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Improving Energy Efficiency In Open RAN
Through Dynamic CPU Scheduling

Saish Urumkar
Technological University Dublin
D22129017 @mytudublin.ie
ORCID: 0000-0003-4969-0674

Abstract—Open RAN is a promising cellular technology that
is currently undergoing extensive research for future wireless
radio access networks. Achieving optimal energy efficiency in
Open RAN poses a significant challenge. This paper introduces
a CPU scheduling algorithm that specifically targets this chal-
lenge by optimizing energy consumption at the base station
while maintaining optimal performance levels. With the goal
of minimizing energy consumption, the proposed algorithm
dynamically adjusts the CPU core states, seamlessly switching
between active and sleep modes based on the load conditions. To
evaluate the algorithm’s effectiveness in terms of energy saving
and performance, experimental testing is conducted using the
POWDER test-bed located in the United States. The results of
the experiments show a reduction of around 5% to 22% in energy
consumption in Open RAN through the implementation of the
CPU scheduling algorithm.

Index Terms—Open RAN, Energy Efficiency, CPU Scheduling

I. INTRODUCTION

Open Radio Access Network (Open RAN), a rapidly evolv-
ing technology, has garnered significant interest in the wireless
community. By enabling multi-vendor solutions, supporting
openness and promoting interoperability, Open RAN has the
potential to revolutionize conventional network designs. Open
RAN offers benefits like enhanced network performance,
lower operational costs and a diverse ecosystem that empow-
ers network operators to establish flexible and cost-effective
networks, fostering adaptability and innovation.

Despite the various benefits that Open RAN offers, the
challenge of energy efficiency remains prominent in its deploy-
ments [1]], [2]], as the escalating demand for high-performance
networks has led to a substantial increase in base station
energy consumption. Efforts to address this challenge have
led researchers to explore energy-saving techniques for Open
RAN, encompassing dynamic resource allocation, idle power
reduction, and machine learning algorithms [3[]-[24].

Achieving a balance between energy efficiency and network
performance remains a significant challenge. Several papers
[4]-[10] suggest altering the power states of network compo-
nents or reducing active cells, but this approach may compro-
mise network performance and user experience. Sleep mode
techniques involve progressive shutdown of network hardware,
base station, or cells based on activation and deactivation times
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[4]-[6]]. While sleep mode algorithms for base stations and
radio transceivers [4]-[9] have garnered attention, little focus
has been given to sleep mode algorithms tailored for CPU
cores in Open RAN.

Distinguishing our work from previous studies, such as
sleep mode techniques for base stations, cells, and network
resources dynamic switching [[1]]-[25]], our research addresses
these challenges through a CPU scheduling algorithm designed
explicitly for the Open RAN base station (gNodeB) side.
Our approach seeks to achieve a balance between energy
efficiency and network performance, resulting in a significant
energy reduction of around 5% to 22% in our experiments.
By dynamically adjusting CPU core states between active
and sleep modes based on load, our algorithm optimizes
energy consumption during periods of low demand while
ensuring efficient resource utilization. Our work establishes
a substantial correlation between performance and energy
efficiency, offering valuable insights for implementing energy-
saving measures in Open RAN systems.

Our research also aligns with the European Union’s energy
efficiency target of achieving at least 11.7% improvement
by 2030 [18]. Our contribution supports ongoing efforts to
enhance energy efficiency in Open RAN, aligning with broader
goals of sustainable and environmentally-friendly network op-
erations. Researchers evaluating Open RAN performance and
energy efficiency have utilized various platforms, including
simulation tools like ns-3, mininet, and opennet [19]], [20],
as well as test-beds featuring commercial and open-source
Open RAN implementations [21]], [22]]. In this paper, we
utilize the POWDER test-bed [23]], [24] to conduct Open
RAN experiments focused on energy efficiency. This paper’s
contributions are outlined as follows:

1) Deployment of Open RAN Experiment Setup Using
POWDER Test-Bed: Our initial setup involves configur-
ing Open RAN on the POWDER test-bed, encompassing
essential components such as user equipment (UE), base
station (gNodeB) and the Open RAN controller.

2) Proposal of an Energy-Efficient CPU Scheduling Al-
gorithm: We introduce and implement a dynamic CPU
scheduling method tailored for gNodeBs. The algorithm
performs the balance between energy conservation and
operational effectiveness, which is necessary for gN-



odeBs in remote locations as they are susceptible to
power variations. Our dynamic CPU scheduling ap-
proach efficiently manages power consumption without
significantly compromising performance by adjusting
CPU core states based on real-time load.

