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An LPC pole processing method for enhancing the
identification of dominant spectral features

Jin Xu,✉ Mark Davis, and Ruairí de Fréin
School of Electrical and Electronic Engineering, Technological Univer-
sity Dublin, Dublin, Ireland (E-mail: mark.davis@TUDublin.ie)
✉E-mail: d17128410@mytudublin.ie

This paper proposes a new time-resolved spectral analysis method
based on a modification to the linear predictive coding (LPC) method
for enhancing the identification of the dominant frequencies of a sig-
nal. The method described here is based on a z-plane analysis of the
LPC poles. These poles are used to produce a series of reduced order
filter transfer functions which can accurately identify and estimate the
frequency of the dominant spectral features. The standard LPC method
has been shown to suffer from a sensitivity to noise and its performance
is dependent on the filter order. The proposed method can accurately
identify the dominant frequency components over a range of filter or-
ders and is shown to be robust in the presence of noise. Compared with
traditional time-resolved methods, it is a parameterised method where
the identification of the dominant frequency changes can be directly
obtained in the form of frequency measurements. In a series of 10,000
Monte Carlo experiments on single component and multiple component
signals, this LPC pole processing method outperforms the standard LPC
method by accurately identifying the dominant frequency components
in the signals.

Introduction: Time-resolved spectral methods enable us to study the
time-frequency characteristics of signals which exhibit transient oscilla-
tory behaviour. Many spectral analysis methods, such as the short-time
Fourier transform and the continuous wavelet transform [1], are wave-
form methods which identify the dominant frequencies by estimating the
complete spectrum at discrete time intervals. These waveform methods
are excellent at demonstrating whether a certain frequency component
exits or not by showing how the energy of the signal is distributed across
the time-frequency domain. LPC is a parameterised spectral analysis
method which can directly estimate the dominant frequencies in a signal.
To date, researchers have used the LPC poles to estimate the frequencies
of the spectral peaks [2–4]. However, not all of the LPC poles correspond
to the dominant frequencies in the signal. Furthermore, the standard
LPC method suffers from a sensitivity to the filter order used and
exhibits a poor tolerance of high noise environments [2, 3]. Specifically,
a LPC model with too low a filter order tends to provide a poor spectral
separation of frequencies in the frequency domain, while a model with
too high an order causes a deterioration in the noise immunity of the
spectral estimator by producing a profusion of candidate spectral peaks.
Here we propose a LPC-PP method which is based upon a modification
to the LPC method which overcomes these short-comings of the LPC
method.

The LPC-PP method implements a further processing of the LPC
poles estimated by LPC to generate a series of reduced order filter
transform functions which can more easily identify and estimate the
dominant frequencies of a signal. In a series of Monte Carlo exper-
iments, a pseudo-randomly varying frequency signal is used to anal-
yse the performance of the method where the standard LPC method
is used as a comparison method. The experimental results show that:
(1) The LPC-PP method can significantly reduce the number of in-
valid frequency estimates and increase the percentage of the valid fre-
quency estimates; (2) The performance of the LPC-PP method is less
sensitive to the filter order; (3) The LPC-PP method has a more ro-
bust performance in high noise environments; (4) The LPC-PP method
can give more accurate estimates than the LPC method. In summary,
the LPC-PP method provides a new parameterisation spectral analy-
sis method for identifying the dominant frequency components in a
signal.

LPC method: LPC estimates the parameters that characterise a linear
time-varying system [3, 5]. It is based on the assumption that the current

Fig. 1 Flow chart of the method used to identify the dominant peaks

signal sample s(n) can be closely approximated as a linear combination
of past P samples as follows:

ŝ(n) =
P∑

i=1

ais(n − i), (1)

where the predictor coefficient ai is determined by minimising the sum
of the squared differences between the actual signal samples s(n) and
the linearly predicted ones ŝ(n), and P is the LPC filter order. In the z-
transform domain, a Pth order linear predictor is a system of the form

