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A deep learning-based object detection framework for 
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profiling images. 
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Dublin, Ireland 
2 Pavement Management Services Ltd. Athenry Co. Galway, Ireland 
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Abstract. Road maintenance and the early detection of road defects rely on      

routine pavement inspections. While advanced 3D laser profiling systems have 

the capability to automatically identify certain types of distress such as cracks 

and ruts, more complex pavement damage, including patches, often require man-

ual identification. To address this limitation, this study proposes an automated 

patch detection system that employs object detection techniques. The results        

demonstrate the ability of object detection models to accurately identify patches 

in laser profiling images, indicating that the proposed approach has the capability 

to significantly enhance automation in visual inspection processes. This has the 

potential for significant cost reduction in inspections, improved safety conditions 

during checks, and acceleration of the current manual inspection processes. 

Keywords: Road surface, visual inspection, Object detection, deep learning. 

1 Introduction 

Transportation and road infrastructure departments routinely conduct inspections on 

pavements to evaluate their surface conditions. Pavement conditions are impacted by 

traffic, weather, and sunlight, resulting in rutting, cracking, and ravelling that can         

ultimately lead to the disintegration of the surface layer. Such deterioration may be 

limited to the surface or indicative of more serious underlying structural issues related 

to the pavement. The maintenance of pavement surfaces necessitates a substantial num-

ber of resources and capital to ensure that optimal maintenance treatment is performed 

at the appropriate time. These inspections support informed decisions regarding pave-

ment maintenance planning, including cost considerations [1]. In addition, the govern-

ment can optimize allocation of limited resources for maintenance and consider long-

term investment strategies [2]. Therefore, it is highly desirable to conduct pavement 

inspections in the most cost-effective manner. 

Pavement assessment tasks involve a range of activities, from identifying pavement 

distresses to complete visual inspection of the pavement surface. To minimize mainte-

nance costs, these tasks must align with the objectives of the schemes and the available 

budget. According to the survey, the UK, councils allocate 75% of funds for  
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Fig. 1: Examples of laser profiling images acquired from asphalt pavement surface. Note: For 

the interpretation, patches are highlighted in the red boxes. 

 

the maintenance of local road conditions and 25% for construction [3]. According to 

another survey, in 2008, around $182 billion was spent on capital improvements and 

maintenance of federal highways in the US [4]. 

 

 

1.1 Visual Inspection 

There are two primary methods for visually inspecting pavements: manual and       

automatic. Visual inspection techniques typically involve three main steps: data           

acquisition, distress identification, and distress assessment. While the first step of data 

acquisition is largely automated using specialized vehicles, distress identification and 

assessment are typically performed manually. Manual inspection involves the                

assessment of pavement surface conditions by trained pavement engineers or certified 

inspectors, either through on-site surveys or by analyzing recorded videos/images. 

However, the manual visual inspection process is time-consuming, subjective, prone to 

errors, and potentially hazardous for inspectors.  

To address these limitations, there is a growing interest in automating the entire          

visual inspection process. This can be achieved using advanced technologies such as 

machine learning, computer vision, and remote sensing [5]. 

 

1.2 Related Work 

Several researchers have proposed the use of machine learning and computer                  

vision-based methods to automate the distress identification step of visual pavement                  

inspection. Implementing these techniques has the potential to significantly enhance 

the accuracy and efficiency of pavement inspections, while reducing the time and cost 

involved in manual inspections.  

Various methods based on deep learning, particularly convolutional neural networks, 

have been suggested for the automatic identification of pavement distress. These     

methods can be broadly categorized into three main groups based on their approach to 

the problem of detecting pavement distress: classification, localization, and 
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segmentation. For instance, Gupta et al. [6] present a pothole detection system using 

thermal images. The authors employed two object detection models i.e., the ResNet34-

single shot multibox detector and the ResNet50-RetinaNet model. The ResNet34-single 

shot multibox detector yielded an average precision of 74.53%, while the ResNet50-

RetinaNet model achieved a precision of 91.15%. Zou et al. [7] proposed a DeepCrack 

segmentation network that utilizes the encoder-decoder architecture to accurately detect 

pavement cracks. Through experimentation, the authors demonstrated that the proposed 

DeepCrack model achieves an F-measure of over 0.87, highlighting its efficacy in    

identifying and segmenting pavement image pixels into cracks and background. 