3) Establishing Performance Baseline: We perform bench-
marking to establish a reliable performance baseline in
our experiments. This phase involves data gathering,
focusing on TCP and UDP bandwidth measurements be-
tween UE and gNodeB, as well as energy usage and load
measurements without implementing the algorithm. This
bench-marking provides insights into early performance
characteristics.

The remainder of this paper is structured as follows: Section
IT presents related work. Section III provides an overview
and description of the CPU scheduling algorithm. Section
IV details the Open RAN emulation configuration used in
our experiments. Section V presents results and analysis,
highlighting the advantages of the CPU scheduling algorithm.
Finally, Section VI concludes the paper by summarizing
contributions and suggesting potential directions for further
investigation.

II. RELATED WORK

An overview of related work on various proposed methods
for energy saving in Radio Access Networks is outlined in the
below sections and Table [I] according to different areas like
dynamic activation and deactivation, load balancing and traf-
fic offloading, radio resource management and machine/deep
learning.

A. Dynamic Activation And Deactivation

According to network traffic demands, a suggested tech-
nique involves dynamic activation and deactivation of base
stations or cells [4]-[11]. In paper [4] authors proposed an
energy-saving strategy based on green wireless communi-
cation to enhance energy efficiency and wireless network
effectiveness. They collected data from real base stations and
demonstrated that employing techniques like power control,
dynamic channel allocation, and sleep mode management
led to approximately 18.8% of energy savings when TRX
(transceivers) were turned off [4]. In paper [5] authors used
simulations to develop an analytical approach for estimating
energy savings enhancements at the system level for base
stations. The results showed energy savings of 22% for 4G
and 17% for 5G under high load conditions of 40% [5]. In
the context of green cellular networks, in paper [10] authors
introduced methods for dynamic base station switching on/off.
Their proposed solutions maintained Quality of Service (QoS)
while achieving up to 14% energy savings by selectively
activating and deactivating base stations based on traffic de-
mand [10]. In paper [11] authors concentrated on utilizing
on/off base stations to operate cellular networks with minimal
energy consumption. By strategically powering down base
stations during periods of low traffic, they achieved energy
savings of up to 4.72% [11]].

TABLE I
RELATED WORK ON ENERGY SAVING IN RAN
Area Methods (Simulation/Emulation) Energy
Saving %
Dynamic Real base station for Power control, | Up to 18.8%
Activation Dynamic channel allocation, and sleep
and Deac- | mode management [4].
tivation
Simulation for base station time- trig- | Up to 22%
gered sleep model [5]]
Simulation for implementing dynamic | Up to 14%
base station switching-on/off [[10]
Simulation for implementing adaptive | Up to 4.72%
cell zooming for low traffic demand [11]]
Load Bal- | Simulation for introducing Pico | Up to 9%
ancing and | cells as low-powered heterogeneous
Traffic Of- | network [12]
floading
Simulation for traffic load balancing | Up to 17%
framework [[13]]
Radio Simulation for multi-user adaptive power | Over 77%
Resource and resource allocation algorithm [[14]
Manage-
ment
Machine/ Simulation to implement linear program- | Up to 40%
Deep ming based Energy-efficient power con-
Learning trol approach in Open RAN [15]
Algorithms
Simulation to implement Multi-Agent | Up to 59.04%
Team Learning in virtual Open RAN [16]
Simulation to implement Traffic predic- | Up to 12.2%
tion method based on recurrent and se-
quential network [17]

B. Load Balancing And Traffic Offloading

By optimizing resource allocation and evenly distributing
traffic among base stations, load balancing solutions aim to
reduce excessive energy consumption [12]], [13]]. In paper [12]
authors achieved energy savings by incorporating pico cells as
low-power nodes in a heterogeneous network. Their findings
indicated approximately 9% power savings for concentrated
base stations during busy hours, with minimal average daily
power savings of about 1% [12]. The authors in paper [13]
proposed a traffic load balancing framework called VGALA
for hybrid energy-powered software radio access networks
(SoftRAN). Simulations demonstrated that their algorithm
maximized energy utilization, reduced network congestion,
and led to energy savings of up to 17% [13].

C. Radio Resource Management Techniques

Advanced techniques like intelligent power regulation and
interference management contribute to energy efficiency im-
provements in radio resource management [[14f]. In paper [14]
authors introduced a green radio solution using a multi-user
adaptive power and resource allocation algorithm for base sta-
tions. Their link adaptation, multi-user diversity and allocation
of spare spectrum, through simulation demonstrated over 77%
energy savings compared to non-energy aware schemes [[14].

