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Article

Sustainable Mobility: Machine Learning-Driven Deployment of
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Abstract: Electric vehicle (EV) drivers in urban areas face range anxiety due to the fear of running
out of charge without timely access to charging points (CPs). The lack of sufficient numbers of CPs
has hindered EV adoption and negatively impacted the progress of sustainable mobility. We propose
a CP distribution algorithm that is machine learning-based and leverages population density, points
of interest (POIs), and the most used roads as input parameters to determine the best locations for
deploying CPs. The objects of the following research are as follows: (1) to allocate weights to the three
parameters in a 6 km by 10 km grid size scenario in Dublin in Ireland so that the best CP distribution is
obtained; (2) to use a feedforward neural network (FNNs) model to predict the best parameter weight
combinations and the corresponding CPs. CP deployment solutions are classified as successful when
an EV is located within 100 m of a CP at the end of a trip. We find that (1) integrating the GEECharge
and EV Portacharge algorithms with FNNs optimises the distribution of CPs; (2) the normalised
optimal weights for the population density, POIs, and most used road parameters determined by
this approach result in approximately 109 CPs being allocated in Dublin; (3) resizing the grid from
6 km by 10 km to 10 km by 6 km and rotating it at an angle of −350◦ results in a 5.7% rise in the
overall number of CPs in Dublin; (4) reducing the grid cell size from 1 km2 to 500 m2 reduces the
mean distance between CPs and the EVs. This research is vital to city planners as we show that city
planners can use readily available data to generate these parameters for urban planning decisions
that result in EV CP networks, which have increased efficiency. This will promote EV usage in urban
transportation, leading to greater sustainability.

Keywords: electric vehicle charging points; charging infrastructure optimisation; charging point
placement strategies; EV charging demand; machine learning; feedforward neural networks; sustainable
urban planning; smart transport systems; range anxiety; optimisation of infrastructure

1. Introduction

Electric vehicles (EVs) have emerged as eco-friendly, with environmental and cli-
mate concerns taking centre stage in global climate action [1]. When powered by low-
carbon electricity sources, such as renewable energy from micro-grid systems [2], EVs
can contribute to reducing carbon emissions [3] and achieve economic decarbonisation
targets [4–6]. Significant progress in energy research has driven the increased adoption of
EVs. Raymond et al. [7] proposed the use of eco-friendly approaches to EV transportation.
By adopting these approaches, societies can benefit and also contribute to achieving sus-
tainability. Transport electrification is a route from renewable energy integration to support
a zero-carbon economy. Renewable sources such as solar and wind depend on weather
conditions, which affect the consistency of energy used in EV charging. Research in [8–10]
focused on integrating renewable energy into EV charging systems and enhancing the
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sustainability of vehicle-to-grid (V2G) operations. To facilitate transport electrification and
meet the growing EV demand, research has concentrated on determining optimal sites for
charging points (CPs). Researchers have formulated the problem of determining optimal
locations for EV CPs using a variety of approaches, objective functions, and constraints.
Advancements in battery technology and electric drive trains have positioned EVs as a
viable solution for creating a sustainable transportation system [11]. EV industry growth
will increase the demand for CPs, which will be strategically placed. Finding ideal locations
for CPs is the main focus of current research.

The motivation behind this research stems from the urgent need to address range
anxiety, a significant barrier to EV adoption caused by concerns about the availability of
charging infrastructure. By optimising CP placement, we aim to enhance accessibility
and convenience for EV drivers, ultimately supporting the broader transition to sustain-
able transportation. Two methods, namely, EV Portacharge and the green electric charge
(GEECharge), are used to distribute CPs in Dublin. The EV Portacharge uses the approach
outlined in [12] to assign scores based on POIs and population density. GEECharge expands
this method by incorporating the most frequently used roads in each cell. When designing
a method for CP distribution, it is essential to carefully consider factors such as population
density, POIs, and road usage patterns. The parameters we choose are key since population
density indicates potential demand volume, POIs signify areas where users are likely to stay
for extended periods, and road usage identifies high-traffic routes prone to range anxiety.
Despite the recent advancements in methods such as EV Portacharge and GEECharge, as
discussed in [13], critical gaps and limitations still exist. This study focuses on Dublin,
employing GEECharge distributed CPs. GEECharge integrates population density, POIs,
and the most used roads parameters to ensure the efficient distribution of CPs. The research
questions addressed by this research include the following:

• Which is the best method for identifying the most suitable location for CP placement?
• What factors play a role in determining the placement of CPs in urban areas?

The GEECharge method exhibits 2.2% higher efficiency compared to the EV Por-
tacharge method, which only considers two parameters: population density and POIs.
This research aims to deeply explore the complexities of CP distribution in Dublin, using
GEECharge to address the following emerging issues and hypotheses:

H1: There are parameters that influence the placement of CPs.

H2: There exist optimal weight parameter combinations that display a suitable number of CPs in a
cell.

H3: Rotation and varying the size of the cell affects the CP distribution.

H4: Parameter scores and weights differ on different time scales.

These hypotheses are built on gaps in the existing literature. Research in [14] discussed
the significance of various urban parameters in determining the optimal placement of
charging infrastructure. The spatial granularity of CP distribution models impacts their
effectiveness, and rotating the grid could cover areas which were previously uncovered,
and this could influence the distribution of CPs. Parameter scores and weights differ across
time scales, hence the need to explore how this affects CP distribution.

This research builds upon the previous GEECharge CP distribution research in [13],
addressing gaps in the existing literature and providing the following contributions:

• We use the GEECharge method to optimise the distribution of CPs in Dublin.
• We increase CP coverage by 5.7% when we resize the grid from 6 km by 10 km to 10

km by 6 km and rotate it at an angle of −350◦.
• We integrate FNNs in CP distribution and establish that 109 is the optimal number in

a 1 km2 area.
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• We reduce range anxiety by distributing CPs, thus reducing EV distance to a CP.
• We determine CP distribution efficiency in Dublin.

A driver should consider several factors when driving to recharge an EV. The factors
include the EV’s remaining range and CP availability. Keeping a battery charge between
10% and 20% is recommended due to concerns such as range anxiety, battery degrada-
tion [15,16], and delays that may extend the planned route. According to the authors
in [17], 10% of global energy usage is attributed to ICT and network consumption. EVs
deliver better performance and produce no tailpipe emissions, as discussed in [18]. To
reduce carbon emissions and conserve energy, numerous countries are prioritising the
development of the EV industry [19,20].

Table 1 shows statistics on the EV market. Due to the increase in uptake of EVs globally,
the demand for public CPs has also increased. Research by Morrow et al. [21] found that
the cost of EV transport systems can be reduced by increasing the number of CPs instead
of increasing the size of batteries.

Table 1. Comparison of EV market statistics.

Statistic Value Source

US EV revenue (2024) USD 82.8 Billion [22,23]

US EV CAGR (2024–2028) 18.20% [23]

US EV sales (2028) 2.46 Million units [22,23]

Global EV revenue (2023) USD 457.6 Billion [24]

Global EV CAGR (2023–2027) 17.02 % [24]

Global EV market volume (2027) USD 858.0 Billion [24]

Global EV sales (2027) 16.21 Million units [24,25]

Average EV price (2023) USD 53.2 Thousand [24]

China’s EV revenue (2023) USD 190.4 Billion [22,24]

The compound annual growth rate (CAGR) is a measure for determining the mean
annual growth rate of an investment over a specified period longer than one year. We use it
to show the growth of the EV market. The establishment of easily accessible CPs is a critical
factor in the adoption of electro-mobility [13]. The absence of such infrastructure and EVs’
relatively high cost and short range are significant obstacles to EV adoption [26,27]. The
availability of CPs is one of the factors accelerating the electrification of road transportation.
Studies outline challenges in closing gaps in CP availability to hasten the electrification
of light-duty vehicles. One-third of greenhouse gas emissions in urban areas comes from
these cars, which are utilised for light freight services as well as private and shared mobility,
as proposed in [28]. It has been investigated and questioned whether investments in CPs
are financially viable [29,30], particularly about rapid CPs.

Governments have worked on policies to accelerate the adoption of EVs, but integrat-
ing these EVs into our daily lives is still challenging [31]. Outside CPs can be helpful to EV
owners even if they can charge EVs at home. This is due to battery charge degradation,
as this limitation allows them to travel for a few hundred km [32]. For drivers to feel
comfortable purchasing an EV, widely available CPs are required. Urban development
efforts to address CP placement are limited by range anxiety [33–36]. CPs must be posi-
tioned well so that EVs can access one within driving range and easily navigate the city
after recharging. Integrating the infrastructure for EV CPs into existing gasoline solutions
may not be suitable. Traditionally, gasoline stations are primarily for petroleum refuelling,
and adding EV infrastructure will overcrowd the minimal area available. Ireland has been
installing CPs; however, drivers are concerned about CP accessibility. CPs must be easily
accessible for everybody without disrupting or congesting the traffic. CPs should be placed
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along the shortest paths, according to research in [37,38]. This paper builds upon the
GEECharge method described in [13]. We make sure EVs have easy access to CPs.

Using a case study in Dublin, the GEECharge technique is tested in situations where
an EV needs to charge when its position is approximately 100 m from CP access. The basis
for employing a 100 m threshold is the cell size. A cell of 1 km2 size is suitable since it
ensures that all areas are comprehensively covered and CPs are efficiently distributed. This
criterion ensures that CPs are easily accessible and close enough to one another to provide
effective charging without necessitating long diversions. The rationale for using 100 m is
also based on the idea that another CP could feasibly be reached with minimal additional
travel in cases where one CP is busy. The 100 m distance supports quick roadside assistance
and reduces the risk of EVs being stranded far from available CPs.

The structure of this research work is as follows. Section 2 explores the CP distribution
literature. Section 3 describes how GEECharge and EV Portacharge are integrated in Dublin,
utilising parameter weight analysis and CP distribution efficiency. In section 4, we discuss
the evaluation of GEECharge and the parameter weights. Section 5 presents the GEECharge
weight analysis. Section 6 presents recommendations for future work.

2. EV Charging Infrastructure Literature

Cities are adopting green developments as part of sustainability. EVs are increasingly
being adopted as green transportation with very high energy efficiency, low pollution, and
zero gas emissions. However, we have an increasing need for CP placement, and different
methods and factors have been considered to solve the problem.

Population distribution: The placement of EV CPs is considered a multi-criteria
problem, as discussed in [39,40]. Some approaches used population information for spatial
partitioning and CP placement. Researchers in [14] examined the following CP distribution
optimisation methods.