Despite extensive research on automatic pavement distress detection, most studies 

have focused on potholes and cracks, with less attention given to the detection of      

pavement patches. The detection and localization of patches on pavement surfaces is 

an essential task for pavement management and maintenance. Patches play a dual role 

in the pavement maintenance process, offering both temporary and long-term pavement 

fix solutions and can be made of similar or different materials than the surrounding 

pavement. They serve various purposes, ranging from covering large areas like utility 

patching to addressing specific single-pothole distresses. Given the diverse nature of 

patching, manual intervention by engineers is necessary. They manually label and draw 

bounding boxes around each patch to aid in the detection process. The manual process 

is not only time consuming but also cost-intensive. In addition, modern 3D laser pro-

filing technology, such as the LCMS (Laser Crack Measurement System) [8], and 

Pave3D [9] is now broadly utilized in the pavement inspection process. These systems 

are equipped with 3D laser profilers that capture range and intensity images of the pave-

ment surface and come with a built-in data processing tool that processes the acquired 

data and automatically identifies various types of road cracks [10]. Furthermore, 3D 

laser profiling technology has become a standard technique in pavement inspection 

companies, where these systems are employed. 

 

Advanced pavement inspection systems like Laser Crack Measurement System 

(LCMS) have made significant progress in automatically detecting various types of de-

fects such as cracks [8], rutting [11], raveling [12], which can help in the assessment of 

pavement condition and the planning of maintenance and rehabilitation activities. How-

ever, automatic detection of pavement patches presents a significant challenge due to 

the similarity in color between intact pavement and patched surfaces. As a result, the 

detection process often involves manual involvement, with engineers manually labeling 

or drawing bounding boxes around each patch. Therefore, this paper addresses the prob-

lem of automatic patch detection on laser profiling images. 

2 Methodology 

This paper proposes a methodology for the detection and localization of patches using 

laser profiling images (see Figure 1). Our approach leverages state-of-the-art object     

detection techniques based on deep learning algorithms to achieve the detection of 

patch locations on pavement surfaces. This study aims to address the following research  
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Fig. 2: Proposed pavement patch detection framework. 

question: To what extent can an object detection model accurately detect and localize 

patches on the intact pavement? Figure 2 illustrates the proposed framework of auto-

matic pavement patch detection system. 

 

To address the above research question, we propose a comprehensive framework for 

an automatic pavement patch detection system (refer to Figure 2). Our methodology 

involves a multi-stage process, which includes pre-processing of the 3D laser profiling 

images, training and fine-tuning of the object detection model, and post-processing of 

the detected patches. The pre-processing step involved collecting a dataset of 3D laser 

profiling images that captured the pavement surface. From this dataset, we selected 

positive images only (i.e., images that contain one or more patches). These positive 

images were then manually labeled by an expert by drawing bounding boxes around 

the patches, indicating their locations in the images. We utilize a state-of-the-art object 

detection model based on deep learning algorithms, which have been proven to outper-

form traditional machine learning and images processing techniques [13]. Once the ob-

ject detection model identified and localized the patches in the images, in the post-

processing step the detected coordinates of the bounding boxes were used to calculate 

the area of the patched surface on the intact pavement surface. These calculated areas 

then allowed us to quantify the extent of patching on the normal pavement surface. In 

addition, given that the patch detection models trained on data obtained from a single 

country and specific capture settings, Therefore, in order to evaluate the generalizability 

of the model to road surfaces in different regions with different capture settings, we 

conducted tests on images acquired from the road network in another country (Ireland). 
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2.1 Data Collection & Preparation 

This study employs asphalt pavement images acquired through 3D laser profiling sys-

tem LCMS (Laser Crack Measurement System) mounted on the back of a data collec-

tion van. This system employs high-speed and high-resolution transverse profiling to 

capture images of pavement surface. The LCMS takes a transverse profile every 5mm. 

That means every 5mm, there are 4160 laser readings taken across the width of the 

pavement at 1mm increments. A transverse profile every 5mm gives a good profile of 

the road surface and allows a survey speed of around 90km/h. Each line in the depth 

image represents 5mm of road length, 200 lines represents one meter. The rate of trans-

verse profile collection can be adjusted but 5mm is a good compromise of speed, safety, 

and data collected. The laser profiling system generates range image output, with sam-

ple images shown in Figure 1. Furthermore, each image has been manually labelled by 

an engineer at PMS (Pavement Management Services, Ireland) by drawing bounding 

boxes around the patches in the image. 

 

In this study, 80% of the data was utilized to train the model, while the remaining 20% 

was reserved for evaluating the model's performance. The dataset details are described 

in Table 1. 
Table 1: Details of the complete training and testing sets. 

