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Energy-Aware Al-Driven Framework for
Edge-Computing-Based IoT Applications

Muhammad Zawish

, Graduate Student Member, IEEE, Nouman Ashraf, Member, IEEE,

Rafay Igbal Ansari, Senior Member, IEEE, and Steven Davy, Member, IEEE

Abstract—The significant growth in the number of Internet
of Things (IoT) devices has given impetus to the idea of edge
computing for several applications. In addition, energy har-
vestable or wireless-powered wearable devices are envisioned
to empower the edge intelligence in IoT applications. However,
the intermittent energy supply and network connectivity of such
devices in scenarios including remote areas and hard-to-reach
regions such as in-body applications can limit the performance
of edge computing-based IoT applications. Hence, deploying
state-of-the-art convolutional neural networks (CNNs) on such
energy-constrained devices is not feasible due to their computa-
tional cost. Existing model compression methods, such as network
pruning and quantization can reduce complexity, but these meth-
ods only work for fixed computational or energy requirements,
which is not the case for edge devices with an intermittent energy
source. In this work, we propose a pruning scheme based on
deep reinforcement learning (DRL), which can compress the CNN
model adaptively according to the energy dictated by the energy
management policy and accuracy requirements for IoT applica-
tions. The proposed energy policy uses predictions of energy to
be harvested and dictates the amount of energy that can be used
by the edge device for deep learning inference. We compare the
performance of our proposed approach with existing state-of-the-
art CNNs and data sets using different filter-ranking criteria and
pruning ratios. We observe that by using DRL-driven pruning,
the convolutional layers that consume relatively higher energy are
pruned more as compared to their counterparts. Thereby, our
approach outperforms existing approaches by reducing energy
consumption and maintaining accuracy.

Index Terms—Artificial intelligence (AI), edge computing,
energy efficiency, Internet of Things (IoT).

I. INTRODUCTION

IFTH-GENERATION (5G) wireless networks aim at sup-
Fporting new applications and have given impetus to the
evolution of the Internet of Things (IoT). The advancement
toward sixth-generation (6G) networks will be empowered by
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solutions where IoT devices will play a significant role [1]. The
rapid growth in the number of connected devices for applica-
tions, such as smart homes, smart cities, and wearable devices
for healthcare has led to the utilization of edge computing,
especially for scenarios with strict requirements of latency,
reliability and energy efficiency [2], [3]. Moreover, the artifi-
cial intelligence (Al)-based solutions will play a key role in
improving the key performance indicators (KPIs) in future 6G
networks [4], [5].

European Telecommunications Standard Institute (ETSI)
introduced the architecture that utilizes edge computing [6],
leading toward the development of edge computing-assisted
applications. The idea was to delegate the computation to the
edge devices instead of undertaking them at the base station
(BS). As a result, the data is processed near the source hence
ensuring the security and low-latency decisions by saving the
energy required for wireless transfer of data to the cloud. The
edge devices with computing capability are in close vicinity of
the end users, which allows them to realize several applications
such as smart agriculture [5]. Despite the fact that due to edge
computing, wearable devices are getting more realizable and
inexpensive, Al-based applications that normally need greater
processing resources may overload them with more data trans-
fers and, as a result, increased energy consumption. However,
as most edge devices (due to their mobile nature) are pow-
ered by batteries, their energy resources and operational hours
are limited. Similarly, if enough battery power is not available
for task transmission, compute performance may suffer. Thus,
the computing capability and transmissions from edge devices
heavily depend on the energy available at the device. This issue
can be solved by using a bigger battery or charging it more
frequently. The tiny size of edge or IoT devices, on the other
hand, makes it difficult to equip them with bigger batteries or
to recharge their batteries on a regular basis. Energy-harvesting
technologies have been recognized as possible ways of increas-
ing battery life and achieving energy-autonomous systems in
order to meet these difficulties [7].

In several circumstances, the energy harvesting process may
be affected by unpredictable extraneous environments, such as
fluctuating solar irradiance in the case of solar energy harvest-
ing. Furthermore, energy cannot be harvested at all times (such
as at night), and the pace at which energy may be generated is
restricted. The edge-computing enabled IoT devices with low
energy consumption may incur long delays since the energy is
not completely utilized to transmit at high data rates or com-
pute at full capability, and the devices may miss recharging
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Fig. 1.

opportunities owing to battery capacity restrictions. However,
excessive energy usage may result in poor capability and lead
to connections for brief periods of time [8]. Furthermore, total
exhaustion of the battery restricts the computation of edge
devices, which may be critical in particular applications. As
a result, energy-neutral consumption strategies are necessary
to avoid energy depletion, to ensure edge device performance
for an extended period of time by balancing the aforemen-
tioned conflicting objectives, and maximizing the application
performance.

To deal with the aforementioned scenario, this work focuses
on energy-constrained IoT-enabled edge devices used for mon-
itoring, especially in scenarios with intermittent energy supply
and network connectivity. It is to be noted that the proposed
approach applies to both energy-harvestable IoT devices and
wireless-powered IoT devices. The utilization of edge devices
such as wearables or unmanned aerial vehicles (UAVs) for
monitoring has led to the development of several IoT appli-
cations [9]. Such edge devices can help to monitor the
environment, capture images, and video, and process the data
before sending it to the cloud [10]. Fig. 1 presents several
edge-Al applications for IoT.