• Random distribution approach (RDA): A random allocation process is used by the
RDA as a baseline against other distributions. This method involves placing EVs
randomly across a map. While this method is straightforward, it does not consider
factors like traffic density or other economic considerations.

• Uniform distribution approach (UDA): The UDA divides the map into square cells
and places CPs evenly across the cells. The UDA attempts to provide balanced CP
distribution based on the selected area. The method might be inefficient in areas with
varying densities.

• Concentric radial approach (CRA): The CRA divided the map into triangular cells
from a central point to form concentric circles. The CRA provides a focal point that
centralises CPs around high-activity areas.

• Genetic algorithm distribution (GAD): GAD integrates multiple data sources to pro-
vide cell scores. Several factors such as population size, CP costs, and twitter activity
are taken into account.

The researchers surrounded POIs using Voronoi polygons. Cells with higher scores
were probable to receive a CP. In population data, the criterion involved analysing popula-
tion density information in the selected area, ensuring that the EV-driving population could
easily access the CP. This method’s drawback is the unrealistic distribution of CP estimates.
The multi-criteria approach in [12] used the population distribution sustainability factor as
a constraint. CPs on roads located in areas with a large population were deemed suitable,
as they would serve a greater number of people.

Square cells were created from the area, and each cell was assigned a score based
on appropriateness factors. If a constraint was met, the cell’s constraint score was set to
0; if not, it was set to 1. The sum of weighted appropriateness criteria multiplied by a
constraint score was calculated as the final score. The manual selection of weights was
carried out. This method was different from the research in [14], as scores were assigned to
each cell based on a variety of variables. The authors in [35] developed an approach where
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a population agent gathered information about people living in a particular area for EV CP
placement. Areas that are densely populated often correlate with very high traffic volumes.

Twitter activity: The genetic algorithm in [14] also used geo-located tweets to act as
a proxy for human activity patterns. These data were utilised to ascertain the locations
where a given population spent time. This identified hot spots where demand for EV CPs
would increase in the future, although the current usage data may not justify a need for CP
placement.

Traffic information: Building on population data, traffic information plays a critical
role in CP location. Researchers analysed traffic density and mobility patterns to optimise
CP placement. The genetic algorithm in [14] incorporated traffic flow data and identified
high-traffic routes and areas. A grid partitioning technique was proposed in [41]. The
technique utilised genetic algorithms considering traffic density and CP capacity con-
straints [41]. The research used a case study of 48 intersections, 110 road sections, and
an area of 63 km2. The initial grid partition did not use traffic density information. The
optimal CP placement in the partition was selected after the area was zoned using the
partition approach. This allowed for consideration of CP capacity limits such as charging
power, chargers per CP, and traffic density. The research routine focused on minimising the
cost for EV users to access CPs.

The activity-based micro-simulation model (ActBM) discussed in [42] was used to
simulate everyday movements and locations of EVs in the Flanders region of Belgium.
ActBM determined how many EVs will run out of power and need to be recharged during
the day based on the assumption that they all have fully charged batteries when they
wake up. To ascertain the optimal site and timing for charging at the lowest possible cost,
an optimisation algorithm was employed that took into account the fluctuating cost of
power and the unique mobility patterns of each EV. The study calculated Flanders’ overall
electricity use and showed the regions that experienced the most traffic during rush hour.
It looked at EV owners’ activities while their vehicles were charging [42]. A genetic method
was employed in [35]’s study technique to optimise the position of CPs. A multi-agent
system (MAS) was the method suggested in [35] and examined various configurations for
the positioning of CPs. The MAS integrated information from heterogeneous sources to
provide the characteristics of where CPs could be potentially placed, as described in [35].
The method used a traffic agent to obtain traffic data. The technique tried to disperse the
necessary CPs over the city and looked up potential CP sites. These methods ensured
that the CP location selected used population data and actual traffic patterns, which are
similar to the approaches in mobile sensing, looking to load-balance sensing across different
communications access technologies over mobile handsets [43,44].

CP features: The focus of recent research has shifted towards the development of CP
features that meet the diverse and time-varying EV users’ demands. A multi-objective
planning model-based numerical technique was developed for the CP layout in [45] by
considering EV sustainable development, characteristics of CPs, and characteristics of users.
The model in [45] was developed to be expandable as the EV sector is growing. A simulation
of the model was carried out in Chengdu. Fabiano et al. [46] developed a structure for
analysing and expanding public CPs. The model developed grouped CPs based on their
profiles. The framework was for expanding public CPs due to the quick adoption of EVs.
The model developed analysed data to model the CP electricity profile. This approach had
the limitation of the assumption that EV distribution is proportional to market distribution
in public CPs. After analysing the power model of CP infrastructure, the model grouped
CPs with similar profiles. Other research was based on simulation to find a suitable site
for CPs. Research in [47] developed a simulation optimisation model to locate public
CPs to maximise EV service. A simulation optimisation model for the location of public
electric vehicle charging infrastructure to maximise EV service was developed in [47]. The
research used a sensitivity analysis modelling approach that considered each candidate
location independently and demonstrated that a level-one and level-two combination of
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slow charging technologies is better than level two [47]. Level-one charging operates at a
lower voltage, resulting in a slower charging speed than level-two charging.

Infrastructure of the power grid: To understand the impact of CP infrastructure
complexity on distribution, integration with the power grid is essential. The method in [45]
took into account the power grid in the CP layout. Three distinct approaches were pro-
posed to optimise EV CP locations and impact networks. Research by Fareed et al. [48]
first proposed the distribution of network operators (DNO). The massive number of EVs
challenges the DNO responsible for electric power provision due to the optimisation of
power loss, bus voltages, and reliability [48]. Hyeon et al. [49] used stochastic second-order
conic programming, which made a difference in optimising the measuring of conveyed
generator units and EV CPs. The method considered vulnerabilities in framework re-
sources through scenario-based stochastic programming. The integration of scenario-based
stochastic programming provided a robust system for optimising conveyed generator units
and EV CPs. In [49], the distribution planning process sufficiently determined the ideal
sizing of distributed generator units and CPs. Yuvaraj et al. [50] investigated optimisation
strategies to attain ideal outcomes, taking into account the effects of EV CP load in the
distribution system (DS) as well as the economic and environmental consequences. The
research employed the cuckoo search algorithm (CSA) and the bald eagle search algorithm
(BESA) [50] to determine which energy sources were the best. Integrating CPs within the
power grid enhances reliability and sets the stage for the strategic placement of CPs along
the road networks.

Road characteristics: A multi-agent-based planning approach was proposed in [51] to
optimise EV charging infrastructure on highways. The method assessed travel and charging
activities on highways. This aimed to capture how drivers interact with EV CPs. The model
helped evaluate the effectiveness of EV CP planning. The model facilitated comparing
different planning mechanisms for allocating CPs on the highway, such as the dispersed,
centralised, and mixed strategies [51]. The model assisted in determining the best course of
action to maximise EV users’ service level while preserving cost-effectiveness. The model
aimed at expanding the CP network as the number of EVs increases, contributing to the
sustainable integration of EVs into the transport system [51]. Researchers in [52] proposed
to model the CP positioning problem in road networks on reachability graphs in Dublin
and Boston [52]. Looking at CP placement along highways, it is also important to consider
the existing infrastructure, such as petrol stations, as this can influence decisions on where
to place CPs.

Presence of petrol stations: Due to existing gas station utilisation and demand pri-
ority, the solution in [45] was created. The researchers argued that a vacant place for CP
construction should be found if a gas station is unavailable. In [12], multi-criteria approach
roads near petrol stations were preferred for CP positioning. This was mainly for hybrid
cars [12]. The authors in [53] described a mixed-integer mathematical model to optimise
CP placement. The method used eligible points like existing petrol stations and other areas
such as commercial centres and parking lots. The researchers also used historical petrol
sales data to calculate the need for EV charging. This model limitation was the assumption
that petrol sales data were representative of electric demand [53].

Renewable energy integration and the Internet of things (IoT): The transition from
conventional fuelling methods to renewable energy has been gaining momentum. In [54], a
creative and eco-friendly wireless EV charging approach incorporating renewable energy
and Internet of things integration was created. The method majorly addressed a reliance
on cable connections and CP options that are constrained [54]. The researchers designed a
technology that can be used in the parking lots of offices. For EVs, the system enabled a
cost-effective and sustainable energy source [54]. They offered a solution that allows for
updates on CP slot availability. As the CP infrastructure evolves so fast, there is a need to
address the pervasive issue of range anxiety among EV users.

Range anxiety mitigation: According to [55], customers’ range anxiety and distance
deviations were taken into consideration when studying the CP locating problem. The
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authors employed an iterative greedy heuristic model, an adaptive large-neighborhood
search, and a k-shortest path algorithm. The PROMETHEE method in [56] aimed to address
the uncertainty of multi-criteria decision-making (MCDM) methods. The method integrated
PROMETHEE and analytic network process (ANP) [56]. This research formulated EV CP
placement and proved that it is non-deterministic polynomial-time challenging in CP
placement, as illustrated in [57]. The placement of CPs also involves considering the
economic aspects of the installation to address financial sustainability.

Cost of CPs: The second approach in [48] was the charge station owner (CSO) ap-
proach, which looked at all costs incurred while putting up and operating a CP. These costs
included installation costs, waiting time costs, access costs, operating costs, and penalty
costs. The final approach was to use an EV user, which optimised travelling, charging, and
waiting time costs [48]. Cost models and genetic algorithms were used for the location opti-
misation of EV CPs [58]. The social cost model consisted of economic and environmental
costs calculated for CP’s operating cost. The genetic algorithm generated the population
randomly for optimisation. This approach had the limitation of not fully expressing the
constraints of optimisation. Evolutionary algorithms were developed to determine the best
sites for infrastructure related to charging, as proposed in [59]. Their strategy was based
on conservation theory, which assumed EVs inside the district as a CP’s fixed load. The
total amount and EV distribution were forecasted, and the CP minimal cost was proposed.
Research by Frade et al. [60] was designed to maximise demand using a maximal coverage
approach and was applied in Lisbon as a case study. To find the best location for CPs,
predictive modelling was used, taking into account variables including energy and ports
in CPs [61]. Mehmet et al. [39] presented a fuzzy multi-criteria decision analysis (MCDA)
method. The method was based on GIS for placing CPs. A fuzzy analytical hierarchy
process (AHP) and a technique for order preference by similarity to ideal solution (TOPSIS)
approaches were used to identify possible CP locations in Ankara, Turkey.

