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Reality Analagous Synthetic Dataset Generation with Daylight
Variance for Deep Learning Classification

Thomas Lee, Susan Mckeever and Jane Courtney

TU Dublin, School of Electrical & Electronic Engineering

Abstract

For the implementation of Autonomously navigating Unmanned Air Vehicles (UAV) in the real world,
it must be shown that safe navigation is possible in all real world scenarios. In the case of UAVs powered by
Deep Learning algorithms, this is a difficult task to achieve, as the weak point of any trained network is the
reduction in predictive capacity when presented with unfamiliar input data. It is possible to train for more
use cases, however more data is required for this, requiring time and manpower to acquire. In this work, a
potential solution to the manpower issues of exponentially scaling dataset size and complexity is presented,
through the generation of artificial image datasets that are based off of a 3D scanned recreation of a physical
space and populated with 3D scanned objects of a specific class. This simulation is then used to generate
image samples that iterates temporally resulting in a slice-able dataset that contains time varied components
of the same class.

Keywords: Simulation, Drones, Deep Learning, Autonomous Aerial Vehicles

1 Introduction

Figure 1: ’FIDIM’ Scene view (wireframe enabled)

Over the years, there has been a notable increase
in the activity within the UAV autonomy research
space [Lee et al., 2021]. Many projects have a
specific focus on neural network based solutions
[Rojas-Perez and Martinez-Carranza, 2020]. These
projects aim to infer a safe solution from a learned
model to autonomous UAV tasks rather than engi-
neer one. These tasks include image classification,
object detection, and image segmentation in order for
the drone to detect and identify obstacles, safe move-
ment vectors, or unsafe situations. These tasks often
require access to training datasets that are of consid-
erable size and variation to achieve good generalisa-
tion [Deng et al., 2009], but also have specific elements through which quality training for that task can be
assured [Udacity, 2016]. The challenge of training for autonomous UAV navigation is a matter of data avail-
ability, due to the high degree of variability in even common environments such as urban, suburban, forested,
or rural areas it is not feasible to manually gather a dataset on all variations. Furthermore, such environments
are defined arbitrarily and do not have binary transitions, but gradually shift from one environment to the other.
This issue is compounded when considering other environmental factors such as light level or weather varia-
tion. It is possible to generate artificial data to make up for a lack of samples and doing so is considered to
prevent overfitting [Shorten and Khoshgoftaar, 2019]. This is typically done through the augmentation of an
existing, manually collected dataset [Takahashi et al., 2020]. However, these solutions are not robust, and vary



from simple image processing transforms with some examples being flipping, cropping, and noise injection
on existing data within the set to the synthesis of entirely samples based on the output of trained adversarial
networks. in both cases, images are modified but new image subjects are not created. Augmentation can gen-
erate samples but cannot generate new sample content including information that does not already exist within
the original set, simulated data with new sample content is used in reinforcement learning to create unknown
situations which can assist in generalisation, however this process is time consuming and costly, requiring a
simulation to be run over the course of the model’s training. The information in Section 2 introduces the back-
ground concepts and previous work which lead to the creation of the simulator, while the method outlined in
Section 3 details the construction of the simulated dataset. A goal of this project is to generate not just photo
realistic image samples with unique content, but the same image content under unique environmental contexts,
in the case of this project a cyclical time axis is introduced to mimic a Day-Night cycle which is then analysed
using a pretrained YOLOv3 network in Section 4 [Redmon and Farhadi, 2018].

1.1 Autonomous Navigation

Autonomous navigation tasks tend to be complex, incorporating elements of physics calculation, state esti-
mation [Al-Sharman et al., 2020], perception [Yang and Wang, 2020], and decision making in various degrees.
Many projects aim to achieve these tasks through a monocular camera and the utilization of a Convolutional
Neural Network to allow for the prediction of task-related data from input images. However, Neural Networks
have accuracy issues regarding operation in environments which the autonomous navigator is not trained for
[Loquercio et al., 2018] which may not cripple autonomous UAV projects mechanically but could legislatively,
given that the EASA Special Condition guidelines [European Union Aviation Safety Agency, 2020] state that:
"Certification of light UAS with highly integrated systems will be fundamentally based on a safety assess-
ment that includes thrust/lift/power systems and also interaction with structures". These accuracy issues are
considered to be the trade-off of performance in a Deep Learned solution based on how specific the task is
[Alshehri et al., 2019]. Consider a specific task such as the identification of a specific brand of item in an im-
age. Generalisation of that same task, such as identifying objects of a similar type (ie: other brands of that
item) is likely to result in a reduction of the model’s capability to identify the original brand, if even by a small
amount. The reduction of task-specific performance in generalised models is exacerbated with perception based
problems such as collision avoidance in UAVs [Loquercio et al., 2020]. There are many variables that bring ad-
ditional complexity to the task of interpreting the image beyond what the subject is, for example: When and
where the image was taken are two dimensions with massive impact on the resulting image, and the perception
of said image makes up the majority of modern Deep Learned autonomous navigation solutions.

