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An Exploration of the Latent Space of a
Convolutional Variational Autoencoder for the

Generation of Musical Instrument Tones

Anastasia Natsiou1, Seán O’Leary1, and Luca Longo1

School of Computer Science,
Artificial Intelligence and Cognitive Load Research Lab,

Technological University Dublin,
Dublin, Republic of Ireland
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Abstract. Variational Autoencoders (VAEs) constitute one of the most
significant deep generative models for the creation of synthetic samples.
In the field of audio synthesis, VAEs have been widely used for the gener-
ation of natural and expressive sounds, such as music or speech. However,
VAEs are often considered black boxes and the attributes that contribute
to the synthesis of a sound are yet unsolved. Existing research focused
on the way input data can influence the generation of latent space, and
how this latent space can create synthetic data, is still insufficient. In
this manuscript, we investigate the interpretability of the latent space of
VAEs and the impact of each attribute of this space on the generation of
synthetic instrumental notes. The contribution to the body of knowledge
of this research is to offer, for both the XAI and sound community, an
approach for interpreting how the latent space generates new samples.
This is based on sensitivity and feature ablation analyses, and descriptive
statistics.

Keywords: Explainable Artificial Intelligence (XAI) · Variational Au-
toencoders (VAE) · Audio Representations · Audio Synthesis · Latent
Feature Importance.

1 Introduction

Generative models in the field of sound synthesis have enabled musicians, and
sound designers to create and manipulate sounds in new and innovative ways
[20,32]. Variational Autoencoder (VAE) is a type of deep generative model that
has been widely used in the field of audio generation [12, 15, 26]. VAEs can be
trained on a dataset of sound recordings to learn a compressed representation
of the sounds in the latent space. The latent space can then be manipulated to
generate new, similar sounds. The design of VAEs is considered successful when
samples with similar principles map closer to each other in the latent space, and
new sounds can be generated by interpolating between previous sounds with
specific properties. However, this is not always the case. The model extracts
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information from the audio samples forming a latent space that does not always
match human perception. Explainable artificial intelligence (XAI) is an emerging
area of research that aims to develop techniques to make deep learning models
transparent and interpretable to humans [4, 37, 38]. Explainability can be used
in generative models for sound synthesis for the creation of audio samples in
a more understandable and controllable way. However, according to [29], XAI
for arts, and more specifically generative music, is still in its early stages. Most
of the existing publications focus on controlling the synthesis of the generative
model by regularizing its latent space to specific characteristics [23,36,40].

In this manuscript, we attempt to explain how latent dimensions are linked
to the generation of discreet instrumental musical tones for monophonic, and
harmonic audio samples. First, we provide explanation techniques for under-
standing the impact of different parameters on the resulting sound using VAEs,
and then we explore the contribution of each attribute of the latent space to the
synthesis of a specific instrument. Section 2 overviews the existing methodology
used in this manuscript while briefly providing a literature review on the most
prominent techniques. The chapter provides a concise overview of the prevalent
audio representations commonly used and our proposed representation, along
with an explanation of the architecture of VAE. Additionally, it delves into
the examination of statistical methods and visualization techniques employed
to uncover the significance of latent attributes. Through careful analysis, these
approaches enable the identification and assessment of the importance of latent
variables in the context of audio synthesis. Section 3 describes the dataset and
hyper-parameterization of the VAE, along with evaluation methods for sound
reconstruction. Finally, the results are reported in Section 4 and the conclusion
and future directions in Section 5.

2 Methodology and Related Work

Our goal is to permit the manipulation of latent representations of discreet in-
strumental notes created by deep generative models and provide an explanation
for the synthesis of musical tones. In Chapter 2.1, we demonstrate the impor-
tance of input representations for sound synthesis followed by the development of
a new representation for monophonic and harmonic sounds. Chapter 2.2 outlines
the benefits of Variational Autoencoders compared to the classic autoencoders
and introduces ways to create the latent space. The proposed methodology for
the generation of the latent space is illustrated in Fig. 2. Finally, Chapter 2.3
provides techniques for the interpretation of VAEs based on methods for latent
feature importance.