The authors in [62] proposed a regression model and mixed integer programming
(MIP) to locate CPs. Ordinary least squares (OLS) regression models predicted parking
demand variables such as the parked time per vehicle trip. The MIP was modelled to
minimise total access costs for EV users to CPs. To avoid clustering and budget constraints,
the model ensured a minimum distance between CPs. The major limitation of this research
was the presumption that demand for parking is a reliable indicator of demand for EV
charging [62]. The researchers in [63] employed a bi-level optimisation approach integrating
transportation and energy demands to locate and size CPs. The method considered existing
CPs and aimed to minimise net costs. Links with CPs were duplicated to account for
travel with and without recharging. The proposed model was applied in Genoa, Italy, as a
case study, as described in [63]. The limitation of this research is that solving the bi-level
optimisation problem can be computationally expensive.

A multi-objective site selection of electric CPs was proposed in [64] and aimed at
simultaneously maximising system benefits and the minimum coverage level. POIs were
clustered into functional areas using a combined clustering algorithm. The cluster centres
were determined as charging demand points. The research determined the demand in the
research area for each charging demand point, fitted the charging likelihood of different
functional zones, as shown in [64], and examined the charging habits and travel patterns
of electric car owners. To match the real area that the CP covers, the authors considered
the CP’s progressive coverage and introduced the NSGA-II algorithm [64]. Multi-objective
optimisation was performed by maximising the minimal coverage level and maximising
system benefits as the optimisation objectives. We now shift from CP cost optimisation to
technological innovation in CPs.

Technology in EV charging: As discussed in [65], the power on the go solution was
created to overcome EV charging difficulties. The authors proposed a way for EVs to be
charged in convenient places. A service vehicle was dispatched from a nearby CP and
delivered a suitable power bank upon the driver’s request via an application [65]. The
goal was to shorten the total amount of time that passes between service requests and the
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beginning of charges. For both situations, the researchers offered heuristic techniques based
on order-first split-second and formal formulations [65]. The order-first stage included
the first order of elements, which was EV generation. In the split stage, the ordered
sequence was divided into feasible solutions that adhered to the problem’s constraints.
For the EV charging problem, this meant assigning drones to the ordered sequence of EVs
while considering constraints like drone autonomy, travel distances, and charging times.
The heuristics were quick and effective, with gaps of < 5% for a maximum of 20 node
instances. At the same time, the mathematical formulas could produce optimal solutions
for small cases in a fair period. A mathematical programming formulation for modelling
the deployment of wireless charging lanes in road networks was suggested. This addressed
the challenge of determining the most critical nodes for placing these lanes. To address
different realistic scenarios, the authors built upon the basic formulation and conducted
experiments using accurate geospatial data, providing practical insights into the optimal
placement of wireless charging lanes [66]. The authors in [66] modelled the placement
of wireless charging lanes as an integer programming problem. The model considered
scenarios like road segments to allow the network analysis, including traversal times. The
researchers assumed that the state of charge (SOC) changes proportionally with the energy
consumed or gained during the traversing. The limitation of this paper is that the proposed
model may be influenced by factors such as changes in traffic patterns, evolving technology,
and the dynamic nature of urban environments [66]. Other research explored macro-level
planning for national highways to allow for the strategic placement of CPs.

Highway segment lengths: An optimisation technique to determine the best places
for CPs on national roads was proposed in [67]. The model was developed, and suitable
locations for CPs were selected, as well as how many CPs were to be set up. This was to
ensure that drivers on highways did not develop range anxiety. The key factors considered
included the daily average number of vehicles, highway segment lengths, and future
EV adoption forecasts, where estimates were made about the future number of EVs and
EV range [67]. The research enhanced optimal CP placement by proposing strategic
placements [67].

EV adoption forecast: Other models explored integrating the forecast of EV adop-
tion and the usage patterns in planning models. Research by Sweda et al. [68] was able
to determine household EV ownership trends and coordinate efforts to identify critical
sites for additional CPs, with the Chicago region as a case study, as shown in [68]. An
equilibrium modelling framework was proposed for the best allocation of public CPs for
plug-in hybrid EVs in metropolitan areas [69]. Xiaohong et al. [70] developed a spatial
and temporal method to obtain EV CPs. Most CP location issues are based on currently
used heuristics and optimisation techniques. Worley et al. [71] used a vehicle routing
problem (VRP) and structured the task of locating CPs and ideal EV routings as a discrete
integer programming problem. The developed integer programming model determined
the least cost of routes and CP locations and minimised the sum of travel costs for EVs [71].
The authors in [72] proposed a mixed integer linear programming approach (MILP) that
incorporated the maximum flow model to optimise the placement and sizing of EV CPs.
The model evaluated user satisfaction within a given CP by determining the maximum
flow that can be accommodated. The maximum flow model was integrated into the MLP
to make decisions on opening new CPs. The research limitation included an assumption
that all CPs are built at the beginning.

Many existing studies primarily use deterministic models or heuristic methods with-
out incorporating machine learning. For example, approaches like genetic algorithm
distribution (GAD) in the literature integrate various data sources but do not utilise pre-
diction models for CP distribution. Previous research relied on static site selection. We
select and optimise parameter weights based on their significance in CP distribution. We
adjust the grid size from 6 km by 10 km to 10 km by 6 km and rotate it at certain angles. We
demonstrate how different grid configurations influence CP distribution. Previous research
does not mention the size of sites where CPs will be placed.
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Table 2 shows aspects of GEECharge that differ from the previous research. Marti et al. [14]
focused on grid-based partitioning and did not address the effects of grid size and rotation
on CP placement. Our empirical analysis demonstrates that rotating and reducing the
grid size improves the mean proximity of CPs. In contrast to earlier studies as shown in
Table 3 and Table 4, such as Wu et al. [51] and Alanazi et al. [61], which used heuristics,
linear regression, and SVM for CP placement, our work integrates FNN. This offers better
CP distribution.

Table 2. This table shows that GEECharge considers population density, POIs, and the most used
roads and FNN to predict the suitable number of CPs in a cell.

GEECharge Aspect Description

Factors considered Population density, Points of Interest (POIs), Most used roads.

Normalisation Weights are normalised and sum to 1.

Prediction method FNN is utilised to predict the best normalised weight combinations and
the corresponding CPs.

Impact Improves CP distribution encouraging the use of EVs.

Table 3. Comparison of methods used in electric vehicle charging point distribution, including
techniques, key features, population/city, and results.

Technique Author Method Features City/population Results

Stochastic
Second-Order
Conic
Programming

Woo et
al. [49].

System Sizing
Optimisation,
K-means

minu ∑ijϵL ljjRij + ∑jϵB
(
V1,j + V2,j

)
.

Seoul, South
Korea 9.42 M in
2022 [73]

Reduced power
system losses and
enhanced stability.

Multi-objective
Planning Model

Wang et
al. [45].

Optimisation
and Simulation

Energy consumption model:
E(r) = πr2 · x · v, Vehicle flux and
velocity: v = Q

f ,
e(x, y) = e(x, y)− s

(
x, y, xj, yj

)
Chengdu,
China 9.8 M [74]

45 gas stations, 90
public
infrastructures.

Optimal Siting
Based on
Voronoi
Diagram and
Fuzzy-AHP

Tang et
al. [40].

Site
optimisation
using Voronoi
diagrams and
Fuzzy-AHP

Fuzzy-AHP integration:
W = ∑ wi · xi

Beijing, China
21.86 M [75]

C = A · B =
(0.31, 0.39, 0.21, 0.10).

Grid Partition
Method

Ge et al. [41]. Locating and
sizing using
grid partition
and Genetic
Algorithm

Minimise Total Loss: H = h1 + h2,
where h1 = Lj · p · g and
h2 = Lj · k · v

Not Specified 102 CPs in 9
partitions.

Spatial and
Temporal Plan

Dong et
al. [70].

Shared Nearest
Neighbour
(SNN)
Clustering,
OD,Queuing
Theory

Queuing time:
Ls = Lq +

λ
µ2

= (cρ)cρ

c!(1−ρ)2 P0 +
λ
µ2

:
SNN :
sij = size(NN(i) ∩ NN(j)) 1 ≤
i, j ≤ n, i ̸= j : sii = 0

Hainan Island
10.2 M [76]

Scenario 1 has 15
CPs, Scenario 2 has
18 CPs.

Cost Model and
Genetic
Algorithm

Zhou et
al. [58]

Location
optimisation

F1 =

∑j∈J Cj
[

T
(

Nj
) r0(1+r0)

nyear

(1+r0)
nyear −1 + Y

(
Nj

)] Ireland 5 M [77] 670 CPs.

Multi-objective
site selection

Zhang et
al. [64].

NSGA-II,
TF-IDF

TF− IDF(wi) =
TF(d, wi) ∗ IDF(wi), F1 =

max ∑i ∑j wiqijzij
∑i ∑j cjxi+∑j bjrj

F2 = max q′

Hohhot, China
2.44 M [78]

143 clusters, 67 CPs,
minimum coverage
level > 59.4%.

Multi-Agent
System (MAS)

Jordán et
al. [35].

Genetic
Algorithms

V(Ci) =

∑
(

ωpapopulation + ωtratraffic

)
−

(ωacost area + ωccost per charger)

Valencia, Spain
839, 770 [79]

Scenario 1: 40 Cps
and scenario 2 : 42
CPs.

Agent-Based
Decision
Support

Sweda and
Klabjan [68]

Agent-based
modelling

y(a, t) = argminvinV(a)

[
Price(v, t)

+E[FuelCost(v, a, t)]
−GreenBonus(v, a)−
SocialInfluence(v, a, t)
+ LongDistancePenalty (v, a)
+ E InfrastructurePenalty (v, a, t)]

]
Chicago land
area 7.5 M[80]

Base 20 Cps and
10.50 mi, Prop 1
additional 70 CPs
and 5.01 mi, Prop 2
additional 70 Cps
and 4.37 mi.
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Table 3. Cont.

Technique Author Method Features City/population Results

multiple
domination

Gargarin et
al. [52]

k-dominating,
sets, Heuristic
optimisation

γk(G) ≤
(

1− δ′

b1/δ′
k−1 (1+δ′)1+1/δ′

)
n,

γα(G) ≤
(

1− δ̂

d̂1/δ̂
α (1+δ̂)1+1/δ̂

)
n

Dublin 72, 589
and
Boston 675, 647 [81,
82]

2 km distance:
Boston mean 1.9,
std 1.1 and Dublin
mean 2.0, std 1.1.

Predictive
modelling

Alanazi et
al. [61].

Linear
regression, SVM

Y = βo + β1× X1 + β2× X2 + ϵ,
Y = w× X + b + ϵ,

Texas, New
York, California
90 M [83]

90% accuracy, 94%
precision, Recall
89%, 91% F1-score.