2 Background

Since UAV research in the physical space is costly (both in time and budget), projects often test the UAV design
in simulation during the initial stages of project development, only moving to physical experimentation for final
validation stages. A review of recent literature [Loquercio et al., 2020] identified two common simulation in-
terfaces which are used throughout the UAV research space. Gazebo is an open source robotics simulator which
can seamlessly interface with ROS, a software framework for the development and operation of robotics. An
alternative to Gazebo is AirSim, an open source robotics simulator developed by Microsoft. Although a simula-
tor like Gazebo supports high fidelity rendering the main focus of the simulator is not visual quality but realistic
device control through ROS and the accurate simulation of physical forces. This can lead to discrepancies be-
tween the simulation results and physical experiment results in image based tasks like Computer Vision and
more modern Deep Learning RCNN tasks. Given that these networks are trained on image inputs, it is proposed
that the visual quality is more valuable than the physical accuracy in the context of image data generation. By
using a modern graphical rendering engine designed for real time interaction, it is possible to develop simula-
tions that are more analogous to the physical world in visual aspects [Wang et al., 2021]. A 2019 survey on data
augmentation [Shorten and Khoshgoftaar, 2019] presents a taxonomy on several methods of data augmentation



for machine learning applications, these methods include color space manipulation, noise injection, translations
and similar image processing tasks for the use of expanding a limited dataset. While these approaches are help-
ful, even more complex solutions are noted to simply prevent overfitting [Takahashi et al., 2020], they do not
increase the amount of information actually contained within the dataset.

2.1 Trained Autonomous Features

Previous work sought to categorise the functions in DNN based autonomous UAV projects [Lee et al., 2021],
and organize them into a usable taxonomy. Based on the results of that literature review, the most common func-
tion projects sought to train was that of autonomous collision avoidance. Typically through CNN based, ResNet
optimised strategies [Palossi et al., 2018]. It was determined that [Loquercio et al., 2018] was the most notable
and uses steering angle and crash probability captured from ground based vehicles to train an autonomous
collision avoidance policy in a quad-rotor helicopter UAV. Additionally, many projects intend to utilise trans-
fer learning of generic image classification models such as the "ImageNet" dataset [Deng et al., 2009] for the
function of Object Distinction, such as locating civilians in a collapsed building [Hartawan et al., 2019], or
anomalies in natural environments [Yong and Yeong, 2018]. While not as popular in the UAV space, Classi-
fication as a task is an immensely popular application of Deep Learning in general, and in certain contexts
Classification can serve as the basis for a Collision Avoidance solution. One of the key conclusions drawn from
[Lee et al., 2021] was noting a distinct lack or papers that approached classifying, distinguishing. or generalis-
ing multiple different environments in a neural network. Environmental Distinction is considered by the author
to be a key feature in the development path of the next generation of autonomous navigation.

2.2 Environment Specificity

One of the fundamental issues with using a neural network to solve a general task is the restriction placed on
the network by its predefined complexity. When a network structure is defined in code it is also bounded to that
structure which has a maximum mathematical complexity with which it can reach. Because of these limits, it is
logical to assume that, given that the complexity of a task scales exponentially with the number of dimensions
being considered on input, trying to generalize a complex task (for many use cases) using a bounded network
can result in a decrease of specific (single use case) performance due to reaching that limit of the network’s
complexity as it is defined. This trade-off can be mitigated in design, through careful architecture decisions
in the network or by tailoring the data being fed into the network into a more general context (converting an
RGB image into grey scale before using it for training is an example of this). This is not usually an issue for
rudimentary tasks, but when considering different environments in a CNN this becomes a much more distinct
problem. A model’s predictive capability is primarily dependant on the data being fed into it, specific datasets
are often gathered or annotated manually by experts for use in the training of that task [Deng et al., 2009], this
process is typically done in sessions as befits the researcher’s schedule and as a result of this, uncontrollable
environment parameters can change from session to session. This naturally biases the information to these
uncontrollable parameters such as time, location, and weather and can lead to a less accurate, state-based
representation of a dynamic area. While it is theoretically possible to sample the entire spectrum of an area’s
change and create a dataset containing all reasonable permutations of environmental parameters, it is unfeasible
to do so manually, given that the addition of just one dimension leads to an exponential gain in the amount of
data to be collected.

2.3 Simulating Data

Though traditional thinking would have it that in order to model decisions for use in the physical world, the
dataset used for training must contain physical world data. However, artificial data has already been used
as a means of base network training for adjustment later using real data [Vierling et al., 2020], and simula-
tion as a means of generating datasets for learning tasks has been used for tasks such as Image Segmentation
[Richter et al., 2016]. [Perri et al., 2022] presents a novel benefit and rationale for the use of simulation for data



Figure 2: Various bike assets used for dataset generation

Figure 3: Single position/rotation sliced by time axis in synthetic dataset

generation, the main concept being that using a simulation allows for greater control aspects than is possible in
the traditional gathering process. Notably, that it is possible during simulation to simply pause the simulation
and acquire all the necessary samples instantaneously (from a runtime perspective), without having to account
for minor deviations in time or position due to hardware or human limitations. This effect also applies between
samples, rather than wait for the sampling hardware to relocate to a new position as would be required in a
physical sampling session, it is possible to move the camera and any attached sampling hardware to the next
position immediately without having to ensure that the position is correct or make readjustments.

