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ABSTRACT In current days, sensor nodes are deployed in hostile environments for various military and
commercial applications. Sensor nodes are becoming faulty and having adverse effects in the network if
they are not diagnosed and inform the fault status to other nodes. Fault diagnosis is difficult when the
nodes behave faulty some times and provide good data at other times. The intermittent disturbances may be
random or kind of spikes either in regular or irregular intervals. In literature, the fault diagnosis algorithms
are based on statistical methods using repeated testing or machine learning. To avoid more complex and time
consuming repeated test processes and computationally complex machine learning methods, we proposed
a one shot likelihood ratio test (LRT) here to determine the fault status of the sensor node. The proposed
method measures the statistics of the received data over a certain period of time and then compares the
likelihood ratio with the threshold value associated with a certain tolerance limit. The simulation results
using a real time data set shows that the new method provides better detection accuracy (DA) with minimum
false positive rate (FPR) and false alarm rate (FAR) over the modified three sigma test. LRT based hybrid
fault diagnosis method detecting the fault status of a sensor node in wireless sensor network (WSN) for real
time measured data with 100% DA, 0% FAR and 0% FPR if the probability of the data from faulty node
exceeds 25%.

INDEX TERMS Wireless sensor network, intermittent fault, likelihood ratio test, fault diagnosis, distributed
algorithm.

I. INTRODUCTION
Wireless sensor networks (WSNs) are comprises of tiny
autonomous low cost sensor nodes with computing,

The associate editor coordinating the review of this manuscript and
approving it for publication was Gongbo Zhou.

processing and wireless communication capability. In the
recent past theWSNs have been used in many remote sensing
applications for military, civilians and industries [1], [2].
This is because of its capability to collect the data where
they deployed, process data locally with limited storing and
processing capability and communicate data smartly with the
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central processor or known as sink node. The WSNs is an
interface between the physical and digital world.

In most of the real time WSNs applications, sensor nodes
work together. In general, the sensor nodes are deployed in an
unattended, harsh environment such as: deep forest, under-
water, volcanoes. Furthermore, the sensor is an electronic
device that is vulnerable to many failures [3]. WSNs are
susceptible to many failures, which can be differentiated as
hardware, software and communication failures. Malfunction
in hardware may happen due to a problem in sensing unity,
power unity, location unity and processing unit. On the other
hand software failure may happen because of problems in
sensor programs [4]. Problems in the transceiver, improper
estimation of channel states may cause communication fail-
ures in the sensor network. Among many faults in WSNs,
intermittent faults are more frequent. It is due to low bat-
tery, improper channel state information (CSI) estimation,
impulsive noise in the channel, loose contacts in hardware etc.
Sometimes spikes may occur either randomly or in regular
intervals. In this scenario, one should observe the outcomes
over a period and find the faulty status of the node [5], [6],
[7], [8]. If the faulty nodes are not detected and isolated
from other nodes in the network in time, their presence leads
to data unreliability, affects network bandwidth because of
suspicious data communication, causes route congestion, and
at the end reduces a network’s lifetime [9], [10]. Thus it
motivates the researchers to do the fault diagnosis in WSNs
to improve the data reliability, network lifetime and efficient
bandwidth utilization.

Several fault detection methods are available in litera-
ture based on cooperation strategy among sensor nodes and
methodology followed to detect the faulty sensor node in
WSNs [7]. Depending upon the cooperation of sensor nodes
and where the decision of sensor node’s fault status is made,
there are three fault detection approaches known as cen-
tralized, distributed and hybrid. In a centralized approach a
sink node or base station collects data from all the nodes in
the network and then diagnoses to detect the faulty node.
Sharing all the data to the central node through the mul-
tihop Communication paradigm is not energy efficient and
has a relatively higher diagnosis latency. In fact, for find-
ing intermittent faults we need to share observed data over
a certain period. Thus a centralized approach cannot be
applied in large-scale networks for finding intermittent faults.
On the other hand, in a distributed approach each sensor
node collects the data from the neighbors and then detects
the fault [12]. Most of the literature uses a majority voting
method to find the fault. Although a distributed method is
energy efficient compared to that of a centralized approach,
repeated testing is required for detecting intermittent faulty
sensor nodes. All the nodes in WSNs may not be equipped
for diagnosing the status of all the neighbours including
self. Further, detection accuracy of distributed algorithms
rely on the performance of neighboring nodes, but over time
nodes may become faulty and then have a negative effect on
performance.

In order to overcome the limitation of both centralized
and distributed approaches, the hybrid approach is proposed
here that combines the advantages of both centralized and
distributed approaches. Each sensor node now shares the
measured data to anchor nodes having better processing
capability and energy efficiency. In reality, the sensor nodes
are connected to anchor nodes for data transmission and
localization [13]. Therefore in the proposed hybrid approach
each sensor node shares the data to the connected anchor
node or sink node. Then the anchor node follows the fault
diagnosis algorithm to detect the faulty status of the node. The
hybrid approach bridges the gap between the centralized, and
distributed approaches.