Fuzzy
Multi-Criteria
Decision
Analysis
(MCDA)

Erbas et
al. [39].

GIS-based
MCDA using
Fuzzy AHP and
TOPSIS

Fuzzy AHP and TOPSIS integration:
Score = ∑i(wi · fuzzy scorei)

Ankara, Turkey
5.4 M [84]

Optimally
identified and
ranked EVCS
locations.

Table 4. Comparison of methods used in electric vehicle charging point distribution, including
techniques, key features, population/city, and results.

Technique Author Method Features (Key Equations) City/Population Results

Multi-Criteria
Decision
Analysis using
AHP and GIS

Mostafa
Mahdy
et al. [12].

Multi-Criteria
Decision,
Weighted Linear
Combination
(WLC)

suitability factors(x1, x2), ∑ xiwi =
factor aggregation

Winchester, UK
50, 000 [85]

Identified 44 suitable
locations.

Park-based
assignment
method

Chen
et al. [62].

Regression
modelling,
Mixed Integer
Programming
(MIP)

min ∑i,j cijyij Seattle,
Washington,
4741
households
and 10, 510
individuals

access cost of 0.69 mi,
79.9% parking
demand accessed CP
within 1 mile of
Traffic Analysis
Zones (TAZ).

Functional Data
Analysis and
Clustering

Fabiano
Pallonetto
et al. [46].

Functional
K-means
Clustering

Cong(c) = ∑T
t=1 ∑T

l=1
Gt,t+l(c)
Ft,t+l(c)

,

P(t) = ∑M
n=1 Pn(t)

Ireland 5
M [77]

verified OOC or OOS
for more that 30%,
increased CP
occupancy time 1200
h to 1400 h.

Activity-Based
Microsimula-
tion

Jairo
González
et al. [42].

Optimisation
Algorithm

Optimisation:
min Cost(Schedule, Load)

Flanders,
Belgium 6.06
m [86]

EV demand 1− 5
kWh, 81% of driver
charge at night,
Overloaded areas
identified.

Multi-objective
optimisation

Bersani
et al. [53].

Mixed Integer
Programming

min
{

∑N
i=1(kiyi + hi Ai)− G ∑N

i=1 Ai

}
Savona,
Liguria, Italy,
30 eligible
locations for
CPs, including
20 existing
petrol stations

Maximum distance is
9.7 km, With G= 10, 6
CPs were selected,
capturing 82% of the
total demand.

Multi-criteria
Decision
Making

Wu
et al. [56].

Greedy
approach
Chemical
reaction
optimisation

f j(a) =(
min(li),

(
∑k

i=1 mi

)
/k, max(ui)

) Beijing, China
21.86 M [75]

A4 > A3 > A2 > A1.
A4 > A2 > A3 > A1.

NP-hard Lam
et al. [57].

PROMOTHEE,
ANP

min1≤i≤n

(
infx∈Ω1 ∑n

j=1 cjxj

)
. ,

x1 + x2
greedy−−−−→ x′1 + x′2.

Hong Kong 7.4
M [87]

Proves problem is
non-deterministic
polynomial-time
hard.

Maximal
Covering Model

Frade
et al. [60].

mixed integer
Optimisation

max ∑i∈I yi, s.t. d(i, j) ≤ dmax∀j Lisbon,
Portugal 3
M [88]

Scenario 1: 180
supply points and
29CPs and scenario 2:
324 supply points
and 43 Cps.

3. GEECharge and EV Portacharge Integration in Dublin

This research focuses on improving CP distribution in Dublin. We investigate parame-
ters that influence CP placement. Understanding these parameters helps ensure that CPs
are conveniently located where they are needed most. We use discrete event simulation
(DES) to model EV interactions with CPs. The simulation allows us to assess how many
EVs will be within a reasonable distance of a CP when charging needs to occur. We cover
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GEECharge and EV Portacharge implementation in CP distribution in graph G with a set
of vertices V and edges E, where G = (V, E). The set of vertices V is defined as follows:

V = {v1, v2, v3, . . . , vn, . . . , vN}, (1)

where vn represents the nth vertex in the graph network, with n = 1, 2, 3, . . . , N. The edges
are defined as follows:

E = {e1, e2, e3, . . . , em, . . . , eM}, (2)

where em = {vi, vj} represents an edge between vertices vi and vj. A set of edges can be
expressed as follows:

E = {{vi, vj}, {vk, vn}, . . . , {vm, vp}}. (3)

Thelocation of the i-th vertex is given by l(vi), where l(vi) = (xi, yi), and xi and yi represent
the latitude and longitude, respectively. Similarly, the location of the jth vertex is denoted
as l(vj), where l(vj) = (xj, yj), with xj and yj representing the latitude and longitude.

Notations N = |V| and M = |E| represent the total number of vertices and edges,
respectively. We source data from [89] and produce daily reports on cars detected within
the network junctions. The dataset referenced in [89] is for all types of vehicles (petrol,
diesel, etc.). We used the data for all vehicles as we felt that it was important to show traffic
volumes in Dublin for all vehicle types and also to know the most used roads. Commonly
utilised junctions correspond to nodes, and each edge em is assigned a capacity c(em) and a
weight w(em), which reflect the maximum traffic flow and the length in m, respectively. We
express the maximum traffic flow as follows:

c(em) for em ∈ E. (4)

The edge length in m is expressed as follows:

w(em) for em ∈ E. (5)

The number of EVs detected at an intersection vi at time τ is represented by f (vi, τ). We
represent the number of cars identified each day as follows:

f (vi, τ) for vi ∈ V and τ ∈ {τ1, τ2, . . . , τ24}. (6)

We show a methodological flowchart of our research, as shown in Figure 1.
Figure 1 shows the key methods used. We use GEECharge as it uses wt, wp, and wd

to maximise the efficacy of CP placement. We gather population and traffic data. The
integration of three different parameters allows for a more accurate representation of urban
mobility patterns. We use parameter weight normalisation to ensure that there is equity
in weight contribution in CP distribution. We use discrete event simulation for dynamic
modelling of EV interaction with CPs. In CP distribution, the relationships among wt,
wp, and wd are inherently non-linear. FNNs can learn these relationships better, leading
to better predictions of CP placements. FNN captured data characteristics better and
produced superior results compared to K-means and random forest models.
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Data Gathering

Grid Setup

GEECharge and EV Portacharge Methods

Parameter Weight Normalisation

FNN Prediction

Evaluation

Simulation Repeat if needed

Figure 1. This flowchart outlines the key steps involved in our research methodology. Starting with
data gathering, we proceeded to establish a grid setup. Subsequently, we employed the GEECharge
and EV Portacharge methods to acquire relevant data. To ensure consistency and comparability,
parameter weight normalisation was then applied. The normalised data were fed into a FNN for
prediction, followed by a rigorous evaluation process. Based on the evaluation results, a simulation
was conducted to assess the performance of the proposed approach. This iterative process, involving
adjustments and repetitions as needed, leads to a refined and optimised methodology.

3.1. Gathering Traffic Data

We consider a 6 km × 10 km area in Dublin, which covers the central part of the city,
as illustrated in Figure 2. Every hour, we gather information on how many vehicles are
using each Dublin junction. As seen in Figure 3, we utilise these data to produce a heat
map that illustrates traffic congestion. We make mapping more effective by splitting the
area into 1 km × 1 km square cells [14]. Square grids are commonly used in urban planning
studies, for example, reference [14]: Martí, P.; Jordán, J.; Palanca, J.; Julian, V. “Charging
stations and mobility data generators for agent-based simulations. Neurocomputing 2022,
484, 196–210”. There is a practical reason for this. In urban settings, road networks and land
use are generally aligned to an orthogonal grid, for example, blocks and streets. Square
grids match well with these alignments, allowing for better adaptation to the physical
infrastructure of cities. We adopt a square grid to facilitate easy comparison with related
methods in the literature. The grid is denoted as G, and r and c represent rows and columns,
respectively. We define G as a set representing the grid of cells ranging from (1, 1) to (6, 10).
We express this as follows:

G = {(r, c) | r ∈ {1, 2, . . . , 6}, c ∈ {1, 2, . . . , 10}}. (7)
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Figure 2. Dublin area divided into 1 km2 cells. A cell of 1 km2 size is suitable since it ensures that all
areas are comprehensively covered and CPs are efficiently distributed. This guarantees that CPs are
ideally suited within suitable driving distance.

We determine the most used roads using Google Earth and join adjacent sites using
blues lines, as seen in Figure 4. We create a file containing the location of each intersection
controlled by the Sydney Coordinated Adaptive Traffic System (SCATS) associated with
values (0, 1). In the selected grid in Dublin, we retrieve traffic data with unique IDs that
show the time, region in the city, site, and volume of cars. We calculate the daily average
number of cars µĉi for each unique ID as follows:

µĉi =
Si
30

, (8)

where 30 represents days in a month. Here, Si is the total sum of cars for a specific ID I in
the traffic data file It̂(j), provided that it matches the location ID file Il̂(i). The sum Si is
calculated as follows:

Si = ∑
j∈J

nĉ(j)δ(It̂(j), Il̂(i)), (9)

where the function nĉ(j) returns the traffic count, and δ(It̂(j), Il̂(i)) is a matching function
that ensures the traffic data ID It̂(j) matches the location data ID Il̂(i). The δ function
returns 1 if the IDs are equal and 0 otherwise. To synchronise the traffic data and location
data, we use i and j as simple index variables. These indices increment when the conditions
below are met, ensuring that the records align correctly:

i =

{
i + 1 if It̂(j) < Il̂(i),
i otherwise

, (10)

and

j =

{
j + 1 if It̂(j) > Il̂(i),
j otherwise

. (11)

We use i and j purely as indexing variables to match the data from two sources, helping to
iterate through the dataset.
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Figure 3. Heat map showing traffic and location intersections. The heat map shows the congested
junctions in different areas of Dublin. The gradient illustrates the level of congestion at junctions,
going from blue (indicating no congestion) to red (indicating total congestion).

