [40], LIME for Deep Neural Network (DNN) experiments [34], and
the use of counterfactuals in CNN model explainers [45].

The SHapley Additive exPlanations (SHAP) framework is a method that
helps in interpreting predictions of data-driven models [25]. It is derived from
cooperative game theory, based on Shapley values and is widely used to un-
derstand how input features relate to a model’s prediction. Shapley values are
represented as:

ϕs
i =

1

Π(F)

∑
π∈Π(F)

[υ(Pπ
i ∪ {i})− υ(Pπ

i )] (1)

where, the expression inside the sum represents the ith features marginal contri-
bution within permutation π. According to the equation, the Shapley value for
a feature is the average marginal contribution of that feature calculated across
all possible permutations of the feature set. It provides globally consistent ex-
planations and handles complex interactions well due to its strong theoretical
grounding. However, it can be computationally complex, especially for large and
higher dimensional datasets.

Local Interpretable Model-agnostic Explanations (LIME) is a widely used
method for interpreting the inferential process learnt by black box models [35].
The explanation of an instance d, which is subject to interpretation, can be
represented as

e(d) = argming∈Gξ(f, g, πd) ·Ω(g) (2)

where d might be a new instance, given that it can be adequately represented
within the framework of the training data utilized by the black box model.
The definition of d originates from the maximization of a fidelity term affili-
ated to loss, denoted as ξ(f, g, πd), along with a complexity term denoted as
Ω(g). Here, f denotes the black box model under scrutiny, while g denotes the
explanatory model. G represents the comprehensive hypothesis space of a spe-
cific interpretable model. Upon minimization, the explanation must handle two
crucial trade-off terms: ξ(f, g, πd) tends to achieve an optimal alignment of g
with the model f , whilst a lower loss tends to maintain higher fidelity within
the local context. The attainment of optimal alignment depends on proximity
measure denoted as πd(z) within the vicinity of d. The main idea behind LIME
is to identify the input features that have the highest impact on predicting a
specific target class of interest within a trained model. LIME is known for its
simplicity and speed, which make it an excellent option for obtaining quick in-
sights. However, it may not accurately capture complex relationships, especially
in high-dimensional spaces. Another class of explainers is based on rules, con-
sidered more interpretable than numerical outputs [44].
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ANCHORS is a model-agnostic explanation approach that provides inter-
pretable rules for the model’s predictions. It offers local and global explanations,
introduced by Ribeiro [36]. Given the black-box model f , an instance d, a dis-
tribution D together with a desired precision τ , we can define a precision of an
anchor ℵ as a set of feature predicates d exhorting prec(ℵ) ≥ τ given as:

prec(ℵ) = ED(z|ℵ)[1f(d)=f(z)] (3)

The strategy is based on if-then rules called ‘anchors’, where feature conditions
act as high-precision explainers. These ‘anchors’ are created using reinforcement
learning methods. Although ANCHORS can generate easily understandable and
precise rules, they may not provide a finer understanding of interactions avail-
able through other methods.

Diverse Counterfactual Explanations (DICE) is a powerful XAI method that
effectively generates counterfactual explanations to provide insights into the de-
cisions made by a machine learning model [28]. DICE offers actionable insights
by identifying the minimum changes required to modify a model’s prediction for
a specific instance. One of the methods for minimising the changes or losses was
introduced in [46] and is given as:

L(x, x′, y, y′, λ) = λ· (f̂(x′)− y′)2 + d(x, x′) (4)

The first term in the equation represents the quadratic distance between the
model prediction for the counterfactual x′ and the desired outcome y′, which
must be defined beforehand. The second term is the distance d between the
instance x to be explained and the counterfactual x′. The loss function mea-
sures the difference between the forecasted outcome of the counterfactual and
the predetermined outcome and the difference between the counterfactual and
the instance of interest. This distance metric, denoted as d, is quantified by a
Manhattan distance weighted by the inverse median absolute deviation (MAD)
of individual features, given as:

d(x, x′) =

p∑
j=1

|xj − x′
j |

MADj
(5)

