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Abstract: This mixed methods, investigative case study explored student patterns of use within the online PeerWise platform to 
identify the most influencing activities and to build a model capable of predicting performance based on these influencing activities. 
Peerwise is designed to facilitate student peer-to-peer engagement through creating, answering and ranking multiple choice 
questions; this study sought to understand the relationship between student engagement in Peerwise and learning performance. To 
address the research question, various usage metrics were explored, visualized and modelled, using social network analysis with 
Gephi, Tableau and Python. These findings were subsequently analyzed in light of the qualitative survey data gathered. The most 
significant activity metrics were evaluated leading to rich data visualisations and identified the activities that influenced academic 
performance in this study. The alignment of the key qualitative and quantitative findings converged on answering questions as 
having the greatest positive impact on learner performance. Furthermore, from a quantitative perspective the Average Comment 
Length and Average Explanation Length correlated positively with superior academic performance. Qualitatively, the motivating 
nature of PeerWise community also engaged learners. The key limitation of the size of the data set within the investigative case study 
suggests further research, with additional student cohorts as part of an action research paradigm, to broaden these findings. 

Keywords: Learning analytics, social network analysis, PeerWise, peer-to-peer learning. 
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Introduction 

PeerWise is an online platform which facilitates student peer-to-peer learning through multiple choice questions. The 
platform has been operational for over a decade with a significant level of practitioner use, as well as educational 
research, built around it. The PeerWise creators and the PeerWise community have detailed the system itself and their 
experiences of incorporating it within their pedagogical approach in a range of peer-reviewed publications (see Dynan 
and Ryan, 2019).  

Student centered learning is core to PeerWise; students create, answer, rate and discuss multiple choice questions 
(MCQs) related to their course content. MCQs can be powerful learning enablers when incorporated into a clear 
pedagogical approach that is supplemented with coherent feedback (Nicol, 2007). However, enhancing student 
learning, through a peer-to-peer approach is dependent on the quality of the peer-generated content. All questions on 
the platform are multiple choice so when a student posts a question, they must also give a selection of wrong answers 
as well as an explanation for the correct answer. This process promotes deep engagement and learning, as the 
contributing students not only take course content into consideration, but plausible wrong answers must also be 
reflected upon (Denny, et al., 2008a). Denny and co-workers (2009b) investigated the quality of questions provided by 
the students on the PeerWise platform through analysis by academics of a random selection of questions in comparison 
to the MCQ ratings provided by students. The key finding of this study demonstrated that student and course instructor 
ratings concurred when judging the quality of peer-generated questions. Student centered contribution continues after 
answering a MCQ, as they must rate and comment on a question; a reflective process that encourages analytical, 
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evaluative and critical thinking (Denny et. al, 2008a). Kay and co-workers (2018) found that providing peer feedback 
was, at times, more beneficial than receiving peer feedback due to the increased thought process involved.  

The impact of the various modes of active engagement within PeerWise on student learning has been an area of rich 
research since the platform was first developed. Denny and co-workers (2008c) noted that students believed, based on 
qualitative analysis, the most beneficial aspect of the system was answering questions. However, subsequent 
quantitative analysis portrayed a conflicting picture that showed no correlation between the amount of questions 
answered and the student’s exam performance. This study also investigated other PeerWise activities, with a weak 
correlation (34%) observed between a student’s average comment length and their final exam performance in one of 
the four modules investigated.  

At a broader level, Denny and colleagues (2008a) investigated student global activity within PeerWise and the resulting 
relationship to their final examination performance. The findings suggest that students who were most active within 
PeerWise did perform statistically significantly better in their final examination in comparison to those students who 
were less active. Conversely, the number of active days and the comment character length were more indicative of an 
impact on learning attainment as indicated by exam performance, than the number of questions and answers provided 
by students. Given the nature of pedagogical case-study research, a later study by the same authors contradicted this 
finding whereby the more questions a student answered, the greater their improvement in class rank (Denny et. al, 
2010).  

More recently, Kay and co-workers (2019) investigated over 3,000 students, across six courses and three academic 
years in three UK universities and found a significant positive correlation between the student PeerWise activity and 
their final course grade. In their study, Kay and colleagues classified activity as the summed score of four standardised 
values: number of questions created; number of questions answered; number of quality comments written; and the 
number of quality comments received, which was in contrast to Denny and co-workers student categorization by 
performance quartiles (Denny et al., 2008a).  