2.1 Audio Representations

Audio representations are mathematical representations of acoustic signals that
are used to analyze, process, and manipulate sound. The fundamental form of
an acoustic signal is the discretized version of the waveform which is created by
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sampling the continuous wave in time and amplitude. In deep learning applica-
tions, this waveform is called raw audio and it represents the acoustic wave as a
sequence of numbers, each number representing an amplitude sample at a chosen
sampling frequency. Although raw audio is the most accurate representation of
sound, it is often considered unsuitable for deep learning models due to its high
dimensionality and lack of interpretability.

To overcome these obstacles, recent studies propose high-level forms that offer
more meaningful descriptions [27]. Time-frequency representations such as spec-
trograms, mel-spectrograms, or Constant-Q Transformations (CQT) have been
proven beneficial for deep generative models [2, 3, 35]. Their success is mainly
achieved because of their ease to be stored and processed. In deep learning
models, where memory and computational limitations can slow down the train-
ing process, time-frequency representations provide an efficient solution. Finally,
spectrograms provide a visual representation that captures important charac-
teristics such as frequency content, harmonics, timbre, and temporal dynamics.
They provide a physically and perceptually meaningful representation making
them more useful for deep generative models [13]. An overview of spectrograms
is depicted in Fig. 1. In an attempt to reduce even more the wealth of acoustic
information, various studies extract perceptual features from the original signal.
Compact representations such as acoustic features [11] or spectral coefficients [14]
capture the essential spectral information of the audio signal while reducing the
amount of data required for analysis and processing. Spectral coefficients can be
used to represent the spectral envelope of an audio signal, which contains infor-
mation about the shape of the frequency spectrum and the relative amplitudes
of the various frequency components.

In this work, we design a new audio representation based on acoustic features
that is able to represent monophonic, and harmonic instrumental notes. The pro-
posed representation is created by the fundamental frequency and the logarithm
of the amplitudes of the first 7 harmonics in overlapping frames of sound. The
first 7 harmonics are able to capture the most perceptually significant part of a
note providing information about the spectral shape of the acoustic signal. Since
the dataset is monophonic and harmonic, the waveform can be synthesized with
the given amplitudes and the integer multiples of the fundamental frequency:

fn = nf0 (1)

where n ∈ [1, 7] represents the number of the harmonic for every frame i of
the sound. The suggested representation offers a lower-dimensional alternative
to spectrograms, enabling further compression by autoencoders. Moreover, its
meaningful structure is expected to result in a latent space that is more inter-
pretable, allowing for a better understanding and analysis of the learned repre-
sentations.

2.2 From Autoencoders to Variational Autoencoders

An autoencoder [5] is a type of neural architecture used for unsupervised learn-
ing. The fundamental idea behind an autoencoder is to learn a compressed rep-
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Fig. 1. Demonstration of time-frequency representations of sound: A) Magnitude spec-
trogram (using STFT) B) Log-mel-spectrogram and C) Constant-Q Transform (CQT)

resentation of the input data that captures its most important features, in order
to reconstruct the original input data as accurately as possible. Autoencoders
consist of two main parts: an encoder that attempts to reduce the dimension-
ality of the original samples producing a compressed or latent representation,
and a decoder that aims to reconstruct the original input data given the latent
representation. For a feedforward single layer model, the encoder maps an input
vector x ∈ Rd to an encoding z ∈ Re where d > e using a non-linear activation
function f(.)

y = f(Wx+ b) (2)

where W ∈ R(e×d) represents the weights of the connections between the neu-
rons and b ∈ Re accounts for the bias term. The decoder maps z back to the
reconstructed x̂ ∈ Rd using a similar approach

x̂ = f(Wouty + bout) (3)

where Wout ∈ R(d×e) and bout ∈ Rd. The reconstruction is achieved by a training
procedure where the autoencoder attempts to minimize the difference between
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the input data and the reconstructed output data, using a loss function such as
mean squared error or binary cross-entropy.

