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Abstract. Programming has become an important skill in today’s world and is
taught widely both in traditional and online settings. Instructors need to grade
increasing amounts of student work. Unit testing can contribute to the automation
of the grading process but it cannot assess the structure or partial correctness
of code, which is needed for finely differentiated grading. This paper builds on
previous research that investigated machine learning models for determining the
correctness of programs from token-based features of source code and found that
some such models can be successful in classifying source code with respect to
whether it passes unit tests. This paper makes two further contributions. First,
these results are scrutinized under conditions of varying similarity between code
instances used for model training and testing, for a better understanding of how
well the models generalize. It was found that the models do not generalize outside
of groups of code instances performing very similar tasks (corresponding to similar
coding assignments). Second, selected binary classification models are used as a
base for multi-class prediction with two different methods. Both of these exhibit
prediction success well above the random baseline, with potential to contribute to
automated assessment with multi-valued measures of quality (grading schemes),
in contrast to the binary pass/fail measure associated with unit testing.

Keywords: Applied Machine Learning for Code Assessment - Student
Programming Code Grading - Automated Grading

1 Introduction

Manually grading student code submissions on a large scale is a tedious and time-
consuming process. With the rise of online programming courses, thousands of submis-
sions must be graded in a short time. Most automated solutions use question-specific
unit testing to check if the code is runnable and if it generates the desired output. For
some purposes this may be sufficient but, in most contexts, assessing code based on these
two properties (execution without error and correct output) is not adequate for different
reasons. First, correct output can be generated in different ways. For example, printing
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numbers from one to ten can be implemented with a loop or with ten print statements,
two approaches that could warrant different grades in spite of appearing the same to a
unit test. Second, solutions that do not pass unit tests might still contain sections that go
a long way towards solving the given programming problem correctly, or even contain
only a typing error that causes the program to fail the unit test.

The aim of our research is to investigate if machine learning methods can be applied
to the task of evaluating programs based on source code. Previous work by the authors
[2] produced models that successfully learnt, from source code tokens, whether the
program consisting of those tokens would pass unit testing or not. The research was
limited in scope to code solving simple problems, written by students in the first year
of learning to program. It found that both feature sets based on token counts and those
based on token sequence information could lead to successful binary prediction (of the
unit test pass/fail result), provided that a suitable model type was used with the feature
set (Random Forest for token count data and Convolutional Neural Network for token
sequence data). The work presented in this paper answers two important further questions
about these binary prediction models: (1) How generalizable is the pass/fail prediction
success with respect to the task performed by the code? In other words, are the models
learning information specific to particular programming problems, from code tackling
those particular problems, or are they learning some more general properties of passing
vs. failing code? and (2) Can the successful binary classification models be used as the
basis for fitting multi-class prediction models, which assign more finely differentiated
quality labels (grades)?

Both questions have implications for the eventual application of code-evaluating
machine learning models. A more general model allows for more flexible data gathering
and training. Hence generalization is an important property to quantify. Also, since multi-
class labelled data are not as readily available or abundant as code evaluated through
unit testing with the binary pass/fail label, a methodology that makes good use of the
latter would be very useful for automating assessment.

This paper is organized as follows: Sect. 2 contains a review of related work, Sect. 3
describes the models previously built by the authors for binary prediction, upon which the
work described in this paper is based, Sect. 4 discusses the investigation of generalization
(first research question), including methodology and results, Sect. 5, similarly, presents
the methodology and results of work on multi-class prediction (second research question)
and Sect. 6 contains conclusions, including a discussion of limitations and possible future
work.