Q(z) =
P∑

i=1

aiz
−i = Ŝ(z)

S(z)
, (2)

where Ŝ(z) is the output of the filter. The z-transform of the prediction
error is written as

E(z) = S(z) −
P∑

i=1

aiS(z)z−i. (3)

The prediction error is the output of a system with the transfer function

A(z) = E(z)

S(z)
= 1 − Q(z) = 1 −

P∑
i=1

aiz
−i, (4)

where A(z) is an inverse filter of the LPC synthesis filter H (z) and is
given by H (z) = 1/A(z). The fundamental theorem of algebra tells us
that A(z) has P roots which are the values of z for which H (z) = ∞.
The roots of A(z) are called the poles of H (z). The poles of H (z) are
expressed as zi = γie jωi ,where ωi = tan−1(Im(zi)/Re(zi)) is the angle
associated with the ith pole. The magnitude of a pole is mi = |zi| and
the corresponding pole frequency is pi = ωi

2πTs
,where Ts is the sample

period. The roots occur as complex conjugate pole pairs which are mir-
rored in the real axis of the z-plane. The number of poles generated
equals P. Here, we consider those poles with non-negative imaginary
parts Im(zi) ≥ 0 as the estimation results of the LPC method.

Pole processing method: The LPC poles of the filter transfer function
H (z) are first categorised into dominant poles and non-dominant poles.
The method for identifying the dominant and non-dominant poles is
shown in Figure 1.

The parameter γ is a threshold value which has a range from 0
to 1.0, the details for choosing γ will be discussed later. The LPC
poles closest to the dominant peaks are marked as the dominant poles
{d1, d2, . . . , dM }, while the other poles are marked as non-dominant
poles {d̄1, d̄2, . . . , d̄W } where M and W are the number of dominant
poles and non-dominant poles respectively. Figure 2(a) shows the two
dominant peaks that were found and Figure 2(b) shows the classification
of the dominant poles and non-dominant poles. The input signal in Fig-
ure 2 is composed of two sinusoidal signals with frequencies f1 = 12
Hz, f2 = 31 Hz, the sampling frequency is Fs = 100 Hz, the window
size is N = 100 samples and the signal is corrupted with additive white
Gaussian noise (AWGN) where the SNR = 3 dB. The filter order is
P = 30 and γ = 0.5.
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Fig. 2 Identifying dominant poles and non-dominant poles

Fig. 3 Dominant poles and local poles on the z-plane. The red circles repre-
sent the dominant poles and the blue circles represent the local poles of each
dominant pole within a range of α = 10 Hz

Fig. 4 Local spectrum. The spectral responses of each of the individual (re-
duced order) transfer functions H̃ (d ) and the estimated spectral peaks are
p̂1 = 12 Hz, p̂2 = 31 Hz

The second step is to use the local pole(s) in conjunction with the
dominant pole to determine the final position of the spectral peak. The
local poles are selected from the non-dominant poles and they depend
on the distance (frequency separation) � f between the non-dominant
poles and the dominant pole. A distance threshold value α is defined
to identify the local poles. If the distance � f < α, we consider them
to be the local poles {d̂i1, d̂i2, . . . , d̂iL} of the ith dominant pole di and
L is the number of local poles. When the sampling frequency and the
filter order are the same, the larger the value of α, the more local poles
will be selected. In Figure 3, we chose α = 10 Hz where the red lines
represent the frequency range 2α around each dominant pole where we
can identify the local poles associated with this dominant pole.

In the last step, the dominant poles and their corresponding local
pole(s) are used to form a series of reduced order filter transfer func-
tions {H̃1(d ), H̃2(d ), . . . , H̃M (d )} and each H̃i(d ) is given by

H̃i(d ) = 1

(1 − d−1
i )

×
L∏

j=1

1

(1 − d̂−1
i j )

, (5)

where the di is the ith dominant pole, the di j are the associated local
pole(s). As the new filter transfer function H̃i(d ) has a lower order, it has
fewer local maxima which makes it easier to find the peaks. The max-
imum peak p̂i of the H̃i(d ) is one estimate of the dominant frequency,
estimated by the LPC-PP method. The results of this process are shown
in Figure 4.