The method helps to address the common challenge of opaque decision-making in
complex models. Still, it may struggle with high-dimensional data and complex
models, limiting the diversity of counterfactuals generated. Much of the research
has been invested in providing a model explanation by comparing SHAP and
LIME [47, 17]. It is worth noting that a direct comparison of SHAP, LIME AN-
CHORS and DICE to explain ‘black-box’ ANN models in the context of credit
card fraud detection models is generally lacking. Consequently, this research
identifies a significant void in contemporary research regarding establishing a
comprehensive framework for explaining credit card fraud classifications made
by ‘black-box’ models [43]. In response to this gap, the paper proposes to build
upon existing objective research by evaluating the performance of four estab-
lished interpretability methods in scoring predictions.
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3 Design and methodology

The research aim is to compare four interpretability frameworks (LIME, SHAP,
Anchors, and DiCE), using predefined, custom-built comparison metrics, against
the output of a Neural Network (NNet) credit card fraud detection model. The
goal is to establish if one XAI method consistently rank higher than the other
methods. The design pipeline includes a phase for preparing and pre-processing
the dataset, hyperparameters tuning of a Dense Network, model building via
training, model evaluation, and model explanation, as depicted in figure 1.

Fig. 1: Overview of the design of a comparative experiment of LIME, SHAP,
Anchors, and DiCE

3.1 Dataset and Pre-processing

The dataset utilized in this study was provided by a private company and is
associated with a product development cycle between 2014 and 2018. The data
was collected in 2013 from several sources of credit card transactions within the
United States and comprises 25, 128 rows, each representing a credit card pur-
chase. While this dataset was initially utilized for product testing and demon-
stration purposes, the product line it was connected with was terminated in
2019, and permission has been granted to access this dataset. Approximately
15 % of the records in this dataset are fraudulent, which is more balanced than
typical credit card fraud datasets [32]. However, a down-sampling of the non-
fraudulent records is applied to minimise biases, create an even classification
split, and train a fairer Neural Network for predictive purposes. A portion of
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non-fraudulent records is removed to simplify the process and avoid adding new
synthetic data. This is implemented using a randomly down-sampling Python
function. As a result, the remaining dataset has only 7, 000 rows and a 50%/50%
breakdown of fraudulent and non-fraudulent records. The initial dataset com-
prises 380 features, and AzureML’s permutation feature importance is used to
reduce the attribute list to key columns. Permutation Feature Importance as-
sesses the significance of features by quantifying the model’s responsiveness to
random permutations of their values. This methodology assumes that perturb-
ing the values of pivotal features induces a clearer decline in model performance
contrary to their less influential counterparts [9]. The final dataset consists of
7, 000 rows and 64 features. The complete list of final features, their type and
value range is provided in table 5 of the appendix.

3.2 Model building, hyperparameter tuning and training

A feed-forward artificial neural network (ANN) with dense layers is employed
to classify fraudulent transactions. Hyperparameter tuning is used to design an
optimal architecture for training. It uses a random search method across six hy-
perparameters spread across the ANN’s input and hidden layers. Table 1 outlines
such hyperparameters, the search space and the selected value for the architec-
ture. Model training is done up to 100 epochs using the Adam optimization
algorithm with the binary cross-entropy loss function. A typical 80/20 split is
employed for train and testing.

Table 1: Hyperparameter tuning search space and values
Parameter Search Space Selected Value
Input units [32,...,512] 64

Input Dropout [0.0,...,0.5] 0.25
No. hidden layers [1, 3] 2

Hidden units [32,...,512] 512 and 448
Hidden dropout [0.0,...,0.5] 0.25
Learning rate [0.01, 0.001, 0.0001] 0.01

3.3 Model evaluation

In various experiments present in the literature, conducted to detect fraud us-
ing Artificial Neural Networks (ANN), an accuracy score of >= 0.85 and an F1
score of >= 0.85 have been identified as ideal targets [39],[6]. While credit card
fraud datasets are generally imbalanced, with very few instances of fraudulent
behaviour, the dataset used in our experiment differs, as explained in section
3.1. Therefore, the model’s overall accuracy score measures its performance in
predicting fraud and non-fraud outcomes. The F1 score is a metric that com-
bines precision and recall. Precision measures the correctly identified positive
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cases, while recall measures the true positive rate. In credit card fraud detec-
tion, both precision and recall are vital. High precision reduces inconvenience
for customers, while high recall ensures financial security. The F1 score repre-
sents a harmonic man between recall and precision and focuses on a model’s
performance in predicting fraudulent transactions. The ROC curve is another
metric used to evaluate binary classification models, such as fraud classification.
Particular care to model evaluation is also given to errors made by the model
during training, known as loss function. The model loss function is crucial in
preventing the model from overfitting. Overfitting is remedied through a stop
loss mechanism as elaborated in subsection 3.2.