Convolutional neural networks (CNNs) are among the fore-
most Al algorithms for processing the raw data generated from
the edge nodes and providing valuable insights. However, their
computational complexity makes them practically infeasible
for the aforementioned energy-constrained applications. Thus,
state-of-the-art CNNs, such as VGG-16 [11] or ResNet [12]
are required to be compressed according to intermittent
requirements of edge devices. IoT-enabled edge nodes can
be deployed either in isolated or outlying regions, such as
in a rural environment, or are geographically spread in an
area [3], [13], [14], thereby having limited network connectiv-
ity and energy supply. As a result, preventing increased energy

Proposed energy-aware DRL-driven model compression and battery managemet scheme for Edge-Al enabled IoT applications.

usage and communication costs is a complex and demanding
problem that needs to be addressed. In such scenarios, there
is a need for an adaptive Al-driven scheme that can compress
a CNN model dynamically based on the energy availabil-
ity status. Deep reinforcement learning (DRL), a category of
Al, has recently gained attention for utilization in systems
having dynamic requirements. Thereby, this work focuses on
a framework comprising DRL-driven adaptive model com-
pression that can be helpful in realizing energy-constrained
edge-empowered IoT applications.

Recent studies on CNN compression are mainly based on
filter pruning [6], [15], [16], [17], [18], [19], [20], weight
pruning [21], [22], [23], and quantization [22], [24]. These
approaches either proposed a complex filter-ranking criteria
or a joint multistage offline framework for reducing floating-
point operations (FLOPs)/memory. These approaches are only
suitable when a certain application has a fixed accuracy-
complexity requirement. However, they do not cater for to
the needs for applications of IoT, where resource require-
ment changes dynamically. In contrast, this work aims to
propose a solution based on DRL, where any pretrained
CNN can be pruned dynamically with the best accuracy and
energy tradeoff. The proposed framework consists of two
parts: 1) intelligent energy management and 2) energy-aware
intelligent edge computing. The formal is based on modeling
the battery of the edge device as a linear queue accommo-
dating energy charges [25]. For this energy queue model,
we use Model Predictive Control to design a control algo-
rithm, which considers the prediction of energy to be harvested
and regulates the output energy of the battery to a predeter-
mined level [8]. This regulation of energy makes sure that
the edge device always has energy available for its crucial
operation. Our second algorithm takes the energy availability
status parameter from the energy management system (EMS)
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and accuracy requirement as input and prunes the CNN model
iteratively until the desired accuracy-energy requirements are
met. Then, the CNN model can be executed, for instance, on
an energy-constrained wearable edge device deployed on or
in the body of a human or an animal. The remainder of this
article is organized as follows. We review the related literature
in Section II, followed by the contribution and significance of
this work. Sections III and IV describe the proposed approach
and its performance evaluation, respectively, followed by a
conclusion in Section V.

II. RELATED WORK AND CONTRIBUTIONS
A. Compressing CNNs for Edge Devices

In recent years, various techniques have been proposed to
optimize CNNs for resource-constrained edge devices. For
example, network pruning [15], [16], [18], [22], [24], [26],
quantization [22], and light-weight structure design [27] are
a few techniques widely used for compressing or redesign-
ing the CNNs. Network pruning has recently gained attention
for reducing the complexity of CNNs without significantly
degrading the performance. Several works propose techniques
for identifying and removing unimportant weight connec-
tions to prune CNNs in an unstructured manner. For exam-
ple, [21], [22], [23], demonstrated the significant compression
on unstructured pruning of AlexNet, VGG-16, and ResNets.
However, their proposed work underpins highly sparse mod-
els, which are complex to fine-tune and require additional
time for hyperparameter optimization. In contrast, filter prun-
ing was proposed to maintain the structured sparsity in CNNss.
Therefore, it does not require any custom hardware or soft-
ware for the execution, unlike weight pruning. For this reason,
in this work, we focus on exploiting the idea of structured
pruning using DRL.

B. CNN Pruning Schemes

Several techniques have been proposed to identify the unim-
portant filters in a convolutional layer, such as £;-norm [16],
APoZ [15], Taylor expansion [17], and mean activation [26].
According to Hu et al. [15], eliminating those filters whose
feature maps have the highest average percentage of zero acti-
vations leads to a compact model. Similarly, Li et al. [16]
proposed to calculate the magnitude of filters using ¢{-norm,
and removed filters with least £;-norm. However, these meth-
ods follow a one-shot pruning mechanism and yield a model
with strict resource requirements. On the other hand, some
studies proposed iterative pruning [6], [18], [19], where a
model is compressed iteratively with a small pruning ratio
to achieve the resource-accuracy tradeoff. Keeping in view
the idea of hand-crafted complex filter ranking techniques,
Mittal et al. [28] suggested that pruning filters randomly can
also achieve similar performance as state-of-the-art ranking-
based techniques. Thereby, a ranking framework does not
essentially contribute to the performance of CNNs, and it is
the plasticity of CNNs which helps them to recover after fine-
tuning [28]. However, these works prune filters either from
all layers or on an ad-hoc basis. As a result, this approach
is not rationalized because each layer has a different level of
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complexity. In this work, we overcome it by compressing each
layer with respect to its defined complexity, i.e., energy in our
case.