2 Related Work

A lot of research has been done on understanding source code by different methods and
for different purposes. A recent paper [ 14] reviews the related literature on how automatic
grading works and what effect it has on the education system. The author summarized
127 papers on this topic. It was concluded that based on the literature there is no evidence
that automated code assessment can or cannot produce as good results as human graders.
A comprehensive study [15] explores the current automated grading tools presenting the
reason why a new automated assessment model is required. SemCluster [3] uses two
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different clustering to group code instances into classes based on their semantic content
and to associate them with the relevant programming problem. InferCode [4] looks
at code instances individually, using self-supervised machine learning algorithms with
natural language processing to deduce the abstract syntax trees of program code by
predicting sub-trees. Engine Fuzzer with Montage [13] uses neural network language
models to discover vulnerabilities directly in source code. Another important application
of source code analysis is plagiarism detection, which is approached with information
retrieval techniques in [6] and code structure modelling in [11]. DeepReview [10] utilizes
a convolutional neural network for automated code reviews. Another task tackled with
the use of deep learning methods is data type prediction for Python: Type4Py [9] uses
word2vec embeddings to create type hints based on code context.

Automated grading of student coding work has been a widely researched subject,
especially in the last few years due to the increasing demand for programmers and
consequent growth in training, as part of both traditional and online courses, where work
needs to be evaluated and graded at scale. A paper proposing a method called ProgEdu
[7] deals with automated code quality assessment and feedback to students by means of
unit testing. A rule-based approach using sophisticated scripts to evaluate, run and grade
codeis proposedin [5]. AutoGrader [12] compares execution paths using formal methods
and reference implementations to evaluate code. A question and language-independent
comparison technique based on bag-of-words for distance computation is used in [8],
while [16] uses parse tree models and word embedding models to compare the feature
vectors created from the source code with LSTMs.

The research presented in this paper takes the approach of treating programs as data
in the simplest manner, through the textual tokens of their source code and without
intervening representations such as the abstract syntax tree, which is different from what
has been published so far in this domain, to the best knowledge of the authors. While
the complex structure of most code suggests that this would be a naive approach, we
propose that it is not so in the very specific use case of grading work by early stage
programming students, where assignments are elemental. As at the same time it is a use
case that entails a large amount of work on the part of instructors, while feedback to
students is essential, it is one that would greatly benefit from automation and research
towards that goal.

3 Binary Classification

This section gives a brief overview of the binary classification models that provided a
starting point for the work discussed in this paper. A detailed account of the work on
fitting these models was given in a previous paper by the authors [2].

These models determine whether code will pass unit tests or not, solely based on
information derived from the textual tokens in the source code. The availability of large
amounts of data for this task, easily labelled through unit testing, makes it a good starting
point for the investigation of simple token-based features for evaluating code.

The data used to train the binary classification models was collected by Azcona et al.
[1] as part of their research aimed at identifying learning development potential by means
of profiling students based on their source code. The data contain half a million source
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code instances, each accompanied by the name of the programming problem (set by
lecturers) that it attempts to solve and by its unit test pass/fail status (58% fail and 42%
pass). These were collected from more than 660 early-stage students of programming,
answering 657 different questions in Python across 3 academic years. The dataset is
publicly available from the reference link Azcona et al. [1].

Two different types of feature set were designed. In the first type of feature set each
feature represents the number of times a particular token appears in a code instance. The
number of features in the set is equal to the number of distinct tokens used in all the code
in the data set. This type of set we refer to as a token count feature set. In the second type
of feature set, the tokens are the features, with their order preserved. In practice, padding
is added to bring all code instances to equal length and the tokens are represented by
labels. The number of features in this set is equal to the length, in tokens, of the longest
code instance. This type we refer to as a token sequence feature set.

Before the feature sets were created, the data set of Python code instances was
translated into Python ByteCode, which has the advantage of succinctness in comparison
with the Python source code, both in terms of code length and the number of distinct
tokens. Both types of feature set were created from each set of code instances (Python
and ByteCode) resulting in four feature sets for model fitting.