3.4 Model Explanation Metrics

A single predictive model for credit card fraud is built and saved to assess the
explanations from each XAI selected method (SHAP, LIME, ANCHORS and
DICE). However, generating a number of the XAI explanations is a processor-
intensive endeavour, and even attempting to generate both explanations and
metrics on the single 1.4K test data block was found to be impractical and prone
to system timeouts. Thus, the test data is subsequently split into 20 batches for
use in the research experiments to generate a table of numerical outputs against
the following metrics:

1. Identity - A measure of how much identical instances have identical expla-
nations. For every two instances in the testing data, if the distance between
features equals zero, the distance between the explanations should equal
zero. A higher score indicates that the explanations provided align well with
what the model is doing.

2. Stability - Instances belonging to the same class have comparable explana-
tions. K-means clustering is applied to explain each instance in test data.
It measures the number of explanations in both clusters (fraud/non-fraud)
that match the predicted class. A higher stability score implies that the ex-
planations remain consistent across different scenarios, which is crucial for
building trust in the developed model.

3. Separability - Dissimilar instances must have dissimilar explanations. Take a
subset of test data and determine for each instance the number of duplicate
explanations in the entire subset, if any. A higher separability score indicates
that the explanations effectively highlight the features contributing to the
distinction between different classes, making the model’s inferential process
more transparent.

4. Similarity - This metric captures the assumption that the more similar
the instances to be explained, the closer their explanation should be (and
vice versa). It clusters test data instances into Fraud/non-Fraud clusters. It
also normalises explanations and calculates Euclidean distances between in-
stances in both clusters. Smaller mean pairwise distance equalizes to a better
explainability metric.
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5. Computational time efficiency - Is the average time taken, in seconds, by the
interpretability framework to output a set of explanations. The Kubeflow en-
vironment is expected to reduce unexpected factors affecting computational
efficiency.

A metric such as ‘Computational Efficiency ’ could be considered unrelated to
a measure of explainability. Still, this research contends that it is important to
consider the feasibility/practicality of XAI methods. Computational time can be
a bottleneck in generating explanations and may impact the commercial viability
of an explainability process in a credit card fraud detection application.

3.5 Synthesis of experimental design

In synthesis, this research is built on the following eight steps to compile a table
of metrics for statistically evaluating the selected XAI methods:

1. Train, test, and evaluate a credit card fraud detection model built with ANN.
2. Generate explanation(s) for each method based on a single instance, or a

minimal subset, taken from the test data. Use this output to display the ex-
planation and validate the explainer visually. An XAI method must demon-
strate that it can generate explanations on the credit card dataset used in
this research.

3. Refine the credit card fraud model-building process if that improves the
quality of the explanations without compromising on model performance.
For example, the DiCE XAI method will require a feature set with sufficient
continuous attributes to allow a counterfactual search space to generate ex-
planations.

4. Break out the test data into equal blocks of feature instances with associated
fraud labels and generate explanations for each block’s instances for each
XAI method. Working with blocks of test data is necessary because some of
the XAI methods are computationally very heavy, and processing the entire
test dataset all at once was impractical.

5. Submit each XAI output data block to a separate Python function to gen-
erate a value from each experiment metric (Identity, Stability, Separability,
Similarity, and Computation Efficiency).

6. Take the metric scores of each block of data for each XAI technique and use
these values as input for a statistical significance comparison.

7. Conduct a comparative statistical analysis of the XAI metric score for each
XAI method to determine if any significant difference in performance exists.

Concerning the model explainability evaluation using the metrics elaborated
on 3.4, the following (HA) hypothesis is defined:

IF a dense Neural Network, optimally tuned, is trained on a balanced
credit card transaction dataset for fraud detection. SHAP, LIME, AN-
CHORS, and DICE XAI methods are applied to the individual model
results for the Test Set THEN there exists at least one of such XAI
methods that rank significantly higher across a set of explanation met-
rics (identity, stability, separability, computational efficiency).
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To test the hypothesis, a Friedman test compares the four explainability
methods (SHAP, LIME, ANCHORS, and DICE) against five evaluation met-
rics (identity, stability, separability, computational efficiency). Normalization of
data is not a prerequisite for the Friedman test, as this non-parametric method
is designed to handle data that may not adhere to a normal distribution by
comparing ranks rather than actual values. However, it is helpful to perform
this transformation to improve the presentation of a graphical analysis.