Figure 4. The figure displays the busiest roads in June 2021, represented in a grid on a map of
Dublin. Similar square cells of 1 × 1 km have been created from the grid. The blue lines show the
frequently used highways. The black font represents grid cell coordinates and indices. The columns
are represented by c and the rows by r. The dots indicate that c is increasing from 1 to 10 and r is
increasing from 1 to 6.
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3.2. Rotated Grid of the Dublin Area

We denote a point in the original grid as (x, y), representing its original coordinates
before rotation, and the rotated point as (x′, y′), representing its new coordinates after
rotation. To perform the rotation, we rotate the point around the centre (cx, cy) by an angle
θ [90,91]. We transform (x, y) to (x′, y′) as follows:

x′ = (x− cx) cos
(

θ
π

180

)
− (y− cy) sin

(
θ

π

180

)
+ cx, (12)

y′ = (x− cx) sin
(

θ
π

180

)
+ (y− cy) cos

(
θ

π

180

)
+ cy. (13)

We represent the rotated position of the point p = (x, y) as p′ = (x′, y′), where we apply
the rotation matrix R(θ) to p, with the matrix adjusted to account for the centre (cx, cy). We
define the rotation matrix as follows:

R(θ) =

[
cos

(
θ π

180
)
− sin

(
θ π

180
)

sin
(
θ π

180
)

cos
(
θ π

180
) ]

. (14)

Figure 5. Grid rotated at an angle of 30◦. The visualisation represents a heat map with a rotated grid
on the Dublin map. Blue indicates low population density, and red indicates high population density.
When the grid is rotated, it reduces the regions with high population density being covered.

Figure 6. Grid rotated at an angle of −350◦. The grid covers more cells compared to other angle
rotations. This leads to a 5.7% increase in the total number of CPs in the grid as the number of CPs
increases from 7552 in the original grid to 7982 in the rotated grid, as more cells with high population
density are covered.
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Grid rotation influences CP distribution as shown in Figure 5 and Figure 6.

3.3. Reducing the Size of Dublin’s Grid Cells

We decide to reduce the size of the cells by half, from 1 km2 to 500 m2, to observe
the effect on the distribution of CPs in Dublin. This reduction in cell size increases the
number of cells from 60 to 120 and the grid size from 6 km by 10 km to 10 km by 12 km.
We now have greater granularity and flexibility in allocating CPs. This allows us to adjust
the weights for each smaller cell more precisely.

Figure 7. Reduced grid cells of each size, 500 m. We find that in smaller cells, CPs are more close to
each other, and thus, d(i, j) between vi and CP zj is reduced. For instance, we evaluate the distribution
of 81 CPs in G11 when the size is 1 km2 and again when the size is 500 m2. Results show that the
mean distance reduces from 37.28 to 22.67.

Reducing the grid cell size, as shown in Figure 7, decreases the average distance from
37.28 m to 22.67 m, bringing CPs closer to EVs. This proximity reduces range anxiety, as EV
drivers can access charging stations more easily and quickly when needed.

3.4. GEECharge and EV Portacharge Methods

By considering the population density and POIs, we evaluate two approaches to
distribute CPs in Dublin. The first solution s1 proposed is, namely, the EV Portacharge.
Scores are assigned by the EV Portacharge technique according to POIs and population
density factors. The second technique, GEECharge, adds frequently used roads as a factor.
We make use of the population density of 2021, where we represent the lowest density as
1 and the highest density as 6. We selected various POIs, such as university campuses,
supermarkets, hospitals, cinemas, and tourist places, to represent the POIs in Dublin. We
assigned scores to cells based on the number of POIs in a cell. In this case, 20 represents
the maximum number of POIs in a cell. The justification for this is outlined as follows. We
consider the population density to follow a normal distribution. This is consistent with the
approach in [92]. According to the empirical rule for normal distribution, 99.7% of data
points fall within three standard deviations above or below the mean. This translates to
dividing the range into six equal intervals, where each interval corresponds to one standard
deviation. By setting six intervals from lowest to highest, we represent distinct portions of
the population density range.

Population density cells are represented as d(r, c) = d1, d2, d3, . . . , d60, where
d1 = {x1, y1}, d2 = {x2, y2}, . . . , d60 = {x60, y60} indicate the population density scores.
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The grid forms a 6× 10 matrix, so d60 corresponds to the population density score for the
cell located at the 6th row and 10th column of the grid.

• Define d(r, c) as the population density in cell (r, c), where r denotes the row number
and c represents the column number, as shown in Figure 4.

• Define p(r, c) as the count of points of interest (POIs) within cell (r, c).
• Let s1(r, c) represent the score assigned to cell (r, c) using the EV Portacharge method.
• Let s2(r, c) denote the score given to cell (r, c) according to the GEECharge method.

POIs are represented as p(r, c) = p1, p2, p3, . . . , p60, where each p1(d1), p2(d2), . . . , p60(d60)
corresponds to the POI scores for each cell. The values are scaled by the weights wd and wp,
with higher weights increasing the contribution of their respective values. The score for
each cell, s1(r, c), as assigned by the EV Portacharge method, is computed as shown below:

s1(r, c) =
d(r, c)wd + p(r, c)wp

∑6
r=1 ∑10

c=1 d(r, c)wd + p(r, c)wp
100. (15)

Scores of POIs range from 0 ≤ p ≤ 20, while population density scores fall within
1 ≤ d ≤ 6. A weight of wd = 4 is applied to the population density, amplifying its influence
to be four times greater than that of the POI component, which has a weight of wp = 1. The
final computed value is expressed as a percentage of the total number of CPs.

3.5. GEECharge Method

We assess the most frequently used roads with a similar calculation approach. Let u(t)
represent the usage score for road t, where u(t) = t1, t2, . . . , t60, and wt is the corresponding
weight. The frequently used roads in the network are determined by the maximum traffic
flow between vertices vi and vj, represented as f (vi, vj), where ∀{vi, vj} ∈ E. The set of the
most frequently used roads denoted as R is defined by the following:

R = sort( f (vi, vj)|{vi, vj} ∈ E), (16)

and R[1] corresponds to the first element of the sorted list of maximum traffic flows between
all vertices in the network graph. The score assigned by the GEECharge method is s2(r, c)
and is computed as follows:

s2(r, c) =
d(r, c)wd + p(r, c)wp + t(r, c)wt

∑6
r=1 ∑10

c=1 d(r, c)wd + p(r, c)wp + t(r, c)wt
× 100. (17)

Road usage scores range from 0 ≤ u ≤ 4, with a weight of wt = 10 applied. The
GEECharge method places twice as much emphasis on road usage compared to the com-
bined weights of wp and wd. We have developed an algorithm to generate CP coordinates
based on a predefined grid and input data from a CSV file. The initial latitude and longitude
are indicated as x1 and y1, respectively. The grid cells are mapped from coordinates (x1, y1)
in the northwest to (x6, y10), as illustrated in Figure 4.

Let x0 and y0 represent the starting latitude and longitude. The size of each cell along
the x axis and y axis is given by ∆x and ∆y, respectively. The area contains nx cells in the x
direction and ny cells in the y direction. We use i and j as indices to label each cell, where i
ranges from 0 to nx − 1 in the x direction, and j ranges from 0 to ny − 1 in the y direction.
The boundary of the ith cell in the x direction is xi = x0 + i∆x, and the boundary for the
next cell is xi+1 = xi + ∆x. In the y direction, the boundary of the jthcell is yj = y0 + j∆y,
and the boundary for the next cell is yj+1 = yj + ∆y. To generate random coordinates
within a cell, we use the function U. The random x-coordinate for a point in cell (i, j) is
xij = U(xi, xi+1), and the random y-coordinate is yij = U(yj, yj+1). This ensures that the
generated coordinates fall within the cell boundaries. The total number of charging points
(CPs) in a cell is denoted by Q, and the function QCP(i, j) returns the number of CPs for the
cell at indices (i, j).
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Figure 8. This graph shows traffic on Dublin roads at approximately 4 pm on a weekday. From
the analysis we note that traffic is heavy at peak hours, that is in the morning and in the evening
according to the authors of [93].

In Figure 8, the green sections show traffic is moving while the red sections show traffic
congestion. The symbols indicate that some roads are narrowing ahead. On the timescale of
parameters, we use 2022 electoral data for population density and represent them as P2022.
Population density in urban areas often follows periodic patterns due to daily, weekly, or
seasonal cycles, such as daily variations due to commuting patterns, weather, or holidays.
We present population density as follows:

P(t) = P2022(1 + ap sin(ωpt + ϕp)), (18)

where amplitude ap is population variation, ωp is the frequency of population density
variation, and ϕp is the phase shift.

It is tempting to classify POIs based on their attractiveness. POIs with low attractive-
ness could be excluded, and those with high attractiveness retained in order to prevent
the overabundance of less attractive POIs from interfering with the final weighting of CPs
allocation. We considered the number of POIs in cells instead of their attractiveness. By
focusing on the number of POIs, we treat all areas as having the potential to influence
charging demand. The rationale for this approach is that detailed data on the attractiveness
of different POIs may not always be available. For the POIs, the number of people varies
every single hour and depends on the location and type of POIs. Let n(l, τ) represent the
number of people at location l at time τ. The baseline of the number of people at POI l is
represented by A(l). We develop a model to show the variation in the number of people at
l, where we use the gym as an example and express it as follows:

n(l, τ) = A(l)(1 + a cos(ωτ + ϕ)) + ϵ(l, τ), (19)

where the amplitude of variation is a, and ω shows the frequency of variation. The phase
shift in the model is ϕ, and ϵ(l, τ) accounts for stochastic variations. For example, gyms
tend to have more people in the evening and early in the morning. We express the model
to account for morning and evening peaks as follows:

ng(l, τ) = Ag(l)
[

1 + ag1 cos
(

2πτ

24
+ ϕg1

)
+ ag2 cos

(
2πτ

24
+ ϕg2

)]
+ ϵ(l, τ), (20)
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where ag1 and ag2 are the amplitudes of the morning and evening peak variations, respec-
tively. The phase shifts to align with the morning and evening peaks are ϕg1 and ϕg2,
respectively. For the most used roads, traffic data vary every hour, with heavy traffic during
peak hours. We model this as follows:

T(t, τ) = At

[
1 + at sin

(
2π(τ − τp̂1)

24
+ ϕt1

)
+ bt sin

(
2π(τ − τp̂2)

24
+ ϕt2

)]
+ ηt(τ), (21)

where At represents the baseline traffic flow on road t, the amplitudes of the traffic peaks
are represented by at and bt, and τp̂1 and τp̂2 are the peak traffic times. Traffic fluctuation
is represented by ηt(τ). In T(t, τ), t represents the road, while in n(l, τ), τ represents the
time.