Learning analytics has emerged as an important domain of educational research, particularly focusing on the area of 
student performance. Researchers have analyzed available data to predict student success and seek to identify ‘at risk’ 
students (those likely to fail) to permit for a timely intervention if required. In such learning analytics informed 
scenarios, the most common class variable is of binary classification depicting student success via a pass or fail format. 
Widely used algorithms within a predictive modelling tool in educational performance settings include Logistic 
Regression, followed by Naïve Bayes and Support Vector Machines (SVM) and each provide varying degrees of accuracy 
(Caison, 2007; Macfadyen & Dawson 2010; Palmer, 2013; Zhang et al., 2004). Lauria and co-workers (2012) developed 
predictive models using support vector machine (SVM; 82.6% accuracy) and logistic regression (LR; 87.7% accuracy) 
to distinguish between performing students and ‘at risk’ students, via a binary classification process. Macfadyen and 
Dawson (2010) achieved an 81% accuracy model based upon a logistic regression algorithm predicting a binary class 
variable of pass or fail. Barber and Sharkey (2012) built several models, one of which implemented a Naïve Bayes 
algorithm achieving 85% accuracy, validated using 10-fold cross validation. Barber and Sharkey’s research observed 
that including prior academic achievement contributed to a better model performance, while attributes such as gender, 
age and financial aid proved insignificant. To diversify the input data into the predictive model, Romero and colleagues 
(2013) used data from student discussion forums to predict final grade performance in the form of a binary class of 
pass or fail and found the Naïve Bayes algorithm performed the best out of twenty algorithms applied in the study 
across four datasets.  

Methodology 

Research Goal 

This research sought to explore student usage patterns on the PeerWise platform to investigate if there is a link 
between these usage patterns and end of semester grade. This research aim was achieved through a mixed methods 
approach focusing on influential and disconnected members on PeerWise (quantitative) and perceived use of a sample 
from the research population (qualitative). The study also investigated the accuracy of the developed machine learning 
models in predicting a student’s final grade based on their PeerWise activity. Recommendations on the most efficient 
use of the PeerWise platform, to maximise student benefit, are made.  

Sample and Data Collection 

The PeerWise data used for this study was sourced over two academic years, 2017/18 & 2018/19. It comprised of the 
activities of 914 students across four institutions; all students were in their 1st year of a four-year degree programme 
and taking their second ‘Fundamentals of Chemistry’ module. Academic grades were available for one institution only 
(Institute A), so analysis was conducted on PW courses from Institute A (n=194). Data cleaning reduced the dataset to 
171 students for modelling. Participation in the PeerWise platform was not mandatory, but Institute A students were 
offered 4% of their overall module grade if they completed the task of asking four questions, answering four questions 
and commenting on four questions. The PeerWise student engagement data was catagorised as distinct PeerWise 
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activity types as listed in Table 1. Server log files containing 174,405 lines of data on user navigation throughout the 
PeerWise platform provided additional attributes including the number of distinct days a user was active on the 
platform, the total and average character length of the text attributes. (i.e. comments, replies and explanations), and the 
ratio of correct answers recorded. Student grade data were also available and consisted of the student average 
semester 1 grade for all modules taken, their semester 1 chemistry grade and their semester 2 chemistry grade (i.e. the 
module associated with this PeerWise research). Table 2 lists all attributes used. 

For the qualitative data collection, all Institute A students (n=194) were invited to voluntarily complete an online 
survey that explored their use and perceived benefits of PeerWise on their learning. The survey comprised open-ended 
questions and was completed by six students subsequent to their completion of the module. The research received 
ethical approval from the Research Ethics and Integrity Committee of the Technological University Dublin.  

Data Analysis 

Social Network Analysis (SNA) was implemented using Gephi 0.9.2. Both Force Atlas and Fruchterman Reingold layouts 
were considered. The less uniform Force Atlas layout was preferred (Figure 2).  It displayed the range of engagement 
by students on the PeerWise platform, there were no obvious subgroups. Each Node represents a student on the 
PeerWise course, and the Edges represented a question and/or answering interaction between two students. The 
directional flow of information is from the question author (out-degree) to the question answerer (in-degree). Nodes 
are divided into two colours, Institute A students and others. The size of the node was determined by influence, an 
estimated average student rating calculated by (the number of questions authored + the average answers per question) 
* (average rating + 1) * (number of followers + 1)  

Additional SNA derived attributes were added to the study dataset for predictive modelling; namely degree, closeness 
and betweenness centrality measures. Degree centrality is an index of communication, the number of connections 
associated with a node. Closeness is associated with the independence of a point and is a measure of connectedness to 
other nodes based on shortest paths. Betweenness is an indication of the potential for control of a community and is a 
measure to which a node interrupts other shortest paths (Freeman, 1978; Scott, 2000). Centrality measures were 
calculated with respect to students in the same academic year. 