D. Machine/Deep Learning Algorithms

Various machine learning and deep learning algorithms
have been proposed to optimize energy efficiency in RAN



systems. The authors in paper [15] introduced a joint op-
timization solution using mixed-integer linear programming
to enhance energy efficiency in Open RAN, achieving up to
40% energy savings compared to the baseline solution [[15].
In another paper [16] authors presented a Multi-Agent Team
Learning (MATL) approach, demonstrating that Team Multi-
Agent Deep Reinforcement Learning (TMADRL) outperforms
other models, yielding energy gains of 29.7% to 59.04% [16].
The authors in paper [[17]] focused on traffic prediction using
recurrent neural networks, revealing a 12.2% improvement in
energy efficiency over standard methods [17].

While the methods discussed in references [2] to [17] have
shown positive outcomes, there remain unexplored problems
in Open RAN’s energy efficiency. Balancing energy efficiency
with network performance is a challenge. Existing research
has focused on sleep modes for radios and base stations,
neglecting CPU cores used in Open RAN. Unlike previous ap-
proaches [1] to [[17], our proposed CPU scheduling algorithm
at the gNodeB effectively conserves energy while maintaining
performance, as demonstrated across various link capacities.

III. PROPOSED CPU SCHEDULING ALGORITHM

The proposed algorithm is divided in to two parts: The ex-
planation of objective function and proposed CPU scheduling
algorithm.

A. Objective Function

Cn,N
minimize: P(z)total = Z P(U(c)) (D

i,n=1

Eq. [T]represents the objective function for minimizing the total
power consumption denoted by P(x)total. The objective is
to find the optimal solution that minimizes the total power
consumption, taking into account the power consumption func-
tion PI\gU (c)) for each CPU core c¢. The summation notation
Zics’zl indicates that the summation is performed over two
indices: i and n. The variables i and n represent the indices
for the CPU core and the tasks or processes, respectively.
The range of ¢ and n extends from 1 to Cn and from 1
to N respectively. Here, Cn represents the total number of
CPU cores, while N represents the total number of tasks or
processes. This implies that the objective function considers
the power consumption of each combination of CPU cores and
tasks or processes. P(U(c)) represents the power consumption
function for a given CPU utilization U(c) of the CPU core c.

B. CPU Scheduling Algorithm

The proposed CPU scheduling algorithm efficiently man-
ages CPU cores by adapting to workload changes. It adjusts
the state of a number of active cores based on CPU load,
saving power. When the load drops below a threshold, it
changes the state of CPU core to sleep mode, conserving
energy. Core state changes to active when the load exceeds
the threshold, ensuring resource availability. The algorithm

Algorithm 1 Dynamic CPU sleep scheduling
1:  N: total cores, ns: time, active_cores: number of
active cores
2:  cpu_load_threshold: threshold, current_load: current
load, gn_pid: Gnodeb PID
3: Observe and Set gn_pid
4: while system is running do
5: Monitor peak load for ns
6: if load < threshold and active_cores > 1 then
7
8
9

Sleep one core, Decrement active_cores

end if

: if load > threshold and sleeping cores exist then
10: Wake one core, Increment active_cores
11: end if
12: if no sleeping cores and active_cores = N then
13: Wait for ns before monitoring again
14: end if
15: if no active cores and sleeping cores exist then
16: Wake one core
17: end if
18: if active cores and high load then
19: Adjust scheduling
20: Implement changes based on observed load
21: end if

22: end while

optimizes CPU core state swiftly, depending on varying loads.
The goal of our proposed algorithm is to switch between sleep
and active state depending on load conditions to save power.

Algorithm (1] begins by setting an initial CPU affinity for
the target process, specified by the GNB process ID indicated
as ‘gn_pid’ in the algorithm. CPU affinity allows us to
assign one or more processes to a particular CPU core so
that processes can only be executed from that core. The
CPU affinity is initially set on all available CPU cores. A
load threshold indicated as ‘cpu_load_threshold’ value is
assigned to determine the threshold limit of load for the
algorithm to trigger based on load conditions. The algorithm
continuously monitors the CPU load in ‘current_load’. If
the CPU load is indicated as ‘current_load’ falls below the
specified ‘cpu_load_threshold’ and there is more than one
active CPU core, the algorithm places one of the CPU cores
into a sleep state. The CPU affinity is then adjusted to exclude
the sleeping core, resulting in decreased power consumption.
Conversely, if the CPU load exceeds the threshold based on
‘cpu_load_threshold’ and there are available CPU cores, the
algorithm activates an additional CPU core and restores the
performance mode. The new core is added to the CPU affinity,
allowing the process to utilize more computing resources.
Throughout the execution, the algorithm prints the CPU load
percentage, the adjusted CPU affinity for the GNB process,
and the state of individual CPU cores.