3.5.1. Parameter Weight Normalisation

We sum the weights to 1 to have equity in their contribution to CP distribution in
Dublin. We first set wd to 1 and wp to 0 and then decreased wd slowly to 0 as wp increased
to 1. This ensures that their sum is 1 at every instance. We then use each set of weight
combinations to determine the corresponding CPs and find the d(i, j). We observe the
changes in d(i, j) and success rate. The total weight γ is the sum of wd and wp, where

γ = wd + wp. (22)

We normalise weights as follows:

ŵd =
wd
γ

, (23)

ŵp =
wp

γ
. (24)

The most used roads normalised weight is denoted as ŵt. The sum of all weights is equal
to one, where

κ + ŵt = 1. (25)

Since the value of κ changes as the value of ŵt varies, we say

ŵdi
= ŵdκ, (26)

where ŵdi
is the population density normalised weight of a specific cell indexed by i.

ŵpi = ŵpκ, (27)

where ŵpi is the point of interest normalised weight of a specific cell indexed by i.

ŵdi
+ ŵpi + ŵti = 1, (28)

where ŵti is the most used roads normalised weight of a specific cell. We calculate the MSE
as follows:

σ =
1
N

N

∑
i=1

(yi − ŷi)
2, (29)

where N is the total number of points, and a single point is the distance between an EV
location and a CP location. Notation yi is the actual mean distance, and ŷi is the expected
mean distance.

3.6. Using Feedforward Neural Networks (FNNs)

We created a large dataset to distribute EV CPs across the grid using the weights wd,
wp, and wt. The wd scores range from 1 to 6 and represent population density levels. The
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weight, wp, represents the number of POIs in a location. It ranges from 0 to 20. The weight,
wt, represents traffic on the most used roads. It has scores ranging from 0 to 4. Weight
combinations for these parameters were generated using normalised weights ranging from
0 to 1. For each combination, we calculated the GEECharge score to allocate CPs across the
grid. We saved the scores and the corresponding CPs in a CSV file for further processing.
The total number of CPs per cell was determined by distributing them based on this score,
ensuring that cells with higher wd, more wp, and greater wt received a larger number of CPs.
Each row in the dataset represented a unique combination of these weights, along with the
corresponding grid cell location (row and column) and the number of CPs assigned. These
combinations include scenarios shown in the equations below:

wd = wp = wt, (30)

wd = wp + wt, (31)

wt = wd + wp, (32)

wt = k(wd + wp), (33)

where k = 2, 3, 4, 5, 6. Population density wd, being equal to wp and wt, serves as a baseline
as we are giving equal importance to all parameters. This helps us understand how the
parameters influence the distribution of CPs. Population density wd, being equal to the
sum of wp and wt, prioritises areas with high population density, as they are more likely
to have a higher EV adoption rate. The most used roads wt, being equal to the sum of wd
and wp, shows the importance of high-traffic areas since placing CPs along a busy road
can serve many EVs. Increasing wt to be thrice to six times the sum of wd and wp is useful
in areas with vast road networks. Experimenting with different combinations of weights
helps us model the most effective strategies to meet EV user needs.

Figure 9. The graph shows a FNN where GEECharge parameters wd, wp, wt are the inputs of the
network, and the network predicts the number of CPs in a given cell. In the FNN, output CPs are
generated after the inputs have been processed through hidden layers.

During experimentation, we compared the performance of our approach with K-
means and random forest variants of the CP allocation algorithm in order to identify the
most suitable approach for predicting CP locations. The results demonstrated that the
FNN approach provided a more balanced weighting solution and better captured the
characteristics of data. The rationale for this result is that K-means is typically used as a
clustering algorithm, which is designed for grouping data into clusters based on similarity,
for example, using the squared Euclidean distance as a measure of error, rather than for
predictive modelling. In addition, we observed that random forests struggled to deliver the
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same performance as FNNs. We decided to use FNNs as shown in Figure 9 as they provide
a more balanced solution and capture non-linear relationships in the data. We use a FNN,
TensorFlow, and Keras to predict the number of CPs for a specific cell. The input layer has
three neurons corresponding to the features wd, wp, and wt. The weights are input as a
vector expressed as follows:

B = [wd, wp, wt]. (34)

There are five hidden layers of different numbers of neurons (256, 256, 128, 64, and
32) which learn the features of data. We extract features in the data while still managing
the possible risks of under-fitting and over-fitting. Each hidden layer performs a linear
transformation followed by an activation function, denoted as σ. Let L be the total number
of hidden layers. Then, for the kth hidden layer, where k = 1, 2, . . . , L,

hk = σ(hk−1Wk + bk), (35)

where the input layer is h0 = B, Wk ∈ Rnk−1×nk are the weights for the kth hidden layer,
and bk ∈ Rnk are the biases for the kth hidden layer. Here, nk−1 and nk are the number of
neurons in the (k− 1)th and kth layers, respectively.

We standardise the parameter features and scale them to a mean of 0 and a standard
deviation of 1, ensuring that the weights have equal contributions in CP distribution. We
split the dataset into training and testing sets. We use the activation function σ for non-
linearity. Dropout prevents over-fitting by randomly setting a fraction of input units to 0
during training. We express this as follows:

h′k = dp(hk), for k = 1, 2, 3, 4, 5, (36)

where dp is the dropout function. The output layer consists of a single neuron since it is a
regression problem. We express this as follows:

CP = h′5W6 + b6, (37)

where W6 ∈ R32×1 are the weights connecting the 5th hidden layer to the output layer,
and b6 ∈ R1 is the bias term for the output layer. We compile the model using the Adam
optimiser and the MSE loss function, where the Adam optimiser helps to minimise the
loss function during training. The data are trained using 30 epochs, and validation data
are used to monitor the performance of the model. The choice of 30 epochs is based on
empirical validation and also to balance under-fitting and over-fitting. We use the trained
model to make predictions on the data to find the best parameter weight combination. The
index of the combination with the least MSE is expressed as follows:

σ̂ =
1
N

N

∑
i=1

(zi − f (νi, w))2, (38)

where N is the number of data points, and zi is the actual CP for the ith data point. The
predicted CPs are encapsulated in the function f (ν, w), which takes input features ν and
weights w and produces an output, which is the predicted CP. In finding the best combina-
tion of weights w∗ that minimises σ̂, we use the following:

w∗ = arg min
w

σ̂. (39)

We compute the best index that corresponds to the best weight combination as follows:

i∗ = arg min
i

(zi − f (νi, w))2. (40)
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The CPs are distributed across each cell according to a uniform distribution. This
method helps to reduce the chance of CPs overlapping or being concentrated in one
area. While the distribution algorithm ensures that CPs are evenly spread across the grid,
congestion may still occur if there is high demand for a particular CP. The research does
not account for CP capacity, but future research could work on how each CP can handle
multiple EVs at the same time.

3.7. CP Distribution Efficiency

We define the efficiency metric η as a function of mean distance d̄ and success rate
R. Efficiency is inversely related to the mean distance and directly related to the success
rate, where

η(d̄, R) =
R
d̄

. (41)

We use the brute force search for optimal weights iterating through all possible combina-
tions of the parameter weights wt, wd, and wp. We consider the combination that results in
the highest efficiency to be optimal. We describe this as follows:

max
wt ,wd ,wp

η(d̄, R) subject to: wt, wd, wp ≥ 0 wt + wd + wp = 1. (42)

The mean distances d̄ and R are functions of wt, wd, and wp, where

d̄ = fd̄(wt, wd, wp), R = fR(wt, wd, wp). (43)

Functions fd̄ and fR are derived from data showing how the weights influence d̄ and R.
Using these functions, we rewrite the efficiency η as follows:

η(wt, wd, wp) =
fd̄(wt, wd, wp)

fR(wt, wd, wp)
. (44)

We optimize η(d̄, R) by finding the set of weights that results in the smallest value of η.
This optimisation is formulated as follows:

min
wt ,wd ,wp

(
fd̄(wt, wd, wp)

fR(wt, wd, wp)

)
, subject to: wt + wd + wp = 1, and wt, wd, wp ≥ 0. (45)

The optimal weights (w∗t , w∗d , w∗p) solve the optimisation problem. We define the maximum
efficiency ηmax as follows:

ηmax = η(w∗t , w∗d , w∗p) = min
wt ,wd ,wp

η(wt, wd, wp). (46)

We use the conditional expectation to see how the expected efficiency η[Y|wt] changes with
different values of wt given a model f (wt, wd, wp). This is expressed as follows:

η[Q|wt] = η[ f (wt, wd, wp)|wt]. (47)

The total number of CPs is represented by Q. The pseudo-code for CP prediction
using FNN is shown in Algorithm 1.
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Algorithm 1 This algorithm outlines the prediction of an optimal number of CPs in a cell
using a FNN. The FNN takes in weights and CPs from GEECharge and predicts the optimal
number of CPs in a cell and the corresponding weights that minimise the prediction error.

Require: wd, wp, wt
1: CPs← []
2: scores← [][]
3: Dataset Generation:
4: for each cell (r, c) do
5: Generate wd, wp, wt combinations: wd = wp = wt, wd = wp + wt, wt = k(wd + wp),

where k = 2, 3, 4, 5, 6
6: Compute GEECharge score s2(r, c)
7: Store s2(r, c) in scores
8: end for
9: FNN:

10: Input: 3 neurons [wd, wp, wt]
11: Hidden layers: [256, 256, 128, 64, 32]
12: Output: 1 neuron (CP prediction)
13: Activation: ReLU
14: Standardise features
15: FNN Training:
16: Forward propagation, Adam optimiser, MSE loss
17: Train for 30 epochs
18: CP Prediction:
19: for each cell (r, c) do
20: Predict CPs with FNN
21: Compute MSE: σ̂ = 1

N ∑N
i=1(zi − f (νi, w))2

22: end for
23: Find optimal w∗ minimizing σ̂
24: Ensure uniform CP distribution return Predicted CPs

4. Evaluating GEECharge

We implement a discrete event simulation (DES) approach to simulate trips across
the Dublin Road network to evaluate the GEECharge and EV Portacharge methods. Let
Gz = (C, E) represent a subgraph of G containing the vertices and edges associated with
the CPs and their connections. An EV situated at vertex vi in G can reach the closest
charging point zj in Gz by calculating the shortest path between vi and zj in Gz using
Dijkstra’s algorithm. The set of all CPs in the subgraph Gz is denoted by C, represented as
C = {z1, z2, z3, . . . , zq, . . . , zQ}, where zq refers to the qth CP, and Q is the total number of
CPs. The nearest CP zj to the vertex vi is determined by minimising the distance metric
d(i, j) between vi and zj, expressed as follows:

z⋆ ← arg min{d(i, j) | zj ∈ C}. (48)

When an EV’s battery is depleted, the Euclidean distance between its current position
and the nearest CP is computed. This distance is defined as the shortest path between the
EV’s location l(vi) and the location of the CP l(zj). We simulate a chosen number of cars
and provide trip statistics.