In the tabular representation of this Friedman Test, as seen in Table 4, the
‘Statistic’ column refers to the Friedman statistic, quantifying the differences
among group ranks across multiple related samples or matched groups. The ’p-
value’ column represents the probability that the observed differences among the
ranks could have occurred by chance under the null hypothesis that all groups
have the same distribution.

4 Results and discussion

This section presents the main findings of the comparative experiments designed
in section 3

4.1 Data Preprocessing findings

The credit card transaction dataset consisted of two labels in the target class:
non-fraud (0) and fraud (1). Table 2 illustrates the data preparation and pre-
processing activities done against the dataset regarding instances and features,
removal of redundant features, outliers and the number of positive and negative
train and test examples.

Table 2: Pre-processing activities executed on the dataset
Activity Value
Initial instances 25128
Initial Features 380
Rows Removed (Deleted rows with high volumes of missing data elements) 297
Outliers removed (Deleted exceptionally high trxn amounts) 1240
Number of Features (After highly correlated/redundant features removal) 64
Number of continuous features 59
Number of categorical features 5
Number of train instances 5256
Number of positive train instances 2635
Number of negative train instances 2621
Number of test instances 1314
Number of positive test instances 650
Number of negative test instances 664
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4.2 Evaluating the Predictive Fraud Model

This predictive credit card fraud model trained in this research experiment was
required to demonstrate strong performance across the selected evaluation met-
rics (Accuracy, ROC-AUC, Precision, Recall, F1-score). Only if this is confirmed
would a meaningful evaluation of the selected XAI methods make sense. After
a series of iterations, including refinements required to improve the quality of
the XAI experiment results, a credit card predictive model was created with
the evaluation metrics generated on the Test Set as shown in the table figure 3
below.

Table 3: Model Performance Metrics
Accuracy 0.86
ROC AUC Score 0.93
Precision (Class 0) 0.92
Recall (Class 0) 0.79
F1-Score (Class 0) 0.85
Precision (Class 1) 0.81
Recall (Class 1) 0.93
F1-Score (Class 1) 0.87

4.3 Model Explanations and Comparisons

Figure 2 illustrates the model distributions of explainability values (SHAP,
LIME, ANCHORS and DiCE) resulting from the test set used to derive the
model explainability. In the Box Plot; the x-axis outlines the four XAI meth-
ods (SHAP, LIME, ANCHORS, and DiCE), the y-axis the score and the box
shows the interquartile range (IQR), indicating the middle 50% of scores for
each method. We used the same ANN model as a baseline for SHAP, LIME,

Fig. 2: Box Plot / Density Analysis of Distributions across XAI methods.
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ANCHORS, and DiCE methods. This allowed for statistical comparisons be-
tween the different explainability methods and multiple datasets generated from
the same baseline test set. The advantage of using the Friedman test is that it
can handle these comparisons efficiently. Table 4 outlines that statistical signifi-
cance test across different evaluation metrics against the adopted XAI methods
(SHAP, LIME, ANCHORS and DiCE).

Table 4: Friedman Test of Significance between XAI methods and Explainabil-
ity metrics

Metric Statistic P-Value Significant Difference
Identity 47.76 2.40e-10 Yes
Stability 1.56 0.668493 No