3 Method

Previous work [Lee et al., 2022] detailed the method regarding the acquisition of the 3D Scene and development
of the simulator used for this experiment. To summarise, a 3D Scan of a physical location and a simulated
quadcopter UAV camera is imported into a prototype simulator, referred to developmentally as "Fine, I’ll Do
It Myself" (FIDIM). FIDIM is being developed for the generation of visually realistic synthetic image data for
Deep Learning using the Unity 3D Game engine which is common in Game Development as a framework due
to the engines ease of use and robust package library. This scene was augmented using a small library of 3D
Scanned bicycle assets (5 in total) to be used as classification subjects for the position/rotation log (see Fig. 2).
Bicycle objects were chosen due the availability of models and "Bicycle" being a classifiable label by the base
Yolov3 network used for the analysis in Section 4.



Figure 4: Automated sampling strategy flowchart, with environmental variance

3.1 Time Axis Simulation

Exhibiting different time effects in a visually realistic manner is key to the value of this dataset. Since the aver-
age light level in an given outdoor scene is primarily dictated by the time of day, with the season, and location
having less significant impact. By using sufficiently realistic light simulation combined with adjustments to the
texture lighting and skybox colour the transition from day to night can be simulated as seen in Fig. 3. From
this simulated axis, 6 time configurations were selected. Further development into time axis simulation will
account for geographic variation, seasonal change, and solar angle but were considered unnecessary for the
initial simulation, as the time configurations are only relative to the simulations initial parameters at this time.

3.2 Sampling

The strategy for the generation of synthetic data samples is outlined in Fig. 4. After manual collection, the
simulation will automatically generate the iterated dataset once the logs have been created and the chosen time
variations are set. Additionally, each image that is generated contains the time iteration number and position
number embedded in the filename for later reference, it is possible that other useful outputs can be contained in
samples this way such as virtual lidar values or similar sensor data.

4 Results

For the first round of sampling, the virtual UAV was used to manually define a position and rotation log contain-
ing 411 entries was iterated over 6 time settings to create a dataset which contains a total of 2466 images. Each



Figure 5: Linear graph of RMSE by Time of Day, represented as a percentage of deviation from ideal conditions,
using base Yolov3 network classification

new position in the log creates 6 unique images related to that position, this allows for the data to be sliced
in ways that are unfeasible in traditional sampling. These samples were then classified using the YOLOv3
pretrained network [Redmon and Farhadi, 2018], note that the pretrained network was used as is and no train-
ing was done using the simulated data. The highest average light in the simulation occurs at 1200hrs (noon)
which is used as an ideal comparison for the rest of the time configurations. Average Root Mean Squared
Error(RMSE) is then calculated by comparing the classification results from a given time variation sample to
the ideal time sample.

4.1 Comments

For initial sampling, four equidistant points on the time axis; 6 hours, 12 hours, 18 hours and 24 hours respec-
tively. However, these time configurations were too distant to provide adequate insight. In order to generate
more informative samples, the number of configurations was increased to ensure a 4 hour gap between points
along the time axis (see Fig. 5). It is important to note that since the graph is represented linearly but is cyclical
in reality, ’0’ and ’2400’ on the x axis are the same point and thus have the identical Average RMSE, addition-
ally, noon was expected to yield an RMSE of 0 since it is the point of comparison from which the RMSE of the
5 other time configurations are calculated.

5 Conclusion

This work sought to investigate the use of custom, photo realistic simulation and synthetic data generation
as method of measuring deviation in the classification probability of the commonly used YOLOv3 pretrained
network. The dataset, which is generated across a simulated time axis, when evaluated showed an increase
in the Average RMSE of the network response peaking at 50.56% at the darkest point on the time axis being
2400hrs (simulated midnight), which is to be expected based on how the average light level (and thus visibility)
in a scene changes as the cyclical time axis progresses from day into night. Since object visibility is critical to
the task of classification, daylight level is shown to be of high impact to the performance of the classification
network even when the change in simulated time is quite minimal.



5.1 Future Work

This project is an initial part of a series of investigations on the creation of a spatially linked area which is
then simulated in a modern 3D engine that has been purpose-built for the task of creating reality-analogous
synthetic image samples. Future development is aimed at generating simulated data that iterates over other
environmental axes such as weather, the creation of a locally accessible "Digital Twin Area" to serve as a test-
bed for Autonomous Navigation Projects, and increasing the overall quality of the simulation. Additionally,
further analysis into methods of verifying trained network performance, such as Uncertainty estimation is being
considered.
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