The token count feature sets were used to fit several conventional machine learning
model types, with Decision Tree (F1 = .81, F1 = .85 on Python and ByteCode respec-
tively) and Random Forest (F1 = .83, F1 = .87 on Python and ByteCode respectively)
achieving the best prediction scores on test data. The token sequence feature sets were
used to fit RNN, LSTM and CNN models. This included additional preprocessing of the
data to transform the features into embeddings. The best prediction scores were achieved
by CNN (F1 = .76, F1 = .81 with Python and ByteCode respectively). The conclusions
of this work were (1) that determining the quality of code based on textual tokens in
the source is possible and (2) that ByteCode data can be used for computing-resource
efficiency as it results in prediction success comparable to or better than that achieved
with Python data.

These promising results warranted further work, with the same feature sets but
towards building models for a more granular measure of code quality. The following
two sections describe this work.

4 What Did the Binary Classifiers Learn?

While some of the models built on binary (pass/fail)-labelled data displayed very good
classification skill, it was still unclear whether the knowledge contained in the models was
programming-problem-specific or more general. This is because the models were built
with feature sets randomly split into training and testing subsets, with each programming
problem likely to be present (via associated code instances) in both subsets.

4.1 Methodology

The first step towards clarifying how general the models are was to define levels of
generalization: (1) for any programming problem addressed by a test code instance,
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there are training code instances associated with the same programming problem; (2)
for any programming problem associated with a test code instance, there are no training
code instances associated with the same programming problem but there are training
code instances associated with similar programming problems and (3) for any program-
ming problem associated with a test code instance, there are no training code instances
associated with the same or similar programming problems.

Next, the best binary classification models were fitted again, with the data splits
reflecting the three levels of generalization.

Level 1. Random Forest and CNN models were built for individual programming prob-
lems, with both train and test subsets containing code instances associated with one and
the same programming problem. The two chosen model types are those that performed
best in binary prediction (described in Sect. 3). Random Forest contained 20 estimators
with a max depth of 40, while the CNN model used an embedding layer along with a
Conv1D layer with GlobalMaxPooling1D and two Dense layers with 25 and 2 neurons.

Three models were built for each programming problem (using 400, 900 and 2000
instances, where available). The purpose of the three models was to understand how the
sample size affects the quality of the models.

Level 2. Programming problem similarity was determined based on name semantics.
For example, problems named ‘count numbers’, ‘count items’, ‘count up’, ‘count even’,
‘count up to odd’, ‘count down’ and ‘count odd” were grouped together. Then the code
instances associated with the group were segregated by programming problem: in the
previous example all instances associated with problems ‘count numbers’, ‘count items’,
‘countup’, ‘count even’ and ‘count up to odd’ were used for model training and instances
associated with problems ‘count down’ and ‘count odd’ for testing. As with level 1, CNN
and Random Forest were used and models fitted for two different groups of similar
programming problems.

Level 3. The programming problem names were used again, but this time to include
entirely different problems in the train and test subsets. As in this case the models would
have to learn general correct and incorrect code patterns, only sequence-aware model
types were used. The LSTM model consisted of an Embedding layer, a SpatialDroput1D
layer, 2 LSTM layers with 50 and 25 neurons and a 0.1 dropout, and a Dense layer with
2 neurons. The CNN structure was the same as that for level 1 and level 2 investigations.

4.2 Results

Level 1. Figure 1 shows the F1 scores of models trained on single programming prob-
lems. Only programming problems with 2000 instances were used and for each problem
three model types were fitted. Thus, for each problem represented by at least 2000
instances in the data set the picture shows three points, indicating (with their y-axis
components) the F1 scores for: the problem’s Random Forest model (points with slanted
white line), CNN model fitted on ByteCode (points without a line) and CNN model fit-
ted on Python code (points with vertical white line). The Random Forest scores are the
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highest but all three model types display scores consistently better than random guessing
(.5). Figure 2 shows F1 scores for a representative sample of programming problems,
each used to fit CNN models with 400, 900 and 2000 instances. Larger data set sizes
generally improve the scores, as expected.