Separability 55.4 5.64e-12 Yes
Similarity 60.00 5.88e-13 Yes

Computational Efficiency 60.00 5.88e-13 Yes

Based on the statistical significance analysis with the Friedman test, we can
see that except for the Stability metrics, all others are statistically significant
against the adopted significance level of α < 0.005. By further comparing the
XAI methods (SHAP, LIME, ANCHORS and DiCE) with statistically signif-
icant metrics (Identity, Separability, Similarity and Computing Efficiency) we
can see the best XAI methods. The results indicated that, in terms of Iden-
tity, SHAP provided the highest identity (41, 30), meaning that it reflected the
most identically by capturing the important factors contributing to the model’s
decision-making process, followed by DiCE (12, 84) and ANCHORS(9, 86). Sim-
ilarly, in Separability metrics, SHAP (97, 38) still showed the greatest capability
to distinguish between different classes or categories in the data, followed by
DiCE (47, 00) and ANCHORS (21, 56). Very tight results are witnessed in the
Stability metrics where the consistency of explanations produced by an XAI
method when perturbations are introduced to the input data provided to the
model yielded approximately similar performance between 58, 00 and 56, 00 for
SHAP and DiCE and 49, 00 for ANCHORS respectively. Considering the Sim-
ilarity metrics, we witness that explanations generated by the SHAP method
resemble the most to the decision-making process of the ANN model (0.28), fol-
lowed by ANCHOR (1, 62) and DiCE (15, 99). Regarding computing efficiency,
DiCE demonstrated better performance than ANCHOR and SHAP.

In synthesis, the key observations from metric scores across the XAI methods
can be summarized around the following points:

– The Stability score is the only metric with consistent values across the se-
lected XAI Methods. On average, 50% of the explanation clusters match
the grouping of fraud and non-fraud instances. Variations are more clear-cut
across the other metrics.
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(a) Identity, Stability & Separability

(b) Similarity (c) Computing Efficiency

Fig. 3: Comparison of XAI methods against XAI evaluation metrics (The ∗
indicate significant XAI method results)

.

– Identity scores poorly for all XAI methods except SHAP. This was arguably
the most straightforward metric: similar instances should have similar ex-
planations. However, the SHAP technique provides a score for all instance
values, while the other methods generate explainers that only cover some
instance attributes. This does not invalidate the use of this metric, but it is
a key consideration when assessing this research.

– ANCHORS is one method that produces relatively sparse output. The classi-
fication results might classify only one feature as an ‘anchor’. Thus, accord-
ing to the Separability metric, such an explainer scored relatively poorly,
distinguishing itself from the others.

– The magnitude of counterfactual explanations for different instances can
vary significantly. Hence, the DiCE method produces outputs where the
Euclidean distance between separate explanations can be significant. This
characteristic explains the higher DiCE score for Similarity.

– The inclusion of the Computation Efficiency metric may initially appear dis-
cordant within the scope of this study, as it pertains more to overall system
performance rather than directly assessing the quality of the explanatory
output. However, the speed (or lack thereof) with which an explainer can
process this credit card dataset is deemed an important measure for com-
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parison, as it is connected to actionable XAI in real-world fields. DiCE and
SHAP generation time is considerably quicker than ANCHORS. Even with
parallel/scaleable batch processing options, using ANCHORS for explana-
tions in a commercial high-volume fraud detection environment may not be
viable.

5 Conclusion

This research endeavoured to establish a quantitative framework for assessing
various Explainable Artificial Intelligence (XAI) methods in the context of credit
card fraud detection. The study utilized a neural network model trained on a
dataset of credit card transactions, evaluating the efficacy of XAI techniques like
SHAP, LIME, ANCHORS, and DiCE against multiple custom metrics. While
the results did not conclusively favour any single technique, they highlighted
the nuanced performance of these methods across different metrics, demonstrat-
ing the complexity of applying XAI in practical scenarios. The XAI techniques
scored differently on four of the five custom metrics. An observer could declare
one technique to be the best, but only if a weighting was applied to one or more
of the metric scores.

The findings revealed varied performances across the XAI methods, with
SHAP generally excelling in identity and similarity metrics. At the same time,
ANCHORS struggled with computational efficiency, significantly impacting its
practical applicability in high-volume environments. The experiments under-
scored the importance of choosing appropriate metrics for evaluating XAI tech-
niques and the challenges of applying these methods across different domains
and data characteristics.

This work contributes to the broader understanding of XAI in financial ser-
vices by providing a structured evaluation of multiple explanation techniques. It
underlines the potential of these methods to enhance transparency in AI-driven
decisions, which is crucial for sectors like financial crime detection. The study’s
methodology and findings offer a foundation for future research to build upon,
particularly in exploring the adaptability of XAI methods across various appli-
cations.

Future work should expand the range of XAI techniques and metrics eval-
uated, exploring their applicability in broader datasets and different contexts.
Integrating Generative AI to provide narrative explanations alongside traditional
XAI outputs could further enhance the interpretability of AI decisions, adapting
to the evolving demands of AI transparency in industry practices. This approach
would refine the utility of XAI and push the boundaries of what these technolo-
gies can achieve in practical, high-stakes environments.