C. DRL-Based CNN Compression

Recently, DRL-based techniques have emerged to auto-
mate the optimization of CNNs using policies, such as
deep deterministic policy gradient (DDPG), Q learning,
etc. [29], [30], [31]. Most of these techniques are focused
on generating or searching the architecture of CNNs using
the agent’s search space. However, there is limited work
available on DRL-based pruning (DRLP) mechanisms. For
instance, Zhan et al. [24] recently proposed a two-stage frame-
work based on joint optimization of CNNs using pruning
and quantization. The authors use a DRL agent to sample
the sparsity ratio for a certain layer based on an observa-
tion vector consisting of layer properties. However, the above
works are only theoretically acceptable because they do not
consider the dynamic resource requirements of mobile edge
devices. In this work, we address the aforementioned prob-
lems by proposing a DRL-based automatic pruning scheme
for CNNs where the model will be compressed according to
the dynamic energy requirements of the device. Moreover,
unlike previous studies, our DRL agent selects a particular
layer for pruning based on its energy proportion with respect
to the CNN’s energy. The proposed technique can be par-
ticularly helpful in edge-empowered IoT applications, such
as healthcare and agriculture, where intermittent energy and
network conditions necessitate the need for a dynamic CNN
compression approach.

D. Novelty and Significance of the Proposed Solutions

In this work, we propose a DRL-based CNN model com-
pression to enable edge-Al in IoT applications. To summarize,
following are the key contributions of this work.

1) We present an energy management strategy that uses
the prediction of energy to be harvested and regulates
the output power of the battery by using the Model
Predictive Control method.

2) We propose a novel DRLP scheme, which prunes the
model iteratively to meet the dynamic energy require-
ments of the energy-constrained edge devices for IoT
applications.

3) We demonstrate the significance of the DRLP in two
aspects: a) a CNN model is compressed automatically
for immediate execution on edge devices based on the
energy-accuracy criteria and b) the pruning mechanism
considers the underlying energy of each layer in the
CNN model and prunes a certain layer based on its
proportion to overall model complexity.

4) We evaluate the performance of our approach through
extensive simulation experiments and compare it with
state-of-the-art methods on various filter-ranking mech-
anisms and pruning ratios using standard CNN models
and benchmark data sets. It can be observed from
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the results that our approach outranks other state-of-
the-art methods on model pruning in terms of the
energy-accuracy tradeoff.

5) We integrate energy management policy with our
proposed DRLP method and perform extensive simu-
lations to demonstrate the combined performance of the
method by using realistic data of energy.

It is to be noted that the contribution of this work not
only lies in proposing the use of energy-aware DRL for
CNN compression but also in proposing a mechanism for
adaptive on-demand compression of CNNs, which has not
been explored in literature. In the subsequent sections, we
present the methodology of our proposed framework and pro-
vide details on the energy consumption of CNNs and the
energy-aware DRLP scheme. Moreover, the energy manage-
ment scheme in this work is based on our previous work in [8];
however, in this work, instead of considering the case of IoT
devices, we integrate this energy management strategy with
edge computing-based [oT devices.

III. PROPOSED ENERGY-AWARE SCHEME

The framework for the energy-aware DRL-driven model
compression and battery management is shown in Fig. 1. In
the proposed model, we consider energy harvesting enabled
edge devices, where these edge devices harvest ambient energy
from the surrounding environment. The proposed framework
consists of two parts: 1) a battery management policy and
2) an energy-aware DRLP scheme. Our energy management
policy is responsible for monitoring the intermittent energy
status of a certain edge device that is empowered with bat-
tery and solar power. The EMS regulates the available energy
required for the execution of a CNN model on the edge devices
for a certain IoT application [8]. The proposed DRLP model
then considers the status of the energy system with intermit-
tent energy supply and provides a compressed CNN model
in return for execution. In contrast to existing compression
schemes, our DRLP scheme prunes a pretrained CNN in an
energy-aware manner such that each layer of CNN is pruned
according to its weightage in the overall energy complex-
ity of CNN. The DRL model needs to be pretrained on the
GPU or a cloud server before deployment on the edge device.
Then, any CNN model can be compressed using the proposed
DRLP on the device itself without further training/fine-tuning
and made available immediately for inference on edge, unlike
offloading to the cloud. It has been reported in several stud-
ies that offloading inference tasks to the cloud requires orders
of magnitude more energy than local inference on energy-
harvesting edge devices [13], [23]. Therefore, the proposed
scheme avoids computational offloading to cloud, hence reduc-
ing the energy expenditure required for it. In subsequent
sections, we first present our energy management scheme.
Second, we analyze the energy consumption of CNNs, fol-
lowed by a comprehensive description of the proposed DRLP
scheme. We demonstrate the DRLP scheme with an under-
standing of state, action, and reward functions curated for this
task. The summary of notations is presented in Table I.