In the road traffic simulation, we model EV interaction with the available CPs to
evaluate the efficacy of CP placement. For each EV i, where i ∈ {1, . . . , N̂}, we select a
starting node a(s)i from a set of all nodes N. The total number of cars is denoted by N̂. We

simulate the trip of each EV i by repeatedly selecting an end node a(e)i randomly from N
until the accumulated travel distance di satisfies di ≥ range. We compute distance di as
follows:

di =
m

∑
k=1

d(a(s)i,k , a(e)i,k ), (49)
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where m is the number of segments travelled by car i, and d denotes the shortest path
distance function. The coordinates (xa(e) , ya(e)) of the final node a(e)i are used to calculate
the nearest CP by the following:

d(i, j) = min
j∈CP

{
E
(
xa(e) , ya(e) , xj, yj

)}
, (50)

where E represents the Euclidean distance calculation, and xj, yj are the coordinates of CP j.
The Euclidean distance in m between a CP and the arrival node is determined using the
haversine formula. The magnitude of the vector formed by the difference between a(s)i and

a(e)i is calculated as follows:∣∣∣∣∣∣l(a(s)i )− l(zj)
∣∣∣∣∣∣ = ∣∣|xi − xj| − |yi − yj|

∣∣, (51)

where l(a(s)i ) = [xi, yi] and l(zj) = [xj, yj]. This can also be expressed using absolute values
as follows: ∣∣|xi − xj| − |yi − yj|

∣∣, (52)

where (xi, yi) and (xj, yj) are the coordinates of the vertices a(s)i and CP zj, respectively. The
distance d(i, j) is computed by defining φ = xj − xi and λ = yj − yi. Since the grid size
is 6 by 10, the coordinates xi range from 1 to 6, and yi range from 1 to 10. The haversine
formula for calculating the distance between two points on the Earth’s surface is as follows:

d(i, j) = 2R arcsin

√
sin2 φ

2
+ cos φ1 cos φ2 sin2 λ

2
. (53)

Here, the Earth’s radius is approximately R ≈ 6371 km, and variables φ and λ repre-
sent the differences in the coordinates xi and xj, and yi and yj, respectively, as shown in
Equation (53). The equation above expresses d(i, j) as the Euclidean distance between the
two points. We use GEECharge to maximise the efficacy of CP placement by combining
wd, wp, and wp. FNNs can learn these relationships better, leading to better predictions of
CP placements. We use parameter weight normalisation to ensure that there is equity in
weight contribution in CP distribution.

5. GEECharge Weight Analysis

We provide a summary of the results, which we then utilise to organise the experiment
descriptions. We show the following:

1. Points of interest (POIs), population density, and most used roads normalised optimal
weights are wd = 0.1339, wp = 0.4018, wt = 0.4444, respectively.

2. Optimal parameter weights give 109 CPs in a 1 km2 area.
3. Resizing the grid to 10 by 6 and rotating it at an angle of −350◦ increases the total

number of CPs by 5.7%, enhancing coverage.
4. Reducing the grid by half to smaller cells, CPs are closer to each other, and thus, d(i, j)

between vi and CP zj is reduced. For instance, we evaluate the distribution of 81 CPs
in G11 when the size is 1 km2 and again when the size is 500 m2. Results show that
the mean distance reduces from 37.28 m to 22.67 m.

5. FNN trains the data and predicts the best weight combinations.
6. We determine the CP distribution efficiency in Dublin.
7. We normalise all the weight for equity in CP distribution.

We simulate EVs finding the nearest CPs from their current location within Dublin,
where we select cell (1, 1) ∈ G as the region of simulation. We represent cell (1, 1) ∈ G as
G11. Using real-world coordinates, we generate CP positions in the cells as shown in Table 5.
To determine the most efficient route, we use the Haversine formula. We first select 100
EVs for simulation and calculate the distance between the EVs l(vi) and CPs l(zj). Once
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the distances are established, we implement Dijkstra’s algorithm to find the shortest path
for an EV positioned at vi in G to reach the closest CP zj in Gz by determining the shortest
path between vi and zj. We consider a trip as successful when an EV reaches a CP zj that is
within 100 m from its current location vi.

Mean distance (d̄):

d̂ =
∑ d(i, j)

N̂
, (54)

where d̂ is the mean distance, d(i, j) is the distance from the vi and zj in Gz, and N̂ is the
total number of EVs in the simulation.

Success rate (SR):

SR =
Ĉs

N̂
× 100%, (55)

where SR is the success rate, Ĉs is the number of successful charges (that is, the EVs that
find a CP within 100 m), and N̂ is the total number of EVs in the simulation.

Table 5. The table shows the EV location and nearest CP. We show the latitude and longitude of the
EV, indicating its exact geographical position, along with the distance to the nearest CP measured in
m.

EV ID Latitude (EV Location) Longitude (EV Location) Distance to Nearest CP (m)

1 53.38109 −6.32120 42.48

2 53.37488 −6.33384 39.12

3 53.38100 −6.32478 42.28

4 53.38123 −6.33291 90.00

5 53.37413 −6.32626 78.60

6 53.37869 −6.32303 91.32

7 53.37539 −6.33203 77.22

8 53.38239 −6.32838 16.44

9 53.37917 −6.32784 53.22

10 53.37616 −6.32471 8.76

11 53.37365 −6.33342 101.37

12 53.37938 −6.32977 119.48

13 53.37486 −6.33115 21.45

14 53.38147 −6.32812 64.95

15 53.37919 −6.33069 64.39

16 53.38088 −6.32093 23.12

We show the start points and the end points of trips in the EV simulation. The green
dot in Figure 10 represents l(vi), and the red dot represents l(zj).
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Figure 10. This graph shows the trip’s start and end points for a sample EV. The start point is shown
in green while the arrival point is shown in red.

In the first finding, we normalise parameter weights by summing the three weights
and identifying the best combination. We combine wd and wp, where wd varies from 1 to
0, and wp varies from 0 to 1. The weights wd and wp are paired such that wd decreases
from 1 to 0 in increments of 0.1, while wp increases from 0 to 1 in increments of 0.1. The
weight pairs (wd, wp) range from (1, 0) to (0, 1) through (0.9, 0.1), . . . , (0.1, 0.9). We analyse
how the variation of wd and wp influences the distribution of CPs when normalised. We
calculate the corresponding CPs for each pair and perform the EV simulation. We simulate
the distance from the current EV location to the CP location and term it a success if the
distance is less than 100 m from the EV location. We select G11 in the grid to perform
simulation, and the results are below.

Table 6. The table shows the results for G11 when 57 EVs were used in the simulation. The number of
CPs decreases as the values of wd increase. The results show that as the number of CPs decreases, the
mean distance increases as CPs are getting farther from the EVs. This reduces the success rate.

wd wp Number of CPs Mean Dist (m) Success (%)

1.0 0.0 81 60.05 89.47

0.9 0.1 60 71.78 75.44

0.8 0.2 50 83.75 63.16

0.7 0.3 44 94.06 52.63

0.6 0.4 39 92.74 54.39

0.5 0.5 36 95.61 50.88

0.4 0.6 34 94.98 54.39

0.3 0.7 32 101.59 49.12

0.2 0.8 31 105.49 45.61

0.1 0.9 29 109.42 42.11

0.0 1.0 28 115.01 40.35

The results in Table 6 show how wd and wp influence CP distribution. As wd decreases,
the number of CPs decreases, thus increasing the mean distance as CPs are few, thus being
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far from the EVs. This also reduces the success rate. We now perform a second simulation
using 100 EVs, and the results are shown in Table 7.

Table 7. The table shows the results for G11 when 100 EVs were used in the simulation. The number
of CPs decreases as the values of wd increase.

wd wp Number of CPs Mean distance (m) Success (%)

1.0 0.0 81 60.78 90.00

0.9 0.1 60 68.92 81.00

0.8 0.2 50 79.74 70.00

0.7 0.3 44 90.62 61.00

0.6 0.4 39 93.20 57.00

0.5 0.5 36 95.90 54.00

0.4 0.6 34 96.70 54.00

0.3 0.7 32 103.20 50.00

0.2 0.8 31 108.75 46.00

0.1 0.9 29 114.84 40.00

0.0 1.0 28 120.22 38.00

We see that the success rate is decreasing as the mean distance is increasing. This is
due to the reducing trend of CPs. We visualise how the cell scores are impacted by weight
changes and show the results in Figure 11.
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Figure 11. The graph shows that the cell scores vary as wd and wp vary. An increase in wp leads to
a subsequent increase in the G11 scores. Trends in the results show that balance between the two
parameters is crucial in CP distribution.

We extract mean distances and wp values and use a second degree polynomial to
predict the expected mean distances from the current EV location to the CPs.

ŷi = aw2
p + bwp + ĉ. (56)

We obtain coefficients of the polynomial equation that best fit the mean distances
corresponding to different wp values. We now construct an equation to predict expected
mean distances from the current EV location to the CP location, and it is expressed as
follows:

d̂ = aw2
p + bwp + ĉ. (57)
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The MSE for each wp value is calculated by comparing the mean distances obtained from
the parabolic fit with the actual mean distances. The results in Figure 12 can help policy
makers in infrastructure resource allocation, as CPs are placed in areas they are most
needed.
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Figure 12. The graph shows the relationship between MSE and wp. The MSE decreases as the weight
increases up to approximately 0.545, then begins to increase. The value 0.545 is the optimal value as it
gives the lowest MSE of 307.55. The results show that beyond 0.545, POIs’ contribution becomes less
effective due to overemphasis, highlighting the importance of weight balancing.

The results in Figure 13 show the importance of wd in CP placement. With an optimal
weight of 0.545, city planners can adopt a more strategic approach to infrastructure devel-
opment. We add the weights of wd and wp, normalise them, and now vary wt from 1 to 0,
thus generating a range of weight combinations. We determine the percentage of CPs that
are within 100 m of the EV’s current location and compute the measure of success using
the following equation:

1
|C| ∑

z∈C
I(||l(vi)− (zj)|| < 100), (58)

where I(||l(vi)− (zj)|| < 100), is an indicator function that is equal to 1 if the distance
between the EV’s current location vi and CP zj is less than 100 m and equal to 0 otherwise.
Before stopping, an EV can drive 1 km at a low speed to reach a CP. The simulation assumed
approximately 100 cars passed through an intersection per hour, and most EVs had a range
of approximately 400 km. While some EVs, like Tesla’s Model S Long Range, offer a higher
range of about 637 km, 400 km is typical for most EVs [94].