# Of images Training set Testing set 

1874 1500 374 

 

2.2 Network Architecture 

This study employed two distinct network architectures to obtain comparative results 

utilizing the specified dataset. Specifically, the state-of-the-art object detection models 

Faster RCNN [14] and DETR [15] were selected for training and testing using transfer 

learning technique [16]. The transfer learning technique known as "fine-tuning" was 

employed to adapt a pre-trained Faster RCNN model to our specific object detection 

task. Specifically, we utilized a Faster RCNN model pre-trained on a large-scale da-

taset, such as ImageNet, which had learned general visual features. We then initialized 

our model with these pre-trained weights and further fine-tuned it on our custom dataset 

with annotations for the target objects. By fine-tuning, we allowed the model to adapt 

its learned features to our domain-specific data, enabling it to perform object detection 

more effectively and efficiently for our specific task. Furthermore, the selection of 

Faster RCNN and DETR models was motivated by their prior usage in the domain of 

automatic pavement inspection, including applications such as road marking detection 

[17], pothole detection [18], and other surface distress identification [19]. 

 

2.3 Evaluation Protocol 

To assess the effectiveness of the trained model in detecting and localizing patches, 

its performance was evaluated using the mean Average Precision (mAP) score, specif-

ically for the patch category. Average precision is determined by calculating the area  
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Fig. 3: Precision-recall curve of both models obtained at highest and lowest IoU thresholds. 

 

under the Precision-Recall curve for each category, providing a comprehensive            

understanding of the model's performance across the range of precision and recall      

values. To achieve the mean average precision score, an IoU threshold of 0.5 was         

established. This threshold is a widely accepted evaluation metric employed by the 

PASCAL VOC object detection competition [20]. Furthermore, according to the         

domain expert for the task of patch detection, a higher IoU threshold is not required, as 

the exact placement of the patch relative to the predicted area only needs to be enough 

to say that a patch exists in the intact pavement area [21]. The mean average precision, 

precision and recall can be calculated as follow:  

 

𝑚𝐴𝑃 =  
1

𝑁𝑐𝑙𝑎𝑠𝑠𝑒𝑠
 ∑ 𝐴𝑃𝑖𝑖                                 (1) 

 

Where i is a type of distress and Nclasses is the total number of distress types, which is 1 in our case. 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
   (2) 

 

Where True positives + False positives is the total number of detections generated from the model. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
        (3) 

 

Where True positives + False negatives is the total number of ground truth boxes. 

 

 

2.4 Experimental Results 

The detection performance of the two models is presented in Table 2, while Figure 3 

shows the precision-recall curve obtained at the highest and lowest IoU thresholds. The 
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DETR model outperforms the Faster RCNN model, with a 2% increase in mean average 

precision. 

 

Table 2: Performance of both models on the test set. 

 

Model Backbone mAP0.5 

Faster RCNN ResNet50 0.86 

DETR ResNet50 0.88 

 

The analysis of the precision-recall graphs (see Figure-3) revealed that a higher IoU 

threshold led to a decrease in recall rate. This outcome is because the model only      

identifies patches as true positives if their overlap is greater than or equal to 0.9.                     

Alternatively, using an IoU of 0.5 would result in an increase in recall rate as shown in 

Figure 3 Furthermore, from the precision and recall graphs (Figure 3) we can easily 

find the best possible precision and recall value. For instance, the blue line on the graph 

indicates the results obtained at the 0.5 IoU threshold. This line allows us to easily 

determine where the ideal precision and recall values can be located.  For instance, at a 

recall rate of 0.8, the model's precision will be approximately 0.92. Using this analysis, 

we can identify the best precision and recall values using different IoU thresholds. It is 

important to note that if we maintain a tight IoU threshold, the model's precision and 

recall will gradually decrease. For example, the purple line represents the results 

achieved at a 0.9 IoU. At a recall rate of 0.4, the precision of the model will be                

approximately 0.72.  

 

Overall, our results demonstrate the effectiveness of both models in pavement patch 

detection, in the context of the evaluation performed. However, it is important to note 

that the choice of evaluation metric and IoU threshold can have a significant impact on 

the results, and different scenarios may require different models or parameter settings. 

Additionally, the suitability of deploying such systems in real-world applications 

largely depends on the task requirements and priorities of the task owner. For instance, 

if the cost of missing a patch is high, a lower false negative rate may be necessary, even 

at the cost of an increased false positive rate. Conversely, a false positive rate may be 

tolerable, provided that the false negative rate remains sufficiently low. In summary, 

the ideal configuration of object detection models in real-world applications should 

consider the specific trade-offs between false positives and false negatives that align 

with the task's objectives and constraints. In addition, as per the insights of domain 

experts at PMS, it is imperative to consider this trade-off within the specific scope of 

the patch detection task at hand. To achieve higher recall, the acceptance of false        

positives may be deemed acceptable. 