IEEE INTERNET OF THINGS JOURNAL, VOL. 10, NO. 6, 15 MARCH 2023

TABLE I
SUMMARY OF NOTATIONS

‘ Notation Definition
Pin(t) Rate of the energy entering the battery
Pou (1) Rate of the energy leaving the battery
Pin (1) Predicted rate of the energy to be harvested
M Number of samples in the prediction horizon
e(t) Energy stored in the battery
MFErops Total FLOPs for CNN model M with K conv layers
Mpremory Total memory for CNN model M with K conv layers
MEnergy Total energy for CNN model M with K conv layers

Cin Number of input channels

Number of input channels

Size of filters in the output layer

Sout Size of feature maps in the output layer

Cour
Q2

ErLopr Energy required for a single FLOP
Euccess Energy required for DRAM access
P, Pruning ratio

A. Energy Management of Energy Harvestable Edge Device

In this section, we present our energy management frame-
work for edge-enabled IoT devices. We model a battery of
edge-enabled IoT devices as a queue that stores energy pack-
ets. To represent the energy queue, we adopt the queuing
dynamics model shown below. The model relies on fluid flow
principles

e(t) = Pin(1) — Pout(1) ey

where Pj,(f) denotes the rate of energy entering the battery,
e(t) represents the energy stored in the battery queue, and
Py denotes the rate of energy exiting the battery. The energy
Pout s used for edge-enabled IoT device operation and affects
the computation capability of the edge device. Our goal is to
regulate the state of the above-defined queue or battery to a
target level by controlling Poy. The control of the battery to
a predetermined reference value ensures the device’s contin-
uous lifespan. In other words, Poy is controlled by pruning
the CNN model. To regulate the battery to a predefined ref-
erence value, we use the Model Predictive Control to dictate
the value of Py at every instant. We formulate the problem
as the following optimization problem:

P = max min Pout (k) 2)
Pou(k)  k=1--M
subject to
e(k+1) = e(k) + Pin(k) — Pou(k) for k=1.--M (3)
Pin(k) = Pin(k) for k=1---M (4)
e(min) < e(k) < e(max) for k=1---M (®)]
Pout(k) >0 for k=1---M (6)

where M in the number of samples in prediction horizon,
Pin(k) and Poy (k) are the corresponding discrete time vari-
ables for Pj,(7) and Poy (7). e(min) and e(max) are the capacity
constraints of the battery. It is to be noted that (3) represents
the discrete time version of the battery model presented in (1)
and the constraint in (4) defines the prediction of the energy to
be harvested. Constraints in (5) are the bounds on minimum
and maximum energy storage level of the battery such that
charge stored in the battery can never be negative and always
bounded by a maximum capacity value. Similarly, constraint
in (6) makes sure that energy leaving the battery is always
positive and battery supplies energy to the device.
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B. Energy Consumption of CNNs

A standard CNN is composed of multiple convolutional and
fully connected layers piled up in a vanilla shape. Among all
layers of a CNN, convolutional layers perform the bulk of the
computations, thus requiring higher energy for execution on
low-powered IoT devices. A convolution operation is a basic
element in a standard CNN whose kernels are defined by a 4-D
tensor: W € RCn*XXYxC "ywhere X and Y represent kernel’s
spatial dimensions, while Ci, and Cyy; are the number of input
and output channels, respectively. If I € RE*U*V are the input
feature maps with a spatial dimension of U and V, then the
output feature map f with the spatial dimension (x, y) can be
calculated using

c X v
T(f,x,y) = ZZ Zl(c,x—x/,y—y/) “W(e,x,y.f).
c=1x=1y=1

)

Thereby, for a CNN model M with K convolutional layers,
the FLOPs can be calculated using

K
2
MrLops = Z[Cikn X (Qk) X Chuy X S’ém]~ ®)
k=1
Similarly, the memory consumption for a CNN model M
with K convolutional layers can be calculated using

K
2
Mbemory = [c{‘n x (Qk) x Ck % 4}. )
k=1

However, the energy requirement of a CNN is not only
reflected by memory and FLOPs. In fact, the total energy
consumption of a CNN is a sum of energy consumption in
accessing the data and energy consumption in executing arith-
metic operations. The former is a product of energy required
for DRAM access (referred as Ejyccess) in a 45-nm CMOS, i.e.,
640 pJ [23] and model memory, while the latter is a product
of energy required for a single FLOP (referred as Epiop), i.€.,
2.3 pJ [23] and model’s total FLOPs. Thus, the energy con-
sumption for a CNN model M with K convolutional layers
can be calculated using

K
MEnergy = Z[(MMemory X Eaccess) + (MgLops X EFLOP):I
k=1
(10)

where Ci, and Cyy are the number of input and output chan-
nels, respectively, while Q2 and Sou represent the size of
filters and size of feature maps in the output layer, respectively.
Moreover, MgLops, MMemory, and MEnergykdenote tkhe model’s
total FLOPs, memory, and energy. The M, , M , and
ME denote the rl)c]th layer’ gIZLOP oo Me(rf en

Eneray yer’s s, memory, and energy,
respectively. In this regard, we describe our pruning scheme

in the subsequent section concerning the Mg, ... and MEnergy-

C. DRLP: Deep Reinforcement Learning-Based Pruning

In this section, we describe our pruning scheme based on
the actor-critic DRL approach. Unlike previous approaches,
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where the focus has been to obtain the pruning rate for each
layer using DRL, we propose pruning of a particular layer
based on its energy consumption using DRL. Hence, this
approach is termed energy-aware pruning because it automat-
ically caters to the individual layer’s complexity instead of
manually selecting a layer as done in existing methods. We
leverage the actor-critic DRL approach that learns the optimal
policy through deep neural networks (DNNs) and solves the
layer-pruning problem with continuous action spaces. The
actor-critic approach utilizes two DNNSs; one serves as an actor
network, while the other serves as a critic network. The actor
network learns to take actions based on the policy gradient
method and updates the actions given the evaluation from the
critic network.