Predictive modelling algorithms Logistic Regression, Naïve Bayes and Support Vector Machines were trained using a 
binary class label split at the 70% grade mark, to distinguish between high achieving students (1st class honours, 
 70%, n=86) and others (<70%, n=85) as based on the semester 2 module grade. Trained models were evaluated using 
an overall model accuracy calculated from a confusion matrix generated using 10-fold cross validation as implemented 
in Python.  

Qualitative PeerWise survey data were evaluated as previously detailed by Dynan and Ryan (2019). In brief, these data 
were analysed through an inductive strategy where thematic analysis was used to identify, analyse and report different 
themes throughout the data set (Braun and Clarke, 2006). The actual coding process was heavily influenced by the 
approach outlined by Bree and Gallagher (2016). In order to ensure appropriate data validity and rigour, the raw 
survey responses were firstly open coded and subsequently axially coded. Finally, the codebook was reduced by 
merging same/similar codes to create the final codebook, which was consequently organised into themes. 
Triangulation was achieved through the methods of data collection, supplemented by researcher reflective diaries and 
the scholarly literature.  

Findings / Results 

PeerWise Activity 

 

Figure 1. The semester 2 spread of grades is charted in Figure 1, colour coded by PW course. 
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Figure 2. Force atlas layout; node size as option 4 

 

Figure 3. Answers versus semester 2 grade. For ease of comparison, the marked student is the same student in both 
graphs. 

The study sought to determine whether there was a link between student PeerWise activity and their final grade. In this 
study, activity was defined as the number of answers given on the PeerWise course, the number of days since the last 
log into the platform and both the average comment, and explanation, character lengths. As Institute A students sat 
within a larger cohort of students from other institutes it was important to isolate Institute A students. The number of 
answers logged per Institute A student across both PeerWise courses (17/18 and 18/19), with the size of the circles 
representing the number of active days on PeerWise per student, is depicted in Figure 3a and only students who 
answered 100 questions or less are depicted in Figure 3b. The overall trend line on both graphs indicates a positive 
relationship with the end of module semester grade and the number of answers provided on the PeerWise platform. A 
similar trend was observed when the number of distinct active days, the average comment length and the average 
explanation length were plotted against the semester 2 grade. Students identified as ‘most active’, as defined by those 
whom answered the most questions, achieved a good final grade. Ten of the top twelve achieved a grade above 70%, 
with most achieving within -2 and +8 % of their semester 1 grade (Figure 4a). Of the ten least active students identified, 
six performed worse than their semester 1 grade, one did not complete the final exam, one achieved the same grade, 
one student was 1% higher in semester 2, and the tenth student achieved an 11% increase. This suggested that a low 
PeerWise activity was related to a lower grade, although a larger sample size is needed to confirm this.   
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(a) 

 

(b) 

 

(c) 

 

Figure 4. Improvement in grades by activity and influence. The top 2017/18 students are numerically labelled (1-6) 
while the top 2018/19 students are labelled alphabetical (A-F). Part (a) denotes the twelve most active students by in-

degree, part (b) denotes the ten most influential students, and, part (c) denotes the ten least influential students 
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Influential and Disconnected Members 

The top ten most influential and disconnected students are denoted in Figures 4b and 4c. There is no clear pattern 
linking influential students with good grades or disconnected students with low grades. Influence, as measured in this 
study ((the number of questions authored + the average answers per question) * (average rating + 1) * (number of 
followers + 1)), had limited or no influence on the student end of semester grade.  

Table 1. Summary of PeerWise data 

 Institute A Students 

Answers 6,742 

Comments 1,216 

Followers 45 

Questions 591 

Ratings 5,119 

Replies 41 

Users 194 

Table 2. Study attributes per student 

- Anonymised ID 

- Number of questions posted 

- Total character length of comments and 
replies  

- Total number of correct answers  

- Total number of followers  

- Number of days logged in 

- Total number of questions rated  

- Total character length of explanations 
given to posted questions 

- Correct answers ratio  

- Number of questions answered 

- Total number of comments and replies 
posted 

- Semester 1 fundamentals of chemistry 
grade 

- Semester 2 fundamentals of chemistry 
grade 

- Grade diff between semester 1 to 
semester 2 chemistry grade 

- Average semester 1 grade excluding 
fundamentals of chemistry 

Table 3. Calculated Attribute Weightings 

 