Although autoencoders can achieve a low reconstruction error, these types
of architectures do not promise a meaningful learned representation. The latent
space created by an autoencoder often lacks interpretability and similar sam-
ples can be mapped at different regions in the space. To solve this problem,
Variational autoencoders (VAEs) [18] convert the input data to a latent space
through a stochastic distribution, making it more ”smooth” and interpretable.
In the vanilla VAE, the encoder maps a latent variable z ∈ Re with an input vari-
able x ∈ Rd where d > e by using a distribution q(z|x) to approximate p(z|x).
This approximation is named Variational Inference. The prior distribution of z is
p(z) and therefore the decoder is parametrized to approximate the distribution
p(x|z). More specifically, the encoder outputs the mean µM and the covariance
σM as the inputs of the Gaussian distribution function N(z;µM , σ2

MI) over a
latent space with M number of dimensions. The objective of the network is to
minimize the KL divergence between q(z|x) and p(z) by maximizing the evidence
lower bound:

E[log p(x|z)]−KL(q(z|x) ∥ p(z)) ≤ log p(x) (4)

In the above equation, the first term measures how well the reconstructed
data matches the original, while the second term measures the difference be-
tween the approximate posterior distribution q(z|x) and the prior distribution
p(z). The KL divergence term encourages the learned posterior distribution to
be close to the prior distribution, which in turn regularizes the learned latent
space representation. By sampling from a distribution, VAEs have the ability to
generate new data samples that are similar to the input data. Furthermore, the
generated latent space is regularized by a specific distribution making it more
structured and continuous. This means that similar input data will be closer
in the latent space and small changes in the latent space correspond to small
changes in the generated data. Finally, interpolation between two points in the
latent space is feasible. This way, a new sample can be created by combining the
properties of the multiple original data. VAEs have demonstrated their poten-
tial in multiple audio applications including real-time synthesis [7], polyphonic
synthesis [21], or instrumental tones generation controlled over their pitch [33].

2.3 Latent Feature Importance

In deep generative models, such as VAEs, latent variables can play a critical
role in capturing complex relationships in the data and generating high-quality
outputs. However, these variables are not directly observable and the task to
interpret their role in the model can be challenging [1]. Latent feature importance
refers to the relative importance of hidden or latent variables, as opposed to the
input or output data [8]. For the investigation of latent feature importance,
a variety of techniques have been proposed. Sensitivity analysis involves the
process of perturbing the values of the latent features and observing the resulting
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changes in the output variables. By measuring the reconstruction error of the
generated data when a slight variation of the latent feature is applied, we gain
insights into which latent features are more important for producing the correct
output. Gradient-based investigation of each feature of the latent space [28]
constitutes a prominent technique for sensitivity analysis of the VAEs.

Feature ablation involves the procedure of removing individual latent features
from the model and measuring the resulting changes in the output variables. In
VAEs, feature ablation studies can be conducted to calculate and visualize the
encoded samples for the most significant parts of the latent space that lead to the
generation of synthetic data [19]. In a similar approach, feature attribution tech-
niques involves the process of assigning a score to each latent feature based on its
contribution to the final output. Several methods have been proposed for com-
puting feature attribution scores, including Local Interpretable Model-Agnostic
Explanations (LIME) [30], SHapley Additive exPlanations (SHAP) [22], and
Integrated Gradients [34]. A more contemporary method for quantifying the re-
liance of a model on each feature is the Shapley Additive Global importancE
(SAGE) [9]. This approach assigns a score to each feature based on five desirable
properties, namely efficiency, symmetry, dummy, monotonicity, and linearity.

Other methods for experimenting with latent feature importance include a
variety of clustering techniques. Clustering involves grouping similar points in
the latent space together based on their output variables. Clustering has been
used as an integrated method of the architecture of VAEs to regularize the latent
space based on existing distributions [16, 31, 41] or as a regularization method
based on specific characteristics of the training data [6, 29]. Finally, valuable
insights into the importance of the latent features can be gained through vi-
sualization of the latent variables. However, since the latent space usually in-
dicates a high dimensionality, visualization can be achieved by projecting the
high-dimensional latent space onto a lower-dimensional space that can be easily
plotted and interpreted. Two of the most popular visualization techniques are
the Principle Component Analysis (PCA) [25] and the two- or three-dimensional
Stochastic Neighbor Embedding (t-SNE) [24]. In this manuscript, we investigate
many of the above methods to analyze and understand the way latent features
contribute to the generation of synthetic instrumental notes. Our experimenta-
tion includes a sensitivity analysis along with a feature ablation analysis for the
understanding of the influence of each feature of the latent space on the prop-
erties of the generated sound. Furthermore, we provide statistical analysis and
visualization of the latent space for identifying the latent attributes related to
each instrument.

3 Experimental setup

In this section, we describe the experimental setup, including details of the
dataset and its pre-processing, model configuration, and evaluation methods
for the reconstruction. Fig. 2 illustrates the overall reconstruction schema for
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the extraction of the latent features of audio samples and the reconstruction of
instrumental notes.