1) Actor, Critic, and Replay Memory: In our case, the actor
DNN is responsible for producing labels on its output layer,
which are modeled in continuous action space. The output
on each node is quantized to either O or 1 for the corre-
sponding layer, and the total output nodes are equal to the K
convolutional layers for a particular CNN. The actions are gen-
erated using a parametrized function 7 (s; ¥), where ¢ denotes
the weight matrix of DNN. As the objective is to maximize
the potential discounted reward J(x), thus the weight ¢ is
updated according to the direction of the objective function,
Vo (my) [32]

aJ om
IR
where Q(s, a; 0) is produced by critic which denotes the Q
value for each state and action pair, 8 is the weight matrix
of the critic’s DNN. Following equation is used to update the
parameter ¥ for actor DNN:

» = Va0(s, & 0) Vo (s) (1n

9 < 9 +agVe (12)

where «, denotes the learning rate and is one of the hyper-
parameters of the actor. Using (12), the local optimum for
the objective function J(;r) can be achieved over a number of
iterative parameter updates. Meanwhile, the critic DNN keeps
evaluating the actor’s actions by monitoring the state-action Q
value function Q(s, a; 6) that is responsible for updating the
actor DNN’s weight 8 as shown in (11) and (12). The main
objective of critic DNN is to minimize the temporal difference
error §(¢) [33]

8(1) = —c(t+ 1) +yQ(st+ 1), a(t + 1); 6) — Q(s(1), a(1): 6)
(13)

where y is the discount factor which defines the significance
of future rewards. Similar to above equations, 6 for critic DNN
is updated in the direction of its temporal difference objective

0 < 0 +a:.Ves(t) (14)

where «, acts as a learning rate hyperparameter for critic
DNN. Moreover, during the training of actor and critic DNNSs,
training samples are stored in a finite-sized first-in-first-out
(FIFO)-based replay memory. At each time epoch ¢, training
samples (s(?), a(t), c(t), s(t+ 1)) are stored in this cache once
the actions are made by the actor. Simultaneously, a mini-
batch is sampled from the replay memory at each time epoch
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to update weights ¥ and 6 are updated to train the DNNs of
actor and critic.

2) State, Action, and Reward: The proposed agent inter-
acts with the environments, takes the state as an input, and
produces action as an output that maximizes the reward. In
our case, the environment is a CNN model. Thus, at a given
time instant #, the proposed actor-critic DRL model takes state
space s(¢) from the environment. After observing the environ-
ment at a time unit #, the DRL model takes the following set
of parameters as a part of the state:

k k k k+1 ~k+1
s = {[lk, Chys Chus Mgy R |- [T, € S,

k+1 K K K
ML Rk+l], . [IK, CK, O ME gy RK] }
t
15)
where I, Cikn, and CX,, denote the index, input channels,

and output channels of layer k, respectively. Ménergy is the
current energy status of layer k, while Ry is the energy pro-
portion of layer k in the overall CNN with K layers. The core
idea behind providing these features of individual layers is to
assist the agent in differentiating one convolutional layer from
the other. Moreover, Ml]gnergy and Ry particularly enhance the
agent’s ability to select a layer based on its underlying energy
contribution to the model complexity.

Given the state space, the agent provides an action based
on the policy defined above. The agent is required to decide
whether a particular layer (k) should be selected for pruning
or not in each iteration (i.e., ax € {0, 1}). Since there are 2K
possibilities of selection strategies, thus the number of out-
put nodes in actor DNN can be calculated as 2K, Thereby,
the complexity of actor DNN exponentially increases with the
number of layers (K) in a particular CNN. To overcome this,
we model the actions in a scalar continuous action space which
can be represented as ax € [0, 1]. Then, the selection decision
for a certain layer is quantized to O or 1.

Finally, we model our reward function, which is inspired
from [29] to evaluate the performance of the actor-critic com-
pression policy. In [29], the reward function is synthesized in
a way that it offers an incentive for not only maintaining the
accuracy but also reducing the FLOPs or model size. However,
the alternative reward function reward = —Error aggressively
compresses the model without incentivizing the complexity
reduction. Moreover, it has been empirically observed that
Accuracy is directly proportional to the Mgnergy. Thus, in our
case, we model the reward function to incentivise both fac-
tors: reward = —Error - 10g(MEnergy). This reward function is
constrained to not only —Error, but also the Mgyergy. Hence,
the model is compressed, taking care of the dynamic accuracy
and energy budget required for a certain IoT application.

IV. EXPERIMENTS AND RESULTS

In this section, we first discuss the experimental setup and
analyze the impact of the DRLP scheme on energy, FLOPs,
memory, and filters in each convolutional layer for differ-
ent pruning ratios. Next, we evaluate the performance of our
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proposed DRLP model in terms of accuracy and energy trade-
offs over several iterations and pruning ratios with three filter
pruning mechanisms, i.e., £1-norm, Taylor expansion, and ran-
dom. Finally, we compare our model with state-of-the-art
pruning techniques on different data sets and models.