Experimental design: The simulation experiment uses sinusoidal sig-
nals whose frequencies are uniformly distributed in the range 0 to Fs/2.
The signals are corrupted by the AWGN noise and they are evaluated us-
ing 10,000 Monte Carlo trials. In correctly identifying and estimating the
frequency components of these simulation signals, there are three ques-
tions that need to be considered: (1) How many dominant components
in the signal are identified? (2) How many of the frequency estimates
of dominant components are valid? (3) How accurate are the frequency
estimates of the dominant components? To answer these questions, three
performance metrics are proposed. Before defining the three metrics,

Fig. 5 The simulation results for a single component test signal

we first need a threshold value β to determine whether the frequency
component of the signal has been correctly identified and whether the
estimate generated by the method is valid. The frequency error between
the true frequency and the estimated frequency is expressed as �e. When
�e < β, the frequency of the signal component is considered to be iden-
tified and the estimate is valid. The performance metrics are defined as
follows: The identification frequency percentage (IFP) is used to indi-
cate the proportion of the identified dominant components. It is defined
as

IFP = total number of identified frequencies

total number of all signal frequencies
× 100(%). (6)

The valid estimate percentage (VEP) is used to measure the proportion
of valid estimates. It is defined as

VEP = the number of valid estimates

the number of all estimates
× 100(%). (7)

The relative deviation percentage (RDP) measures the relative error be-
tween an identified frequency and its corresponding valid estimate. It is
defined as RDPi = �ei/ fi, where fi is the signal frequency. The average
deviation percentage (ADP) is defined as the average of the RDP values
which is defined as

ADP =
∑C

i=1 RDPi

C
× 100(%), (8)

where C is the number of the identified signal frequency.

Numerical evaluation: The first experiment demonstrates a simple sce-
nario of a single frequency component signal in a high noise environ-
ment where the SNR = 3 dB. The sampling frequency Fs = 100 Hz
and the window size is N =20 samples. The parameters of the LPC-PP
method are γ = 0.3 and α = 10 Hz. The value of the threshold param-
eter β = 2.5 Hz. Figure 5 shows the results of the three metrics. For the
different filter orders considered, the IFP values of the LPC-PP method
and the LPC method are all above 85%. Consequently both methods can
identify the dominant frequency component in most of the experiments.
The VEP values of the LPC-PP method are greater than 87% and are
much greater than the VEP values of the LPC method for different filter
orders. Specifically, when the filter order P = 15, the LPC method can
identify 99.52% of the signal frequencies, but the VEP value of the LPC
method is only 23.66%. This is because the LPC method achieves high
IFP values while also producing many invalid estimates. For the same
filter order, the ADP value of the LPC-PP method is less than that of
the LPC method, so the LPC-PP method is more accurate than the LPC
method in this experiment.

The second simulation experiment is an analysis of the performance
using a multiple components signal where the signal comprises three
frequencies which are produced from a random uniform distribution in
the range of 0 to 50 Hz. The threshold value of the LPC-PP method is
γ = 0.85. The other parameters are the same as for the last experiment.
The results for the three metrics are shown in Figure 6. For the same
filter order, the IFP value of the LPC-PP is slightly lower than that of
the LPC, but the VEP value of LPC-PP is still much higher than for
LPC. When the filter order is 10 and 15, the VEP value of the LPC-PP
method is 27% greater than the VEP value of the LPC. This feature of the
LPC-PP method is particularly attractive for scenarios where the number
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Fig. 6 The simulation results for a multiple component test signal

Table 1. The number of experiments with all-valid estimates

Signal type Single-component signal Multi-components signal

Filter order LPC-PP LPC LPC-PP LPC

P = 5 8572 670 36 43

P = 10 9530 0 4671 330

P = 15 9509 0 4178 9

of frequency components in the signal is unknown. Similarly, the ADP
values of the LPC-PP method are less than that of the LPC method. The
LPC-PP method produces more accurate frequency estimates.