Attribute Weightings 

Weighting of attributes, using a chi squared test, gave SNA generated attributes and PeerWise activity based attributes 
the highest weighting, as illustrated in Table 3. Betweenness has the highest weighting, however, it is worth noting this 
measure is calculated relative to a peer group. 
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Table 4. The four emergent themes, as identified through thematic analysis, with indicative participant quote 

Theme Indicative Quote 
Understanding through content creation “[We] had to do independent research and study to create valid 

questions” (Student A, 17/18) 
Usefulness of PeerWise as a revision tool “I enjoyed using PeerWise [it] helped me to use it as independent 

study for organic chemistry” (Student B, 17/18) 
Motivation to engage “I felt like commenting on other people’s questions, and vice versa, 

created a community with knowledge of chemistry” (Student G, 
18/19).  

Game-like features of PeerWise “Answering questions became a bit addictive as it was rewarding to do 
well answering the questions” (Student C, 17/18) 

Table 5. Options for measuring activity 

Option Calculation 

1 Number Questions + Average Rating + Number Followers 

2 Number of Questions + Answers per Question + Average Rating + Number of Followers 

3 (Number of Questions + Answers per Question + Average Rating) * (Number of Followers + 1) 

4 (Number of Questions + Answers per Question) * (Average Rating + 1) * (Number of Followers + 1) 

Predicative modelling 

The Logistic Regression, Naïve Bayes and Support Vector Machines (SVM) algorithms were modelled using Institute A 
students only. Initial models excluded centrality measures and semester 1 grades. Logistic Regression had an accuracy 
of 65.4%, followed by the Naïve Bayes with 63.5% accuracy and SVM achieving 61.5% accuracy. Including measure of 
centrality increased the Logistic Regression accuracy marginally (67.3%), whereas introducing semester 1 grade 
attributes increased the accuracy to 82.3%. For this final Logistic Regression model, the most predictive PeerWise 
activity attributes were number of questions answered, the average comment and the average explanation lengths. 

Qualitative Data Analysis 

Following thematic analysis, four major themes emerged from the qualitative data set; understanding through content 
creation, usefulness of PeerWise as a revision tool, motivation to engage and the game-like features of PeerWise.  

Discussion 

This investigative case study interrogated if PeerWise interaction was aligned with academic performance in a first 
year fundamentals of chemistry module, with prior academic performance measures serving as a benchmarking 
standard. Social network analysis and predictive modelling were employed, in conjunction with qualitative analysis, to 
examine both learner analytics informed, and perceived learning impact, of student PeerWise activity. PeerWise 
activity comprised answering/authoring questions, the average comment, and explanation, character lengths and the 
number of days since the last log into the platform. Within the PeerWise dataset there were several different types of 
interactions; the most common interaction was one student answering another student’s question. In this instance the 
student who authored the question was either imparting new information or reinforcing prior learned information to 
the student answering the question.  

To follow the directional information flow and to enhance data visualization, and therefore comprehension within the 
social network analysis, appropriate optimization was required. For example, a number of options were considered for 
Node size including number of In-Degrees, Out-Degrees, Questions authored and number of Followers. However, only 
one measure can be represented via node size. In order to generate a more informative Node representation, four 
methods of combining activities were examined, each was considered a measure of influence. Previous studies 
indicated that the attributes most associated with influence were the number of questions posted and the number of 
followers a student has (Denny et al., 2008a). However, the number of answers received per posted question and the 
average rating of posted questions were also potentially valuable in determining the quality of a posted question and 
thus could be incorporated into the calculation to determine influence (Kay et al., 2019). All of these attributes were 
examined in this study (see Table 5), under four options. Option 1 summed the total number of questions authored, the 
average rating of those questions authored, and the total number of followers a student has. Option 2 was the same as 
option 1 with the addition of average answers per question. Option 3 placed greater emphasis on the number of 
followers a student has by multiplying the number of followers + 1 (to compensate for those with no followers) with 
the summed total of number of questions authored, the average answers per question and the average rating of those 
questions authored. Option 4 placed greater emphasis on both the number of followers and the average rating achieved 
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by a student’s questions. The option 4 calculation was (the number of questions authored + the average answers per 
question) * (average rating + 1) * (number of followers + 1), with this option avoiding multiplying by zero by adding 1 
to both the average rating and the number of followers. While all the components of the calculations depict influence, 
option 4 produced a far greater range of values and the highest deviation, which resulted in a greater variety of node 
sizes in the SNA graph. Visually this was also more informative, and therefore, option 4 was selected as the measure of 
influence for the study dataset. Using this approach, two of the top five most influential nodes also had the highest out-
degree (i.e. questions answered).   