A. Experimental Setup

We train our actor and critic networks with a learning rate
of 1 x 1073 and batch size of 100 on approximately 5000
episodes. Both DNNSs are initialized with three fully connected
hidden layers having sigmoid as an activation function. The
input layer has a dimension equal to the number dimension
of input states, while the output layer has a dimension equal
to the number of layers in a CNN under observation. We
perform all experiments using Keras deep learning API with
Tensorflow as the backend. We pretrained the above mod-
els on an Nvidia Tesla K20 GPU machine with 8 GB of
memory having Ubuntu 18.04 OS with Tensorflow version
1.15, Keras version 2.2.4, and Python version 3.6.12. All mod-
els are trained with data augmentation and follow the setup
described in [18]. In the following sections, we mention some
of the prominent CNN models and data sets which are con-
sidered to evaluate the proposed DRLP scheme. However, the
approach can be extended to more similar CNNs and data sets.

1) DNN Models: We performed experiments on AlexNet,
VGG-16, ResNet-18, and ResNet-32 which are usually consid-
ered the standard CNNs for benchmarking model compression
approaches. AlexNet and VGG-16 were originally proposed
for the ImageNet data set [11], [34], but several studies
have reported their promising performance on CIFAR-100 and
CIFAR-10 data sets. The topology of AlexNet is composed of
five convolutional layers, followed by three fully connected
layers. In comparison, VGG-16 is a slightly wider and deeper
model consisting of 13 convolutional and three fully connected
layers stacked on top of each other. In both models, ReLu acti-
vation is used in all layers except the last layer, which involves
softmax as an activation function and represents the number
of classes in a specific data set, e.g., 100 for CIFAR-100.
We also consider ResNet-18 and ResNet-32, which are among
the prominent models of the ResNet family. In general, both
ResNet-18 and ResNet-32 begin with a convolutional layer fol-
lowed by several parallel branches of layers along with skip
connections and a fully connected layer in the end. However,
ResNet-18 consists of eight residual units, and ResNet-32 con-
sists of 15 units, and each residual unit is made up of two
convolutional layers.

2) Data Sets: We use two data sets from CIFAR for the
evaluation, namely, CIFAR-10 and CIFAR-100, which are the
standard data sets for benchmarking pruning techniques. Both
data sets consist of 60000 digital images of size 32x32, with
50000 images as a training set and 10000 images as a test
set. In CIFAR-10, there are ten classes, and each class has
5000 training and 1000 test images, while CIFAR-100 has
100 distinct classes, and for each class, there are 500 train
images and 100 test images. In the subsequent, we present the
performance evaluation of our proposed DRLP scheme.
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B. Performance Evaluation

The aim of our DRLP scheme is to automatically produce
a compressed model given the dynamic energy requirements
of edge devices in IoT. Hence, to validate the objective
of our DRL model in terms of energy-aware pruning, we
evaluate it on VGG-16 on CIFAR-10, as shown in Fig. 2.
We perform pruning up to ten iterations with pruning ratios
P, ={0.1,0.3, 0.5}. Fig. 2(a)—(d) show the layer-wise energy,
filters, FLOPs, and memory reduction for VGG-16, respec-
tively. The x-axis shows the indices of the convolutional layers
in the corresponding CNN, while the y-axis shows: 1) the
energy consumption; 2) number of filters; 3) FLOP count; and
4) memory consumption for each layer.

In contrast to typical pruning methods where layers are
pruned according to the proportion of filters they carry, our
proposed model prunes a certain layer based on the amount
of energy it consumes. More importantly, a layer with more
filters does not necessarily consume more energy. In fact, the
energy consumption of each layer is constituted of not only
the FLOP counts but also the memory access. Therefore, the
energy required for accessing data from the DRAM for a
certain operation is higher than the energy required for the
operation itself. As a result, DRAM access for both feature
maps and filter weights dominates the overall energy con-
sumption of a CNN. It can be observed in Fig. 2 that a
few layers consume the same amount of energy regardless
of an unequal number of filters. This inconsistent distribu-
tion of energy and filters over layers is due to the impact of
intermediate feature maps among layers. For instance, there
is a slight reduction in the energy of conv_2d_11 despite the
negligible reduction in filters. This type of scenario justifies
the aforementioned arguments as energy is reduced only due
to the reduction in FLOPs of the corresponding layer, which
is a result of the change in feature maps from the preceding
layer.

(a) Energy consumption, (b) filters, (c) FLOPs, and (d) memory over 13 conv layers of VGG-16.

We also evaluate the DRL model with different filter
importance measure techniques. The proposed model is able
to work with a wide range of filter ranking techniques;
however, we evaluate it on following three state-of-the-art
procedures.

£;-norm [16]: In this method, the relative importance of
a certain filter F in each layer is measured by summing its
absolute weights Y |F| which results in its £;-norm (||F||1).
In the next step, filters are sorted according to £;-norm
value, and a percentage of filters with the smallest value are
pruned.

Taylor Expansion [17]: For a training data set D and loss
function C, this method aims to prune a model in such a way
that the change in loss | AC | is minimal once the model has
maximum nonzero feature maps. The | AC | after eliminating
h; j feature maps (i.e., obtained from parameters i, ) can be
calculated using

| AC(hi’j) =] C(D, hij = 0) — C(D, hi,j) | (16)
where C(D, h; ;) and C(D, h; j = 0) are losses with and with-
out considering feature maps A; j, respectively. The loss with
h; j included can be calculated with

sC
C(D7 hij = O) = C(D, hi’j) — %hi,j + Ry (hi,j = 0)

where R;(h;j = 0) is the first-degree remainder of the Taylor
expansion. We can ignore Ry, since this method considers only
the first degree estimation, thus, (16) can be transformed as
follows:

6C 6C
| AC(h,-,j) |= C(D, hi,j) — —hij— C(D, hi,j) =|hi;

where | AC(h;;) | denotes the importance of filter w;; asso-
ciated with feature map 4, j, and both (8C/8h; ;) and §C can
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Fig. 4. Energy-accuracy tradeoff on ten pruning iterations and (a) P, = 0.1, (b) P, = 0.3, and (c) P = 0.5 for VGG-16 on CIFAR-10.

be obtained during the feed-forward and back-propagation of
CNN by providing sufficient samples.