Fig. 2. Proposed architecture for the generation of the latent space using Variational
Autoencoders and an audio representation based on the first 7 harmonics.
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3.1 Dataset

The experiments were conducted using the NSynth dataset1, a collection of four-
second monophonic notes from a variety of instruments in acoustic, electronic, or
synthetic form in different categories as per their velocity or acoustic quality. The
training and testing data had a pitch in the range of 80Hz-2100Hz. Furthermore,
an analysis of the samples revealed that many of the data were not harmonic
and they were excluded from the experiments along with some samples that had
variations in the fundamental frequency or amplitude. The remaining dataset is
composed of 101911 training samples and 1324 testing samples of guitar, bass,
brass, keyboard, flute, organ, mallet, reed, and string.

The waveform of these samples was pre-processed to generate a representa-
tion that includes the fundamental frequency and the logarithm of the amplitude
of the first 7 harmonics for overlapping segments of sound. The fundamental fre-
quency was computed using the YIN algorithm [10] with a post-processing step
to ensure that the pitch will not vary more than 3% between consecutive frames.
The amplitudes of the first 7 harmonics were calculated by a peak detection tech-
nique in the time-frequency domain. For the conversion of the waveform to the
time-frequency domain, we used the Short Time Fourier Transform (STFT) with
a normalized Blackman window of 690 samples, an FFT window of 1024, and a
hop size of 172. The final representation was later normalized using the min-max
scaling to be transformed into the range [0, 1].

3.2 Model configuration

For the audio reconstruction, we used convolutional VAEs with a mirrored en-
coder and decoder as it is presented in Fig. 3. The two components are composed
of two 2D convolutional layers with 32 filters each, a kernel size of 3, a stride
of 2, and the same padding. Two dense layers are used to calculate the mean
and variation and the latent space is the vector created after sampling from the
distribution. Our experiments found an optimum of 8, for the dimensionality of
the latent space, after which the performance of the reconstruction decreased.
The ReLU is used as an activation function for the convolutional layers while the
softmax function is applied to the output layer to form the generated normalized
representation. The network is trained using the ADAM optimizer [17] with an
initial learning rate of 0.001 in batches of size 128. For the reconstruction loss, we
use binary cross-entropy, and an early stopping patience limit is set equal to 20
to avoid wasting resources during training. Additional regularization techniques
such as dropout, or L1 and L2 regularization did not improve the quality of the
generated samples. All models were implemented using the TensorFlow library2

on a Tesla P100 GPU.

1 https://magenta.tensorflow.org/datasets/nsynth
2 https://www.tensorflow.org/
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Fig. 3. The architecture of the Convolutional Variational Autoencoder VAE. Parame-
ters and dimensions of the audio representation for every step of dimensionality reduc-
tion.

3.3 Reconstruction Quality

We evaluated the reconstruction capacity of the VAE using the Mean Squared
Error (MSE) between the original and generated audio representation of the
fundamental frequency plus the first 7 harmonics. However, MSE is not always
sufficient as a metric for the reconstructed samples since it measures the pixel-
wise difference between the original and reconstructed images, without taking
into account the high-level structure and semantics of the data. Therefore, we
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additionally computed the Structural SIMilarity (SSIM) [39] between the two
representations. SSIM is a method for computing the structural similarity be-
tween two images, which takes into account the luminance, contrast, and struc-
tural information. The SSIM index ranges between -1 and 1, with values closer
to 1 indicating higher similarity between the two images.

4 Results and Discussion

To interpret the way VAEs generate new samples, we conducted two types of
experiments. In the first set of experiments, we performed a global analysis
measuring the reconstructive capabilities of each attribute of the latent space.
The second type of experiment is an attempt of interpreting the contribution of
each latent feature to the synthesis of musical notes from a specific instrument.