Although the IFP value of the LPC-PP method is slightly lower than
that of the LPC method in the above experiments, the LPC-PP method
improves the VEP value and reduces the number of invalid estimates.
For different filter orders, LPC-PP is less sensitive to the filter order than
LPC and it has a more robust performance. For the two experiments
above, we also analysed the number of experiments which had all-valid
estimates in the Monte Carlo experiments, i.e. where all the signal fre-
quencies were identified without additional estimates generated, in the
Table 1. In the single component signal analysis, the number of experi-
ments with all-valid estimates for the LPC-PP method was much greater
than that of LPC for the same filter order. This result shows LPC is ad-
versely affected by the filter order. When the filter order is increased,
the LPC method will produce invalid estimates. This is the reason why
the LPC method produces no experiment results with all-valid estimates
when the filter order is 10 and 15. In the multiple component signal anal-
ysis, when the filter order is P = 5, the number of experiments with all-
valid estimates for both methods is low. This is because the filter order
is too small to produce sufficient numbers of poles to estimate the three
frequency components. It is worth noting that the LPC has more exper-
iments with all-valid estimates when the filter order is 10 than when the
filter order is 5 or 15. This is because the LPC method is sensitive to
the filter order. When LPC has an appropriate filter order, it exhibits a
better performance. But its performance is still worse than the LPC-PP
method.

The selection of the threshold γ value in the LPC-PP is analysed
in the Figure 7. The IFP value increases with an increase in γ . Con-
versely, the VEP value decreases when γ decreases. There is a trade-off
between the IFP and the VEP in the LPC-PP method. The γ value is
used to achieve an acceptable trade-off between the two metrics. The
ADP value shows little change when γ increases. When the filter order
is 10 and 15, the number of experiments with all-valid estimates has a
maximum at the intersection of the IFP and VEP curves. The γ value
corresponding to the intersection point of the IFP and VEP curves is
optimal for LPC-PP in order to produce the maximum number of exper-
iments with all-valid estimates. The IFP and VEP curves do not intersect
in Figure 7(a), the reason is that the filter order is too low (P=5) to pro-
duce sufficient poles to estimate the components. Therefore, the greater
the intensity of the noise and the filter order, the smaller the value of γ

required to filter out the peaks caused by the noise and the redundant
poles. Similarly, when the number of frequencies that is needed to be
identified increases, the value of γ needs to increase in order to find more
dominant peaks. Accordingly, the γ value used is different for the single
component signal analysis and the multiple component signal case.

Fig. 7 Performance analysis of LPC-PP method under different threshold
values γ . The x-axis is the threshold γ . The left y-axis is for IFP, VEP and
ADP. The right y-axis represents the number of experiments with all-valid
estimates

Conclusion: This paper has proposed a modification to the standard
LPC method that overcomes a number of its short-comings, specifically
its sensitivity to the filter order and its poor performance in noisy en-
vironments. The LPC-PP method is based upon a further processing of
the poles generated by LPC method in order to produce a series of re-
duced order filter transfer functions that enhances the identification of
the dominant spectral features. The majority of the frequency estimates
of the LPC-PP method are valid and are more accurate than the estimates
of the LPC method. This is particularly useful for applications where it is
required to identify the dominant frequencies of an unknown signal. The
LPC-PP method can identify the dominant frequencies without being
adversely affected by the filter order and has a high tolerance of noise on
the signal. Furthermore, the LPC-PP method is a parameterised method
that can identify the dominant frequencies and produce numerical fre-
quency estimates. As the LPC-PP method requires further processing of
the LPC poles, it has a slightly higher computational cost compared to
the standard LPC method. The extra computational complexity of LPC-
PP is O(P × N log N ). We believe that the additional computational ef-
fort is worthwhile compared to the significant improvement in the accu-
racy of the frequency estimates.
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