Random Pruning [28]: In this approach, filters are nei-
ther ranked nor hold any kind of importance metric to get
eliminated from the layers. However, as opposed to ranking-
based techniques, this method encourages randomly pruning a
required percentage of filters from any layer without additional
calculations.

We evaluate the effectiveness of aforementioned approaches
on our compression scheme by pruning the AlexNet and
VGG-16 up to ten iterations with pruning ratios P, =
{0.1,0.3,0.5} as shown in Figs. 3 and 4, respectively. For
Fig. 3(a), after soft pruning with P, = 0.1, there is 33.6%,
27.5%, and 35.5% energy reduction and 2.4%, 3%, and 7.4%
accuracy loss using £1-norm, random, and Taylor expansion
approaches, respectively. Similarly, in Fig. 3(c), with a rel-
atively higher pruning ratio P, = 0.5, we observe 75.3%,
74%, and 75.5% energy reduction and 6.3%, 7.2%, and
16.3% accuracy loss using £1-norm, random, and Taylor
expansion approaches, respectively. This behavior is con-
sistent for the VGG-16 as well, which can be seen in
Fig. 4(a)—(c). For the proposed scenario, it is obvious that
£1-norm and random schemes are efficient, and Taylor expan-
sion failed to minimize the accuracy loss. However, £1-norm
involves some calculations that essentially increase the com-
pression scheme’s overall computation time. In contrast,
randomly pruning does not incur additional computations
but still performs consistently with £i-norm. Therefore, it
can be concluded that the proposed DRL model should
incorporate either random pruning or £j-norm (if latency

can be tolerated) to efficiently tradeoff between energy and
accuracy.

C. Comparison With State-of-the-Art

We compare our approach with state-of-the-art pruning
approaches on two types of networks: 1) simple CNNs
(AlexNet on CIFAR-100 and VGG-16 on CIFAR-10) and
2) Residual networks (ResNet-18 on CIFAR-10 and ResNet-32
on CIFAR-100). We use the same environment, preprocess-
ing, and hyper-parameter tuning to get the baseline accuracy
and energy. To reproduce [6], [18], [19], we follow the given
guidelines and prune the model without fine-tuning it to syn-
chronize with the proposed scheme. Thus, the accuracy can
be different from the one mentioned in the original papers, as
they all fine-tune the networks once they are pruned, which is
not the case in our scenario.

1) VGG-16 on CIFAR-10: As shown in Fig. 5(a), the base-
line accuracy for VGG is 88.06%, and the original model
consumes approximately 1520 wJ. Our approach achieves the
best tradeoff between loss in accuracy and energy reduction
with £1-norm and P, = 0.3 by reducing 40% energy and los-
ing only 0.6% accuracy. However, [6], [18] reduce relatively
more energy but fail to gain any improvement in accuracy.
Moreover, [19] loses 1.2% accuracy, which is relatively lesser
than [6], [18] but can only reduce 11% energy.

2) AlexNet on CIFAR-100: The baseline accuracy for
AlexNet is 89.71%, and the uncompressed model consumes
approximately 527 uJ as shown in Fig. 6(a). Reference [6] is
able to reduce 72% of model energy aggressively as compared
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Fig. 6. Comparison of DRLP with state-of-the-art on (a) AlexNet-CIFAR-100 and (b) ResNet-32-CIFAR-100.

to [18] and [19], but in return, it loses 6.5% of accuracy. In
contrast, our approach with ¢;-norm and P, = 0.5 is able
to reduce 75.3% of energy with only 6.3% of accuracy drop.
Similarly, with random pruning and P, = 0.1, our approach
performs better than [19] by reducing 27.5% of energy with
a minimal drop of 3% in accuracy.

3) ResNets on CIFAR-10 and CIFAR-100: We choose two
well-known models from the ResNet family, i.e., ResNet-
18 and ResNet-32, trained on CIFAR-10 and CIFAR-100,
respectively. In general, pruning ResNets is challenging due
to their architecture comprising several parallel branches and
skip connections. Therefore, when dealing with such complex
architectures, there are some requirements to adhere to as a
result of interlayer dependencies.

For this reason, our DRL model does not select any layer
with shortcut connections for pruning in order to maintain
the structure in ResNets. The baseline ResNet-18 model has
92.61% accuracy and it consumes approximately 77 ul as
shown in Fig. 5(b). For ResNet-18, our approach achieves
best tradeoff by gaining 0.45% of accuracy and reducing
43% of energy using £i-norm with P, = 0.3. On the other

hand, among state-of-the-art approaches, only [19] is able to
gain 0.4% of accuracy but with minimal energy reduction.
Moreover, the original ResNet-32 model has 93.72% accu-
racy and consumes approximately 16 uJ of energy, as shown
in Fig. 6(b).