4.1 Global Analysis

The goal of this section is to provide experimental results on the generation of
instrumental notes using VAEs. It is also an attempt to analyze and interpret
the latent space of the generative network. As it is illustrated in Fig. 3, the
encoder projects the audio samples into a high-level representation by sampling
from the distribution using the mean and the standard deviation predicted for
each attribute. Then, the decoder uses as input the generated latent features
trying to reconstruct the original samples. The ability of the network to gener-
alize and create new samples that are similar to the original is affected by many
parameters. One of the most important parameters is the size of the latent space.
A relatively small latent space can increase computational efficiency while im-
proving the ability to interpret its results. In our architecture, by decreasing the
number of latent parameters, we concluded to a latent space with a dimension-
ality of 8 since it provided the right balance between the size of the latent space
and the reconstruction error. The trained network achieved an average MSE of
0.039 and an average SSIM of 0.948 across all the samples of the testing dataset.
To gain some knowledge of the latent features, we initially depicted the distri-
bution of a testing dataset of notes for a variety of instruments along with some
statistical information. Fig. 4 illustrates the boxplot of all possible values for the
8 attributes of the latent space. According to this figure, the second and third
attributes have more clustered data around the median obtaining fewer possible
values for the instrumental notes. Continuing with the interpretation of the la-
tent space, we conducted a feature ablation analysis. In this set of experiments,
we investigated the importance of each attribute of the latent space by enabling
each time a single feature and measuring the SSIM with the original samples.
The results from this analysis are demonstrated in Fig. 5 while the reconstructed
images by permitting only one feature at a time are illustrated in Fig. 6. Based
on these experiments, the first three attributes of the latent space demonstrate
higher similarity with the original samples implying higher importance for the
reconstruction of new samples.
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Fig. 4. Boxplot of the attribute analysis of the latent space. It illustrates all possible
values of the 8 latent attributes.

Fig. 5. SSIM between the original samples and the samples generated by only one
enabled attribute.

A final examination of the latent space of the VAE covers a sensitivity analy-
sis by applying the method of perturbation and observing the resulting changes
in the synthesized samples. More specifically, we modified each attribute by
10%, 20%, 30%, 40%, 50%, and 60% respectively, and measured the percentage
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Fig. 6. Visualization of the reconstructed representation using one feature at a time.
a) Original representation. b) Reconstructed representation. c) Only the ”0” attribute.
d) Only the ”1” attribute. e) Only the ”2” attribute. f) Only the ”3” attribute. g) Only
the ”4” attribute. h) Only the ”5” attribute. i) Only the ”6” attribute. j) Only the ”7”
attribute.

of SSIM decrease. The results of these experiments are depicted in Fig. 7. This
analysis provides information about the sensitivity of each attribute, pointing
out that features one, two, and five are less resilient to change. The conducted
global analysis provided information about the overall behavior of the model and
the importance of the features of the latent space. It showed that the attributes
do not have the same importance and do not contribute equally to the generation
of new samples. Finally, it proved that the latent features do not have the same
resilience to change. Most of the analyses conducted resulted in similar results
proving that the attributes ”0”, ”1”, ”2”, and ”5” play the most significant role
in the reconstruction of the sound.

4.2 Instrument-based Analysis

In this section, we provide an instrument-based analysis for analyzing sound sig-
nals to identify the underlying musical instrument or instruments that produced
the sound from the latent representation. Notably, we investigate the association
of latent features with musical instruments. In order to do that, we statistically
analyzed the latent space separately for every instrument class to address the
significance of each latent feature for each instrument. Table 1 provides the mean
and the standard deviation of every attribute for each instrument. It presents
the variable range demonstrating that a specific range of some attribute can
imply a particular instrument. For example, if the value of the feature ”2” of
the latent space is 4, the instrument will be more probably a flute or have some
properties of flutes.
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Fig. 7. Perturbation analysis of the latent attributes. Each line shows the percentage
of the SSIM decrease by modifying each attribute from 0% to 60%.

Another way to investigate instruments from their latent features is by vi-
sualizing the latent space. Fig. 8 depicts the projection of the 8-dimensional
latent space in the 2-dimensional space indicating every instrument with a spe-
cific annotation. For the dimensionality reduction, we used the t-SNE algorithm
with PCA initialization and perplexity of 49. The visualization indicates that
the model is able to learn high-level representations with respect to instruments
since sounds from a specific instrument present a smaller distance in the latent
space. However, some clusters, such as string and brass, are not completely dis-
entangled. This could be due to either reducing the dimensionality of the data or
the model lacking sufficient information to identify instrument-based features.
Enhancing the precision of the generative model for synthesizing sound from
a lower-dimensional space, or incorporating additional regularization methods
that offer timbre information, may result in a latent space with clusters that are
more spread out.