Level 2. Table 1 contains F1 scores for models trained and tested on similar pro-
gramming problems. Models were built for two groups of similar problems, created
as explained in Sect. 4.1. The scores (~.7) testify to a deterioration in the amount of
learning achieved, when compared to models built with same problems in the train and
test subsets at level 1 (~.8). This indicates that programming-problem-specific patterns
are a considerable part of what is learnt by models at level 1.

Level 3. A model that in the context of this research generalizes at level 3 would be
learning general code quality indicators, however, as can be seen from Table 2, this is
not the case with the feature sets and model types used here. The models that were fitted
all exhibit F1 scores only slightly greater than random guessing would produce. This
indicates that there could be a very small amount of general learning taking place, but
equally that there could be similarities between all the simple programming problems
present in the data set. There is a consistent pattern of larger recall for fail than for pass
predictions and more similar precision values. This indicates the association of pass
labels with specific feature patterns, especially in token sequence data.

© RFPython O CNN ByteCode @ CNN Python

Fig. 1. F1 scores of single-problem models: RF trained on Python token count data and CNN
trained on both ByteCode and Python token sequence data (2000 instances in all cases)

Summary. The relative performance of models built with different levels of similarity
between the train and test subset in terms of included programming problems shows
that the data sets and model types employed here can be trained on source code to tell
if unseen simple programs work, but only if taught with samples of code attempting to
solve the same or similar problems. This, of course, does not exclude the possibility that
further generalization is achievable with more complex feature sets or models.
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Fig. 2. F1 scores of single-problem CNN models with Python token sequence data, for three
different training set sizes (400, 900 and 2000)

Table 1. Performance of models trained and tested on similar programming problems

Random Forest CNN
ByteCode Python ByteCode Token | Python Token
Token Count |Token Count Sequence Sequence

F1 Score (Group 1)
F1 Score (Group 2)

Table 2. Performance of models trained and tested on different programming problems

ByteCode Token Count | Python Token Count | ByteCode Token Seq.| Python Token Seq.
Prec | Recall Prec | Recall Prec | Recall Prec | Recal
Decision Tree Long-Short Term Memory Network
Fail 0.51 | 0.53 0.53
Pass 0.50
'Wgtd F1 Score 0.51
Random Forest
Fail 0.52
Pass 0.52
(Wgtd F1 Score 0.53

5 Multiclass Prediction

As binary labels are much easier to obtain for code (through unit testing) than fine-
grained grades (which typically need to be assigned manually), it would be valuable to
have some way of using pass/fail labelled data in the automation of fine-grained grading.
Here we look at transfer learning in neural networks as a method for re-using learning
with binary-labelled data.
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A Random Forest model is also fitted directly with multi-class labelled data.

5.1 Methodology

The data set used for building and testing multiclass prediction models is a subset of
330 code instances from the original data set. All the code instances pertaining to three
different programming problems (1530 instances) were manually graded by the authors,
with scores between 0 and 10 (6 points were awarded for the presence of various por-
tions of required functionality, 2 for programming style and 2 for correct ‘black box’
behaviour). The scores were collapsed into ranges corresponding to grades A: 10, B:
8-9, C: 6-7, D: 5-6 and F 0-5. These were further labelled 4(A), 3(B), 2(C), 1(D) and
O(F). To balance out the dataset, the number of instances for each grade was reduced to
60, resulting in a data set of 330 instances. The ratio of the training and testing subsets
was 90/10.

Transfer Learning with CNN. To build a multi-class prediction CNN by means of
transfer learning, we took advantage of the learning achieved by the CNN Python model
fitted on the full data set for binary classification. The network of that model was reused
in the network for multi-class prediction, with all weights fixed, except for the top layer,
which was replaced in the new network by an output layer with five nodes (instead of
two), one for each grade. This network was then trained on 90% of the 330 instances of
manually labelled data.

Multi-class Prediction with Random Forest. As Random Forest models were per-
forming well in binary prediction, a multi-class Random Forest model was trained on
the 330-instance data set. Transfer learning is not applicable in this case.