Table 7 shows different EV simulation results for an EV accessing a CP. Each row of
the table corresponds to a distinct scenario with varying weight combinations of wd and wp,
summing 1. The number of CPs column shows the total number of CPs resulting from each
set of wd and wp weights. The mean distance is the average distance an EV must travel to
reach the nearest CP. The success rate represents EVs that reach a CP that is within 100 m.
A higher wd reduces the mean distance and success rate if few CPs are placed.
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Figure 13. The graph shows the relationship between MSE and wd. The MSE decreases as the weight
increases up to approximately 0.545, then begins to increase. The value 0.545 is the optimal value as it
gives the lowest MSE of 307.55. The results suggest that wdis a significant factor in CP distribution
and overemphasis on a single factor may affect CP distribution.

In Table 8, as the wt increases, the number of CPs decreases to 0. When CPs are 0 in a
cell, it means that an EV cannot access charge in that specific cell; thus, the distance is ∞.

Table 8. The table shows EV simulation in G11, using the three parameter weights. The results show
that an increase in wt leads to a decrease in the number of CPs in the cell. The decrease in CPs leads
to a decrease in success rate due to an increase in the mean distance.

wt wd wp Number of CPs Mean Distance (m) Success Rate (%)

0.00 0.20 0.80 31 108.75 46.0

0.11 0.18 0.71 30 111.76 44.0

0.22 0.16 0.62 29 114.84 40.0

0.33 0.13 0.53 28 120.22 38.0

0.44 0.11 0.44 27 120.35 38.0

0.56 0.09 0.36 25 138.8 33.0

0.67 0.07 0.27 23 142.29 32.0

0.78 0.04 0.18 19 146.56 28.0

0.89 0.02 0.09 13 170.93 22.0

1.00 0.00 0.00 0 ∞ 0.0

Cell score varies on different weight values as shown in Figure 14. We calculate the
MSE of the actual mean distance and the predicted mean distance and plot a graph of MSE
against wt, showing how an increase in wt affects MSE. Figure 15 shows the results. As
shown in Figure 16 we find that the optimal weights for parameters wt, wd, and wp are 0.56,
0.09, and 0.36, respectively, with an MSE of approximately 379.41 and 382.50.
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Figure 14. The graph shows the relationship between G11 scores and the three weights. The results
show that the cell score increases as the wd increases up to a certain point at which the curve begins
to flatten. This implies that the impact of wd on the score beyond that point diminishes. The cell score
also increases with the increase in wp. The cell score decreases as wt increases. At first, the decrease
is slow, but after approximately 0.6, there is a sharp decrease in the cell score. We see that wt has a
negative correlation beyond a certain point, suggesting that overemphasis on road usage may lead to
sub optimal CP distribution.
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Figure 15. The graph shows the relationship between MSE and wt. The MSE slightly decreases as
the weight increases from 0.0 until it reaches approximately 0.525. The results show that 0.525 is the
optimal wt as it corresponds to the minimum MSE value of approximately 375.40. Beyond 0.525, we
have a sharp increase in MSE. The results suggest that wt significantly impacts MSE and that road
score should be balanced to avoid being overly dominant.
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Figure 16. The graph shows the relationship between MSE and varying parameter weights. MSE
slowly decreases as wt increases from 0.0 to approximately 0.560 and then starts to sharply increase.
MSE decreases as wd increases to approximately 0.09 and then starts to increase. This suggests that
a small value of wd is sufficient to minimise the MSE error. The MSE decreases as wp increases,
reaching its minimum at approximately 0.360 with an MSE of 379.44. After this point, the MSE begins
to increase slowly. The results show the need for balanced weighting of all parameters.

The FNN model predicts the optimal weights for population density, points of interest
(POIs), and most used roads optimal weights as wd = 0.1339, wp = 0.4018, wt = 0.4444 and
the corresponding CPs as 109. To evaluate the effectiveness of our proposed FNN approach,
we conducted comparative experiments with K-means and random forest algorithms.
The results demonstrated that FNN consistently outperformed these methods in terms
of accurately predicting CP locations and capturing the complex non-linear relationships
within the data. The K-means algorithm provided a weight combination of wd = 0.1472,
wp = 0.7362, and wt = 0.1111 for the data set. The resulting CP allocation corresponded
to 30 CPs being deployed. In this case, the weight wp was more dominant over the other
weights. The random forest approach yielded the weights wd = 0.2202, wp = 0.6606, and
wt = 0.1111. These weights resulted in 122 CPs being chosen. Similar to K-means, the
weight wp was more dominant compared to the other weights. The FNN results, however,
showed a more balanced weight distribution across the three parameters than the K-means
and random forest models.

We resize the grid to 10 rows and 6 columns and rotate at various angles to get the
best position to place the grid. We find that −350◦ increases the total number of CPs
by 5.7% , enhancing coverage. This is because the total number of CPs increases from
7552 in the original grid to 7982 in the rotated grid as more cells with high population
density are covered. For instance, cells (6, 10) in the grid move from a position where we
had no population density to a new position with a very high population density. This
generally increases the number of CPs in the region. A 5.7% increase in CPs enhances the
EV experience for drivers by improving accessibility and reducing wait times. This reduces
range anxiety and boosts confidence in EV usage. For urban planners, this increase provides
valuable data for strategically placing CPs, supporting policy initiatives, and integrating
EV infrastructure into broader mobility strategies. This aligns with sustainability goals by
promoting the adoption of EVs, reducing greenhouse gas emissions. Reduced number of
CPs as shown in Table 9 could increase range anxiety and affect sustainability efforts.
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Table 9. In G21, we use 290 EVs in the simulation. The results show that an increase in wt leads to
a decrease in the number of CPs in the cell. The decrease in CPs leads to a decrease in the success
rate due to an increase in the mean distance. The mean distance increases from 79.74 m to 143.13 m.
When wt is set to 1, the total CPs is 0, and the EV mean distance becomes ∞.

wt wd wp Num Stations Mean Dist (m) Success Rate (%)

0.00 0.20 0.80 51 79.74 70.34

0.11 0.18 0.71 50 81.00 69.31

0.22 0.16 0.62 49 83.76 67.93

0.33 0.13 0.53 47 84.56 66.90

0.44 0.11 0.44 45 87.71 63.79

0.56 0.09 0.36 42 88.85 63.45

0.67 0.07 0.27 38 92.34 59.31

0.78 0.04 0.18 32 100.79 52.07

0.89 0.02 0.09 21 143.13 32.76

1.00 0.00 0.00 0 ∞ 0.00

We reduce the grid cells to each size of 500 m2. We find that in smaller cells, CPs
are closer to each other, and thus, d(i, j) between vi and CP zj is reduced. For instance,
we evaluate the distribution of 81 CPs in G11 when the size is 1 km2 and 500 m2. Our
results show that the mean distance reduces from 37.28 m to 22.67 m. Reducing the cell
size facilitates a more granular distribution of CPs. By concentrating CPs in smaller grid
cells, we increase proximity to EVs, making charging more accessible to users.

Table 10. Efficiency data with weights.

Weight wt Weight wd Weight wp Efficiency

0.00 0.20 0.80 0.4230

0.11 0.18 0.71 0.3937

0.22 0.16 0.62 0.3483

0.33 0.13 0.53 0.3161

0.44 0.11 0.44 0.3157

0.56 0.09 0.36 0.2378

0.67 0.07 0.27 0.2249

0.78 0.04 0.18 0.1910

0.89 0.02 0.09 0.1287

We calculate the efficiency as shown in Table 10 to understand how well CPs have
been distributed in the simulation cell. By analysing η[Y|wt] for various values of wt, wd,
and wp in G11 selected for simulation, we find that the optimal weights for wt, wd, and wp
are 0.0, 0.2, and 0.8, respectively, and optimise the expected efficiency of the CP distribution.
These set of weights produce an efficiency of 0.4229885.

Figure 17 shows how CPs are distributed in one of the cells in Dublin. Previously,
research has used a variety of criteria, taking into account infrastructure to determine the
ideal CP distribution. We extend the research in [13] by normalising parameter weights,
rotating the grid, reducing the grid size to see the effect on CP distribution, and using a
FNN to predict the best weight combination and the corresponding CP.
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Figure 17. CPs distributed in a 1 km2 cell in Dublin.

The results will help city planners and policymakers distribute resources for CP infras-
tructure. Policymakers can use the GEECharge method to identify the CP infrastructure
needs of areas and maximise the benefit of infrastructure investment. Urban planners
can use the findings to develop dynamic planning approaches that adapt to changes in
traffic patterns and population growth. By optimising CP placement, cities can encourage
more residents to adopt EVs, contributing to reduced emissions and promoting sustainable
urban transportation. GEECharge can be adapted for use in other urban areas facing similar
challenges with EV charging infrastructure as the parameters used are applicable in other
cities. While this analysis is region-specific, GEECharge can be applied to other urban
environments. Cities can use their local data in GEECharge by mapping data into a grid
structure and feeding it into the FNN model for CP prediction. The flexibility of grid rota-
tion allows for adapting to various urban layouts. Population density, traffic patterns, and
POIs are relevant across urban contexts. The approach not only accommodates different
urban layouts but is adaptable to diverse data. Future work could integrate energy supply
capacities and infrastructure variations, as these factors could influence the distribution
of CPs in different cities. This work leads to a successful CP distribution in Dublin that
improves CP accessibility and lessens range anxiety.

This research is limited in that it can only identify CP placement locations. We have
also not considered how the number of plugs for each CP could be adapted and the distance
to the grid. Our research does not account for CP capacity, but future research could work
on how each CP can handle multiple EVs at the same time. In Section 6 below, we have
summarised the results and highlighted recommendations for future work.

6. Conclusions

The study provides valuable insights into optimising the distribution of CPs for EVs in
urban environments. By normalising parameter weights and using FNN, we have identified
the population density, points of interest, and most used road weights, such as optimal
weights, grid resizing, and rotation angles, to maximise CP coverage while minimising
MSE. We have also identified that summing all three weights to 1 ensures equity and
balance in CP distribution contribution. We show that rotating the grid at −350◦ increases
the distribution of CPs by 5.7%. This will help address the current challenges facing EV
adoption, particularly in urban areas where range anxiety and uneven CP distribution
are significant concerns. Future research could explore additional factors, such as power
distribution constraints and real-time demand fluctuations, to further refine CP placement
strategies. Furthermore, integrating insights from EV user behaviour and preferences could
enhance the effectiveness of CP networks, ensuring they are tailored to meet the needs of
diverse user demographics and usage patterns.
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