IV. OPEN RAN EMULATION SETUP
A. About The Powder Platform for OPEN RAN Use Case

POWDER (Platform for Open Wireless Data-driven Exper-
imental Research) is a cutting-edge wireless research platform
that allows researchers to conduct experiments in a simulated
and controlled environment [23]], [24]], [25]. Emulation of
Open RAN (Radio Access Network) is one of POWDER’s
primary use cases, allowing researchers to assess and validate
the performance of Open RAN designs and protocols [24],
[25]. Open RAN emulation enables researchers to evaluate
and compare the performance, scalability, and efficiency of
Open RAN systems under various scenarios and conditions. In
POWDER, emulation scenarios involve configuring virtualized
network services such as base stations, access points, and
core network components, as well as modeling realistic traffic
patterns and network conditions.

B. Emulation Scenario for Open RAN setup in POWDER

The d430 hardware [27]] which is powered by 64-bit Intel
Xeon processors having thermal design power of 85 watts
is used in the POWDER experimental setup. The processor
has 2 CPU sockets, 32 cores with hyper-threading technology,
and 64 GB of RAM. In the emulation, Docker containers are
used to create virtual instances of User Equipment, gNodeB,
and Core Network. The OpenAirlnterface (OAI) framework
repository [28|] is implemented to simulate GNB, UE, and
CN, adhering to Open RAN specifications. The network
function containers for the Access And Mobility Management
Function (AMF), User Plane Function (UPF), Session Man-
agement Function (SMF), and Network Repository Function
(NRF) are deployed within the Core Network. The exper-
iment starts by initializing Docker containers for gNodeB,
UEs and Core Network. AMF logs monitor UE and GNB
registration. The GNodeB begins in standalone mode using RF
simulation. Separate namespaces assign unique IP addresses
to three UEs. The nr-soft modem software which is software-
defined radio (SDR), emulates GNodeB functions. For UEs,
nr-uesoftmodem software is employed, operating within the
frequency range 1 (FR1) with sub 6GHz frequencies and
numerology I configuration. In 5G NR, the sub-carrier spacing
for numerology 1 is 30 kHz. Also, 106 resource blocks are
used in configuring UE. Below Figure |1|is a representation of
the Open RAN emulation setup done in POWDER.

Docker

Open 1
Container OAl

RAN
Band 78

NameSpace

RF Sim

16CPU
Base Station{GNE]
h

SA Mode ;'

\
CPU Scheduling Algorithm
-Energy Saving F
-

5G Core Network

10CPU

Fig. 1. Open RAN Emulation Setup

C. Data Collection Methodology

Our data collection approach comprises two distinct scenar-
ios, each testing the CPU scheduling algorithm’s impact:

1) Scenario 1: Data Collection without CPU Scheduling
Algorithm: In this initial scenario, we establish a baseline by
conducting data collection without implementing a scheduling
algorithm. Using a bash script and the iperf3 utility, we
facilitate simultaneous data transmissions between three UE
devices and a gNodeB. Our collection encompasses TCP and
UDP protocols across link capacities ranging from 500 to
6000Mbps. Additionally, we employ the turbostat program
to monitor CPU core power consumption, tracking package
watts, temperature, and load percentage.

2) Scenario 2: Data Collection with CPU Scheduling Al-
gorithm: Moving to the next phase, we introduce the CPU
scheduling algorithm into the data collection process. While
the core methodology remains consistent with the previous
scenario, the algorithm’s presence adds another layer of com-
plexity. Again, three UE devices and the gNodeB engage in
simultaneous iperf3-based interactions, spanning link capac-
ities from 500 to 6000Mbps and involving both TCP and
UDP protocols. Our monitoring of power consumption metrics
remains unchanged, with over 100 data points recorded at one-
second intervals.