 

2.5 Patch Detection on Different Pavement Conditions 

The aim of this analysis is to assess the performance of trained models in the context 

of altered conditions, including variations in pavement surface and image capture 
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Fig. 4: Precision-recall curves achieved by using best performing model, with two different    

intervals of images: (A) shows the results achieved using 10mm interval images, while (B) 

shows the results achieved using 5mm interval. 

 

settings. Our aim is to evaluate the effectiveness of the Faster RCNN and DETR       

models, which were originally trained on images obtained from the USA road network 

utilizing a laser profiling system set to acquire images at 5mm intervals. To achieve 

this goal, we carried out an experiment on the Ireland road network utilizing the same     

models, but with the laser profiling system adjusted to capture images at 10mm              

intervals (see Figure 5). Table 3 demonstrates the results achieved by both models on 

10mm interval images. 

 

Our experimental investigation involved the analysis 41 images captured at 10mm        

intervals on the Irish road network. The findings indicate that the model performance 

decreased by 13~15% compared to the results achieved on test set (see Table 2) due to 

shift in image resolution compared to the images used for model training. Additionally, 

the shape and composition of the pavement surface may have contributed to a decrease 

in overall results across both interval images. Table 3 demonstrates the results of further 

analysis, indicating that there is a slight difference between 10mm interval images re-

sults and 5mm interval image segments results. The reason for the variance between 

the 10mm images and 5mm image segments is the difference in the number of images. 

With only 41 images at 10mm intervals, breaking them down into 5mm segments re-

sults in 82 images, which increases the number of ground truth boxes. This factor may 

contribute to the observed differences in model performance between the two image 

types. The overall findings suggest that changes in image quality, patch shape, and 

pavement surface have a minor impact on model performance, and that additional train-

ing or calibration may be necessary for the models to operate effectively in environ-

ments with distinct imaging conditions. Moreover, Figure 4 depicts a precision and re-

call curve that can aid in identifying the ideal IoU and confidence threshold values for 

obtaining the desired results in real-world testing scenario. Figure 6 shows in some 

cases where the model fails to detect the true patch within an image interval of 10mm, 

but subsequently identifies it in the corresponding 5mm interval images.  
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Fig. 5: 10mm image (A) and its corresponding 5mm segments (B). 

Table 3: Comparative analysis of both models on 10mm & 5mm interval images. 

 

Model Interval # Of images # Of Patches mAP 

FRCNN 
10mm 41 49 

0.72 

DETR 0.75 

FRCNN 
5mm 82 54 

0.7 

DETR 0.73 

 

Figure 7 illustrates the visual results predicted by both models. This can be attributed 

to the fact that the model was trained on 5mm images, which makes it easier to detect 

patches in such images. Secondly, the shift in image resolution also contributes to the 

model's difficulty in detecting patches on 10mm interval images. 
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Fig. 6: Visual results of 10mm interval image: Ground truth, prediction on 10mm image and its 

corresponding 5mm interval images. 

3 Conclusion 

This paper addresses automated patch detection, as a step towards an automated system 

for detecting asphalt pavement patches through the utilization of laser profiling images. 

Two state-of-the-art object detection models, Faster RCNN and DETR, were trained 

using a specified dataset. The results indicate that both models achieved higher patch 

detection accuracy, with a mean average precision of 0.86 and 0.88 for the Faster 

RCNN and DETR models, respectively. Compared to the Faster RCNN, the DETR 

model showed slightly improved performance. Additionally, we assessed the model's 

generalization capabilities under different road surface and image capture conditions 

and discovered that the model's performance was slightly affected by the variability in 

conditions, such as change in the pavement surface, and image capture settings. Fur-

thermore, given consideration to the trade-off between precision and recall is crucial in 

any object detection task. Different applications may prioritize precision (minimizing 

false positives) or recall (minimizing false negatives) differently, depending on the spe-

cific use case and requirements. The trade-off between precision and recall, as high-

lighted by industry domain experts at PMS, is crucial to consider within the specific 

context of patch detection work. For example, in patch detection application scenarios, 

it is deemed acceptable to tolerate false positives in order to achieve a higher recall rate. 

This emphasizes the importance of aligning the model's performance with the specific 

requirements and priorities of the task at hand.  
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Future work will extend the study to calculate the area of each identified patch and 
analyse the severity of patched surface. 

 

 
 

Fig. 7: Visual results of 5mm interval images: Ground truth, DETR prediction and Faster RCNN 
prediction. 
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