4.3 Contribution to the body of knowledge

The research presented in this manuscript has yielded a notable dual contribu-
tion to the fields of explainable AI and audio synthesis. Through a comprehensive
series of experiments, the study introduces an analysis protocol that offers the
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Table 1. Mean and standard deviation of each latent feature for every instrument
class.

Class ”0” ”1” ”2” ”3” ”4” ”5” ”6” ”7”

Guitar 0.23± 0.56 −0.39± 0.74 3.32± 0.24 0.04± 0.58 0.3± 0.74 0.41± 0.72 −0.84± 1.05 0.14± 0.69
Keyboard −0.26± 0.84 −0.34± 0.76 3.26± 0.24 −0.17± 0.86 0.29± 0.96 0.75± 0.73 −0.31± 0.91 −0.12± 0.91
Vocal −2.49± 1.59 0.54± 0.89 2.71± 0.61 −0.12± 0.68 −0.3± 0.67 −0.73± 1.03 0.16± 1.05 −1.16± 1.39
Organ −0.56± 1.37 0.32± 0.96 3.09± 0.65 0.05± 0.56 0.06± 1.06 −0.18± 0.77 0.15± 1.44 −0.03± 1.12
Bass −1.11± 0.97 0.31± 1.48 2.77± 0.72 −0.38± 1.09 −0.3± 1.19 −0.25± 1.43 −0.31± 0.82 −0.53± 1.01
Brass −0.55± 0.78 0.29± 0.85 2.98± 0.41 0.11± 0.62 −0.88± 1.01 0.21± 0.96 0.11± 0.9 −0.81± 0.89
Flute −0.34± 0.73 1.01± 1.09 3.81± 0.86 0± 0.38 0.4± 1.07 0.06± 0.45 −0.69± 0.67 −0.13± 0.94
Reed −0.1± 0.83 0.35± 0.78 3.14± 0.36 0.12± 0.73 −0.76± 1.02 −0.39± 1.2 −0.07± 0.83 −0.42± 0.87
String −0.92± 0.8 0.14± 1.39 3.02± 0.22 0.36± 0.7 −0.65± 0.83 −0.45± 0.73 −0.17± 0.77 0.04± 1.06

Fig. 8. Visualization of the projection of the latent representation in a 2-dimensional
space using t-SNE.

XAI community a systematic approach to assess the significance of individual
latent attributes in the generation of new samples using Convolutional Varia-
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tional Autoencoders. Furthermore, it extends its impact to the realm of sound
synthesis by investigating the underlying mechanisms employed by deep gen-
erative networks to create novel audio outputs. Explainability techniques such
as sensitivity analysis and feature ablation methods are useful for comprehend-
ing how latent features contribute to generating synthetic samples. Moreover,
statistical measures and visualization techniques can aid in distinguishing the
way different classes of samples are represented in the latent space. Overall, this
research provides valuable insights and practical knowledge, enriching the ex-
isting body of literature in both domains and advancing our understanding of
explainable AI and audio synthesis.

5 Conclusion

Explainable artificial intelligence (XAI) methods offer promising tools for ana-
lyzing and interpreting the complex processes underlying sound synthesis. By
providing greater transparency into the inner workings of deep learning models,
XAI techniques can help researchers and musicians better understand the factors
that contribute to the creation of sound, and how to optimize models to pro-
duce high-quality, diverse, and musically meaningful sounds. In this manuscript,
we used XAI methods such as feature importance analysis, latent feature vi-
sualization, and sensitivity analysis to interpret the latent space of Variational
Autoencoders (VAEs) for the synthesis of new musical notes produced by a spe-
cific instrument, which gives rise to its unique timbre and tonal quality. The
conducted study pointed out that the attributes of the latent space do not con-
tribute equally to the process of generating new samples, and demonstrated that
the features of the latent space retain information about the instrument. Fur-
thermore, visualizing the latent space indicated that sounds generated from a
specific instrument exhibit a shorter distance between them. However, some in-
struments presented partial entanglement of clusters that could be attributed to
the dimensionality reduction or inadequate information in the model to discern
features based on instruments. Therefore, potential future work would include
augmenting the precision of the generative model to synthesize sound in a lower-
dimensional space or introducing further regularization techniques that provide
timbre information. Finally, additional explainability methods can be adopted
to interpret the synthesis of new samples.
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