5.2 Results

As Table 3 shows, the F1 scores achieved were similar with neural network transfer
learning (F = .59 for LSTM and F = .64 for CNN) and the Random Forest model
trained from scratch (F1 = .63). Both are better than the expected F1 score of random
guessing (.2) for a 5-class prediction task.

Table 3. Performance of multi-class prediction models

Random Forest LSTM Python Transfer | CNN Python Transfer
Multiclass Python Learning Learning

Prec Recall Prec Recall Prec Recall
Class A 0.50 1.00 0.67 1.00 0.78 1.00
Class B 0.75 0.75 0.76 0.76 1.00 0.50
Class C 0.40 0.29 0.20 0.17 1.00 044
Class D 0.86 0.67 0.67 0.31 033 043
Class F 1.00 0.50 1.00 0.22 0.50 1.00
Wgtd F1 Score 0.63 0.63 0.64
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Confusion matrix heat maps are shown in Fig. 3 for the CNN and LSTM models
and in Fig. 4 for the Random Forest model. From these, it can be seen that the neural
network models, using token sequence data, exhibit slightly better performance in terms
of closeness of the predicted and real value.

Predicted Predicted

Fig. 3. CNN (left) and LSTM (right) transfer learning confusion matrix heat maps

Summary. The multi-class machine learning prediction models that have been fitted
show promise as potential mechanisms for automated grading of programming assign-
ments. An interesting finding is that transfer learning utilizing binary prediction neural
network models fitted with a large data set does not seem to produce better results than
a Random Forest model fitted with a small amount of multi-class labelled data. How-
ever, this work was conducted with code solving only simple programming problems
and it is possible that the learning capability harnessed by these two approaches would
diverge in the case of more complex code, with the CNN and LSTM performing better
in comparison to Random Forest.

Predicted

Fig. 4. Random Forest multi-class prediction model confusion matrix heat map

6 Conclusion and Further Work

This paper presented an investigation of machine learning models as a means of evalu-
ating programs on the basis of their source code. Both binary and multiple-class models
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resulted in prediction scores better than the baseline. While further work on refining and
complementing these models is needed before practical application becomes possible,
the value of the work presented here is that it provides evidence of learning in several
model types fitted with features derived directly from source code tokens.

Further, it was found that the performance of models that learnt from token counts,
in particular Random Forests, and models that learnt from token sequences, in particular
CNNs, was not significantly different, indicating that in the case of simple coding tasks
the presence of the correct tokens may be sufficient to indicate quality and that the more
complex knowledge of sequences may not be required to automatically grade assign-
ments at this level. Further research is needed to explain this, but it can be reasonably
assumed that what this is telling us is that if a student knows which constructs to use,
then they are probably also going to know in what order to use them. This, of course,
would not be applicable in the case of more complex programs, but the findings could
be used for the specific purpose of automating the assessment of work by early-stage
students of programming.

An admittedly disappointing but valuable finding was that the models do not learn
coding patterns in general but rely on being provided correct and incorrect code for a
particular problem, or very similar problems, in order to learn how to evaluate code
solving that problem. This further narrows but clarifies the possible scope of future
application. On the other hand, programming problems posed to beginners are by virtue
of their simplicity similar across all instruction contexts, which should allow for pooling
of data in the training of a deployed model.

On the whole, the results presented here are promising and establish that it is worth
pursuing simple machine learning models as a core component in automated assessment
of code written by early-stage programming students. The application envisaged is a
service that provides already trained models for common simple programming problems
but also employs reinforcement learning to improve performance and build models of
code for new problems. Such a service could be offered in variants for instructors and
learners, providing constructive feedback in the case of the latter. Also in our future
work, we are planning to expand the datasets and include data from other educational
institutions to validate this approach as early-stage students for programming seem to
follow the same programming patterns independently of the educational institution.
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