Disclosure of Interests. The authors have no competing interests to declare relevant
to this article’s content.
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Appendix

Table 5: Independent variables in the dataset used in the experiment
Feature Type Value Range
OnlinePOSCount.cnt.day.present continuous -81 ... 29
EMVTransactionsCount.cnt.day.present continuous 0 ... 12
NonEMVTransactionsCount.cnt.day.present continuous 0 ... 81
MerchantCategory continuous 742 ... 9402
POS_Count.cnt.day.present continuous 0 ... 29
PinIndicator categorical 0 ... 1
DomesticAuthCount.cnt.hour1 continuous 0 ... 18
DomesticAuthCount.cnt.hour3 continuous 0 ... 24
DomesticAuthCount.cnt.hour4 continuous 0 ... 28
DomesticAuthCount.cnt.hour10 continuous 0 ... 28
DomesticAuthCount.cnt.hour15 continuous 0 ... 29
DomesticAuthCounter.cnt.day.present continuous 0 ... 29
DomesticAuthCount.cnt.hour25 continuous 0 ... 36
OnlinePOSCountForever.cnt.present continuous -385 ... 199
POSTerminalAttendedAuthCount.cnt.day.present continuous 0 ... 29
CustomerNotPresentAuthCount.cnt.day.present continuous 0 ... 78
DvcVerificationCap continuous 0 ... 8
ECommerceAuthCount.cnt.day.present continuous 0 ... 67
PosTerminalAttended categorical Y, N
TxnChannelCode categorical OnL, POS
CustomerPresentIndicator categorical Y, N
OnlineNewMerchCtryCntDaily.cnt.day.present continuous 0 ... 9
OnlineNewMerchCtryCntHourly.cnt.hour24 continuous 0 ... 9
OnlineNewMerchCtryCntHourly.cnt.hour15 continuous 0 ... 9
OnlineNewMerchCtryCntHourly.cnt.hour10 continuous 0 ... 9
DvcPosEntryMode categorical 0 ... 9
OnlineNewMerchCtryCntHourly.cnt.hour3 continuous 0 ... 9
OnlineNewMerchCtryCntHourly.cnt.hour4 continuous 0 ... 9
OnlineNewMerchCtryCntDaily.cnt.day.total continuous 0 ... 29
NotECommerceAuthCount.cnt.day.present continuous 0 ... 425
NewMerchantCountryCount.cnt.hour15 continuous 0 ... 9
OnlineNewMerchCtryCntHourly.cnt.hour1 continuous 0 ... 425
NewMerchantCountryCount.cnt.hour10 continuous 0 ... 9
NewMerchantCountryCount.cnt.hour24 continuous U ... Y
ECommerceFlag categorical 0 ... 9
NewMerchantCountryCount.cnt.hour4 continuous 0 ... 9
NewMerchantCountryCount.cnt.hour3 continuous 0 ... 903
AuthResponse categorical 0 ... 9
NewMerchantCountryCount.cnt.hour1 continuous 0 ... 22885
AmountBase continuous 1 ... 819
CardType categorical 0 ... 20963
POSSum.acc.month.total continuous 0 ... 58468
NotECommerceAuthAmount.acc.day.total continuous 0 ... 63169
NonEMVTransactionsAcc.acc.day.total continuous 0 ... 49670
POSTerminalAttendedAuthAmount.acc.day.total continuous 0 ... 20091
CustomerPresentAuthAmount.acc.day.total continuous 0 ... 11752
EMVTransactionsAcc.acc.day.total continuous 0 ... 63169
CustomerNotPresentAuthAmount.acc.day.total continuous 0 ... 63161
HourlyAuthAmt.acc.hour25 continuous 0 ... 63161
NonEMVTransactionsAcc.acc.day.present continuous 0 ... 22885
NotECommerceAuthAmount.acc.day.present continuous 0 ... 63161
CustomerNotPresentAuthAmount.acc.day.present continuous 0 ... 22885
POSTerminalAttendedAuthAmount.acc.day.present continuous 0 ... 12953
CustomerPresentAuthAmount.acc.day.present continuous 0 ... 13068
HighRiskPOSSum.acc.hour.total continuous 0 ... 10957
EMVTransactionsAcc.acc.day.present continuous 0 ... 1
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