V. RESULTS

Using the data collected in the previous section we demon-
strate results using 9 plots as follows:

A. Comparison of Energy Savings

The algorithm’s effectiveness is highlighted with a signif-
icant reduction of energy consumption of up to 20.1% for a
6000 Mbps link capacity (see Figure [2).
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Fig. 2. Energy Savings in UDP

There is a minor decrease in savings observed for link
capacities ranging from 3500 to 4500 Mbps. This can be
attributed to the challenges of attaining higher UDP bandwidth
within the 3000 to 4500 Mbps range. This range is signifi-
cant because it requires additional computational resources to
maintain the achieved UDP bandwidth levels, which tend to
fluctuate between 3500 Mbps and 4500 Mbps as evident in
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Figure 8] This particular range holds importance due to the
experiment’s utilization of band 78. Regarding TCP, energy
savings range from 6.8% to 22% for link capacities of 500
Mbps to 6000 Mbps (see Figure [3). A minor decline in savings
is observed for link capacities between 2500 and 4000 Mbps
due to band 78 frequency.

B. Load vs Link Capacity Comparison

The scheduling algorithm slightly reduces the observed load
compared to without the scheduling algorithm. By dynami-
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cally managing CPU core states, the algorithm decreases the
cumulative CPU core load percentage (see Figure [).

TCP shows a small load percent change (see Figure [3).
The load increases linearly from 15% to a peak of 27%,
followed by a slight drop to about 24% at 6000 Mbps link
capacity. By dynamically managing CPU core states, the
algorithm decreases the cumulative CPU core load percentage
(see Figure [d). TCP shows a small load percent change (see
Figure [5). The load increases linearly from 15% to a peak of
27%, followed by a slight drop to about 24% at 6000 Mbps
link capacity.
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Fig. 5. TCP Load

C. Load vs Power Comparison

Figure [6] shows a clear relationship i.e. as load increases,
power consumption rises. From Figure [6| we can see that

Load(%) vs Power consumption - UDP

g0l ®- UDP Without Sche.dulmg ; 6.6%
=&~ UDP With Scheduling 7.3%
75 i
8.5%
70 A 6.0% 5.7%
— 65 P =
B | i
T 60 ol
E ...... -
PR 1
-
& 50 fal-=—
45
40
35 1
30 T T T T T
15 20 25 30 35
UDP Load (%)
Fig. 6. UDP Load vs Power
Load(%) vs Power consumption - TCP
90
a5 -@- TCP Without Scheduling
80 =&~ TCP With Scheduling
o 6.7%
75 1-34% 19.6%
70 s
m
% 65
o017 o T (T
[ N PP b
= 55 P O ——
At ——-—= [T == -
50 - ——lea
45 :
2 T 1
35 ek
30 T T T
15 20 25
TCP Load (%)

Fig. 7. TCP Load vs Power

using a CPU scheduling algorithm reduces power usage com-



pared to without CPU scheduling algorithm, even at high
loads. Impressively, at 35% load, the algorithm saves about
6.6% energy. TCP’s load, shown in Figure |7} is lower than
UDP load. The power consumption also decreases with higher
load percentages. Unlike the UDP plot, TCP plots are linear,
also the load is less (see Figures [] and [5). In TCP, our
algorithm achieves significant energy savings of around 19.6%
at a maximum load of 25%.

D. Performance Comparison

In Figure |8, UDP achieved bandwidth with the scheduling
algorithm is lower than without the scheduling algorithm, as
link capacity increases from 3000 to 6000 Mbps. The highest
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achieved bandwidth is around 3600 Mbps at 4000 Mbps link
capacity. Beyond 3000 Mbps, stable higher bandwidth isn’t
achieved. Figure[9shows TCP tests with negligible differences
with or without the algorithm. The attained bandwidth closely
matches the set link capacity. This stability could be due to the
controlled environment with stationary UEs and no external
disruptions.

VI. CONCLUSION

In this paper, we proposed a dynamic CPU sleep scheduling
algorithm to potentially save power. In our experimental setup
we made use of the renowned POWDER test-bed situated in
USA. With the POWDER test-bed we were able to emulate

real world scenarios and also collect results in near real
time. Through the implementation of proposed dynamic sleep
scheduling algorithm we were able to achieve energy savings
up to 22%. Also, even at high loads our proposed algorithm
achieved energy savings up to 19.6%. The effectiveness of the
algorithm would be more pronounced in a real Open RAN
environment for example, a setup in campus where more traffic
would be generated. As part of future work, we would work on
evaluating the effectiveness of the proposed CPU scheduling
algorithm on various separate hardware nodes, more UEs, and
more wireless technologies for the 6G era and beyond.
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