Similarly, for ResNet-32, the best tradeoff is achieved by
our model with 0.7% accuracy gain and 40% energy loss
using £1-norm with P, = 0.3. In contrast, none of the state-
of-the-art approaches could gain accuracy after reducing the
energy. However, [6] is able to reduce the significant energy
for both ResNet-18 and ResNet-32 but slightly lower than
ours with random pruning and P, = 0.5. It is clear that at
a certain stage, our approach loses more accuracy by trading
off the energy consumption, which is consistent with state-
of-the-art studies. Therefore, as opposed to state-of-the-art,
our approach can be used with different ranking criteria and
pruning ratios to achieve the desired level of accuracy and
complexity. For example, based on the above discussion, if a
certain application can not tolerate a significant loss in accu-
racy but needs a reduction in energy, then either £;-norm or
random criteria can be used with a small P,, such as 0.1 or

Authorized licensed use limited to: Technological University Dublin. Downloaded on March 05,2024 at 15:47:54 UTC from IEEE Xplore. Restrictions apply.



5022

30 T 5
Predicted Pin .‘

— ——Actual P, ,’g —
_25¢ P i 1a )
o | | out il >
£ ——S0C \‘ g
- ! -
5 20 i g
> 3 c
S 15 o
5 5
3 2 8
S 10 2 @
o 002 >
T ; "% 28 o
o g Time (hours) 11 qc"
5 N T L

0 ’ 0

5 10 15 20 25 30 35 40 45
Time (hours)

Fig. 7. Performance of energy management scheme.

0.2. Alternatively, suppose the requirement of the application
is to lower the energy footprint without taking care of accu-
racy. In that case, the aggressive pruning can be done using
relatively larger P,, such as 0.4 or 0.5 with suitable ranking
criteria such as £;-norm/random in our case.

D. Performance Evaluation of Proposed DRLP Scheme in
Presence of EMS

In this section, we evaluate the performance of the proposed
DRLP in the presence of our energy management scheme.
In particular, we demonstrate that our proposed energy-aware
DRLP algorithm is efficient in adjusting the CNN model based
on the time-varying energy constraints which arise due to the
intermittent nature of harvestable energy. As discussed in the
previous sections, for energy management, we model the bat-
tery of the IoT device as a linear buffer, which stores packets
of the harvested energy. For the simulations, we are using real-
istic data for solar irradiance [7]. We use the Markov chain
to predict the amount of energy to be harvested [7]. Fig. 7
depicts the energy predictions for 48 h, where O h represents
midnight. Based on these energy predictions, our MPC-based
energy management controller regulates the output energy of
the battery (Poy:), which is used for the operation of IoT
devices, including the CNN model inferences. Fig. 7 shows
the time evolution of Py, which was dictated by our energy
management scheme and the corresponding residual energy of
the battery. It can be observed that based on the harvestable
energy predictions; our scheme is able to regulate the Py
in such a way that residual energy (State of charge: SOC)
in the battery is always above a predefined reference value
even for the time instants when there is no harvestable energy
available. This reference level was set to 2 J in our simula-
tions. Moreover, P, is always greater than zero, as shown in
the magnifying window of Fig. 7. This Py is the amount of
energy that is utilized for CNN-based inferences. As shown in
Fig. 7, the Py is time varying in nature, which will affect the
performance of the CNN model while performing the infer-
ence tasks. More precisely, for the particular time instance
where Py, is below the energy required for the CNN model,
it will fail to perform the given inference tasks. Therefore,
to overcome this, our proposed energy-aware DRLP scheme
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is able to compress the model so it can adapt according to
the time-varying nature of Py, at the cost of accuracy. To
demonstrate the effectiveness of the proposed approach, we
use the VGG-16 as the baseline CNN model, which is used to
perform the inference tasks. The DRLP scheme prunes the
VGG-16 model iteratively at every time instance until the
energy required for a certain number of inferences is less than
Poui. In Fig. 8, we show the tradeoff between energy and accu-
racy of VGG-16 over the 10, 50, and 100 inference tasks. It can
be seen that the energy required for performing ten inference
tasks by VGG-16 does not exceed the Pyy; hence the accu-
racy remains unaffected. In contrast, the energy required for
50 and 100 inference tasks exceeds the P,y at time instances
where the harvested energy is low. As a result, the number of
inference tasks can be reduced at time instances where Pqy; i
low and can be increased at time instances where Pqy; is high.

V. CONCLUSION

Edge computing is emerging as a prominent technique for
several [oT applications. However, edge devices that are respon-
sible for the execution of tasks are usually resource-constrained,
hence cannot afford the deployment of raw CNN models.
Therefore, this motivates a need for compressing the CNNs
before deployment. The existing techniques to reduce CNNs
complexity work on strict resource requirements and are not
suitable in environments with intermittent energy supply. In this
work, we considered an energy-aware Al-driven framework for
edge-computing-based IoT applications. The proposed DRLP
scheme can adapt according to the availability of energy. It
can compress the model on the device dynamically to provide
the best energy-accuracy tradeoff. Our results showed that the
proposed DRLP outranks other state-of-the-art approaches on
model pruning in terms of energy-accuracy tradeoff. In the
future, we intend to consider the combined performance of
our proposed scheme in the presence of an EMS.
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