Three commonly used educational data modelling algorithms in the literature, Logistic Regression, Naïve Bayes and 
Support Vector Machines (SVM), were subsequently used to interrogate the processed dataset comprising the most 
important attributes pertaining to PeerWise activity (see Table 5) to question if activity and/or influence on the 
PeerWise platform was predictive of high performing students. Based on the findings of this investigative case study, 
PeerWise activity alone cannot be considered a reliable predictor of student final grade given the low model accuracies 
noted. The low model accuracy could be attributed to model underfitting due to the relatively small sample size.  

In spite of the limitations of the model accuracy, the PeerWise attributes that were most predictive of academic 
performance were betweenness centrality, number of answers, in-degree centrality and average explanation length. 
These were also the attributes that were classified as ‘activity’ in this case-study. There was also a positive correlation 
between a student’s final grade and the Answers, Average Comment Length and Average Explanation Length attributes. 
However, these findings do not align with past research where no quantitative correlation between answering 
questions and an improved exam performance (Denny et al., 2008c). From a qualitative perspective, students felt part 
of a community within PeerWise, specifically citing peer-based content creation as a common ground for personal 
development: “I [felt part of the community] by participating, by questioning and answering other’s questions” (Student 
F, 18/19) and “I felt like commenting on other people’s questions, and vice versa, created a community with knowledge of 
chemistry” (Student G, 18/19). This correlates with Denny and co-workers (2008c) report that students believed 
answering questions was of value. A subsequent study by Denny and colleagues observed the more questions a student 
answered, the greater the improvement in their class scores (Denny et al., 2010). Kay and co-workers (2019) also noted 
a significant positive relationship between performance in end of course exams and overall PeerWise activity (with 
activity defined as the number of questions authored, the number of questions answered, number of quality comments 
generated and the number of quality comments received).  

Focusing on creating questions, Denny and colleagues (2008b) noted that creating high quality questions incorporates 
a deep learning process which could be more beneficial in terms of understanding and long-term retrieval; however, 
there was no evidence in this study to suggest authoring highly ranked questions related to an improved grade 
performance. Indeed, Nicol’s (2007) suggestion that students do not need to produce high quality MCQs; the focus 
should be on the learning process rather than the output, echoes the findings of the current research, whereby 
answering questions is more beneficial to the students than authoring questions. However, to support a true student-
centered community of learning, underpinned by accurate and appropriate MCQs, a certain level of academic guidance 
is required (Galloway & Burns, 2015) which in turn could empower deep student ownership and motivation as 
evidenced in the qualitative data: “[We] had to do independent research and study to create valid questions” (Student A, 
17/18) and “[PeerWise] helps you take charge of your own learning and revision” (Student D, 17/18). 

Conclusion 

PeerWise is a popular, student centred, platform that can be used to enable students to asynchronously engage and 
learn as part of an online learning community. Within PeerWise there are several potential interactions, whereby 
students actively contribute to the learning space. This investigative case study sought to identify the most influential 
activities in PeerWise and to use these most influential activities as elements of a predictive model for final assessment 
performance. Whilst the predictive models generated in this study were not sufficiently accurate to permit 
performance prediction, the most influential PeerWise activities were observed to be betweenness centrality, number 
of answers, in-degree centrality and average explanation length. At a practical level, the current SNA suggests that 
answering questions has more of an influence than authoring questions; an observation which was also supported by 
the attribute ranking list. To enhance the student experience within PeerWise, and to provide an initial MCQ 
benchmark standard, it may be beneficial if PeerWise courses were seeded by academics with questions to encourage 
student’s initial activity to be question answering. Subsequent academic support could focus on developing student 
question authoring and commenting skills so as to empower a deep student ownership of their asynchronously peer-
assisted learning space.  

Suggestions 

Although the predictive models built in this this investigative case study did not provide sufficiently high accuracy to 
predict a student end of module grade based on their PeerWise activity, there were positive relationships between 
certain activities and academic performance which warrant further exploration with a larger dataset. One of the biggest 
challenges in this research lay in the relatively small data sample size. The knock-on effect impacted the predictive 
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modelling as the limited training data for the predictive models resulted in low accurately definition of their respective 
decision boundaries. However, future predictive modelling should benefit from the best attribute ranking list 
developed in this study. 

Limitations 

The primary limitation of this research was the size of the data set; the quality of a predictive model is related to the 
quality and size of the dataset used. As an investigative case-study, the findings reported are context specific, and may 
not be generalizable to other settings and other uses of PeerWise. 
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