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Abstract 
Diagnosing multiple sclerosis (MS) presents significant challenges due to its 
complex clinical presentation and the subjective interpretation of imaging 
findings. Machine learning (ML) and deep learning (DL) models, despite their 
potential, often exacerbate these challenges with their opaque decision-making 
processes, hindering clinical integration. This study addresses these limitations 
by employing eXplainable Artificial Intelligence (XAI) techniques, specifically 
integrating Grad-CAM within a Convolutional Neural Network (CNN) framework, 
EfficientNetB1, for the diagnosis of MS. The primary objective is to enhance the 
transparency and reliability of MS diagnosis by providing clear visual insights 
into the model’s decision-making process, while also identifying and mitigating 
potential biases and irrelevant features. Using a dataset comprising FLAIR axial 
and sagittal MRI images of MS patients and healthy individuals, the CNN model 
is trained and integrated with Grad-CAM. Post-integration observations revealed 
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potential biases and irrelevant features, particularly in the erroneous highlighting 
of certain regions by the model. Subsequent adjustments and re-training using 
10-fold cross-validation led to an improved model with accuracy rates of 99.82% 
for axial, 99.76% for sagittal images, and 99.36% overall. Furthermore, testing 
on a separate dataset confirmed the model’s ability to generalize and perform 
well across various clinical contexts. In conclusion, this study underscores the 
critical role of transparent and interpretable models in medical diagnostics, 
demonstrating that the integration of XAI techniques can significantly enhance 
the reliability and clinical applicability of models.

Dataset 
The dataset used in this study is obtained from a research article published in 
2021, collected from Ozal University Medical Faculty [4]. It consists of FLAIR 
MRI images of the brains of 72 patients diagnosed with MS and 59 healthy 
individuals. The dataset is organized into four groups: MS-Axial (n = 650), 
MSSagittal (n = 761), Healthy-Axial (n = 1002), and Healthy-Sagittal (n = 1014). 
To evaluate the generalizability of the proposed model, an additional publicly 
available dataset by Muslim et al. [5] is used, which includes FLAIR MRI images 
from a different population.

Methods & Results 
For the classification of MRI images to diagnose MS, a series of steps were 
taken. Initially, all images were resized to a fixed dimension of 240x240 
pixels to ensure uniformity in data processing. The architecture chosen for 
the classification task is EfficientNetB1 [7], selected for its proven efficacy in 
image classification and computational efficiency. Using transfer learning, the 
model leveraged pre-trained weights from the ImageNet dataset to extract 
meaningful features from the MRI images. The model architecture consisted 
of a base EfficientNetB1 model followed by custom layers tailored for 
classification purposes. To assess the robustness of the model performance, 
a 10-fold cross-validation strategy is implemented. This involved training 
the model on nine folds of the data while validating the remaining fold for 
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each iteration. Following cross-validation, the final model is trained on the 
entire dataset to maximize its learning potential for subsequent evaluation 
and testing on unseen data. During the initial 10-fold cross-validation 
process, the model achieved an accuracy of 98.13% for the overall dataset, 
combining both axial and sagittal images. Gradient-weighted Class Activation 
Mapping (Grad-CAM) [6] is integrated to provide visual explanations for 
the model’s predictions. Grad-CAM highlighted regions of the input image 
that contributed the most to the model’s decision-making process. Initially, 
certain regions on the left side of the images were incorrectly highlighted 
by the model. To address this issue, images were cropped to focus solely 
on relevant brain regions. Subsequently, the model is re-trained on the 
cropped images, leading to improved accuracy. Grad-CAM is then reapplied, 
effectively highlighting the relevant regions in the MRI images (shown in 
Figure 1).

To evaluate the generalizability of the model, a separate set of images 
collected from a different source [5] is used. The model tested on some 
random images and made accurate predictions on these images and Grad-

FIGURE 1

Grad-CAM visualisation for MS class before cropping and after cropping the images.
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CAM effectively highlighted the regions that influence classification decisions 
(shown in Figure 2). In general, the integration of Grad-CAM improved 
the diagnostic capabilities of the model by accurately highlighting regions 
indicative of Multiple Sclerosis. The visual insights provided by Grad-CAM 
facilitated better understanding and trust in the model’s decision-making 
process. Upon completion of the 10-fold cross-validation, the proposed 
CNN architecture achieved a final accuracy of 99.82% for axial images, 
99.76% for sagittal images, and 99.36% overall. Furthermore, a comparative 
analysis demonstrated in Table 1 with existing studies showcased the 
competitive performance of the proposed model.

FIGURE 2

Grad-CAM visualisation for MS class on an image from Muslim et al. [5].



Medical Image Understanding and Analysis

73 frontiersin.org

TABLE 1: Comparison of model performance with existing studies

Study Dataset Accuracy 
(%)

Methodology XAI 
Method

Eitel et al. [1] Overall dataset 87.04 CNN LRP

Lopatina  
et al. [3]

Overall dataset 91 to 95 CNN Attribution 
algorithms

Axial plane images 98.37 (ExMPLPQ,

Macin et al. [4] Sagittal plane images 97.75 INCA, No

Overall dataset 98.22 KNN)

Axial plane images 99.76 (exemplar  
MobileNetV2,

Ekmekyapar 
et al. [2]

Sagittal plane 
images

99.48 IMrMr, No

Overall dataset 98.02 KNN)

Axial plane images 99.82

Our Work Sagittal plane images 99.76 EfficientNetB1 Grad-CAM

Overall dataset 99.36

Conclusion 
In conclusion, this work presents an approach to the diagnosis of multiple 
sclerosis using eXplainable Artificial Intelligence techniques to improve the 
explainability of the model. Achieving higher classification accuracy than 
existing work on the same dataset with Grad-CAM integration provides 
valuable insights into the decision-making process, highlighting potential 
biases and irrelevant features learned by the model. By addressing these 
issues, this research underscores the importance of transparent and 
interpretable models in medical diagnostics. Furthermore, it demonstrates 
robust performance on a separate unseen dataset and affirms its 
generalizability. 

Looking ahead, future research will explore the incorporation of multiple 
modalities and advanced XAI techniques to further improve diagnostic 
accuracy and broaden the scope of our findings. Clinical user evaluation will 
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also be performed in collaboration with clinicians to develop methods and 
metrics toward clinical interpretability.
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