In literature, statistical methods and machine learning
(ML) approaches including fuzzy logic are used to iden-
tify different kinds of faults in WSNs. In statistical based
approaches, the mean, variance and robust statistical param-
eters like mean of absolute deviation (MAD) are computed
and then compared with a threshold to identify the status of
a node [2]. The residue number system (RNS) is used as an
error detection and correction tool in ad-hoc network [14].
In order to diagnose the intermittent faults, these testing
processes need to be repeated as many times as data collected
during the observation period. Whereas in the ML approach,
the data over an observation period is used together to identify
its status [5]. Because of the huge computational cost, theML
methods may be used at the base station. Further, we know
that the centralized methods are not energy efficient for large
WSNs due to more communication overhead. Therefore,
a statistical method is proposed here using a hybrid approach
and without repeating the test statistics.

We know that intermittent faulty nodes provide very noisy
data sometimes over a period. This leads to the change in
mean and variance from the statistics of the actual data [6].
In fact a good node also shares the real time data with noise
depending upon the sensor used and the channel noise, but
with tolerable limits. Now, if most of the data are suspicions
and having more noise, then the changes in mean and vari-
ance is beyond the tolerance limit.Therefore, in this paper
we tried to utilize the statistical test procedure to detect the
changes in mean and variance simultaneously [15]. In the
changes of statistics of the measured data, if either mean or
variance is changed, then also a procedure is introduced under
normality [16]. Thus we proposed a fault diagnosis method
using likelihood ratio test where the method is capable of
detecting the changes in mean and variance or one at a time
in the measured data. A hybrid approach is incorporated here
where each sensor node shares the measured data with the
Anchor node. Then the anchor combined with the actual data,
determined the mean and variance that are used to estimate
the likelihood ratio. Then it is compared with a threshold
value that depends upon the tolerance limit to estimate the
faulty status of a sensor node. The highlights of the paper are:

• Ahybridmethod is proposed to diagnose the intermittent
fault status of a sensor node. In this approach, an anchor
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node accumulates data from the sensor node connected
to it and then follows the algorithm for fault diagno-
sis. The advantages of both centralized and distributed
approaches are achieved in this approach.

• A novel simultaneous likelihood ratio test (LRT) statis-
tics based fault diagnosis algorithm that senses the
changes in mean and variance of the measure data is
developed to detect the intermittent faults (both random
and spike faults) in WSNs.

• The proposed algorithm detects the fault status in one
shot. Repeated tests are not required as used in the
existing fault diagnosis methods.

• The fault diagnosis algorithm is tested over the real time
measured data available in literature. The simulation
results show that the LRT based fault diagnosis algo-
rithm outperforms the existing robust three sigma edit
test [2] with minimum computational cost.

The rest of the paper is organized as follows. An overview
of the research work carried out for intermittent fault diag-
nosis is presented in II. The system model along with the
sensor fault model and taxonomy is provided in Section III.
The problem formulation and the proposed likelihood ratio
test (LRT) with proper threshold is explained in Section
IV. The hybrid approach for fault diagnosis algorithm using
LRT along with cost analysis is presented in Section V. The
analysis of the algorithm is presented in VI. The results and
discussion are made in Section VII. Finally, the work is
concluded with future direction in Section VIII.

II. RELATED WORK
In this section we presented the existing literature for inter-
mittent fault diagnosis in WSNs along with their advantages
and disadvantages.

Intermittent faults of sensor nodes are proposed where the
number of faults in a specified period is calculated [17],
[18], [19]. The centralized naïve Bayes detector is proposed
in [20] to classify sensor nodes by analyzing the end-to-end
transmission time collected at the sink. In [21], the authors
modeled the network as a graph using an extended algorithm
known as a neighborhood hidden conditional random field
(NHCRF). The NHCRF method finds a faulty sensor node in
WSNs by diagnosing its received signal strength, frequency,
and signal delay. These fault detection methods based on
probabilistic approach cannot distinguish various faults in
WSNs.

In literature RNS is proposed as an error detection and
correction tool and has been used in ad-hoc network [14]. The
authors used a new system by mixing redundant RNS, multi
level RNS and multiple valued logic RNS which supports the
system for secure data communication and has the ability of
error detection and correction. A centralized transient fault
detection algorithm forWSNs based on comparisons between
neighboring nodes and their own central node is proposed
in [2] and [19]. The RNS system is used to compute the
residues and compare with the predefined threshold to detect

the fault [14], [19]. The advantage of the RNS based fault
detection algorithm is that it is faster but uses a threshold
and the accuracy depends on it. Further to detect intermittent
fault, repeated testing is needed. To avoid this issue, a one
time statistical method is proposed in this paper.

In [22], the authors proposed a fault detection algorithm
based on the Debraj De algorithm in long-thin WSNs. A cor-
relation parameter of two nodes is used to detect nodes with
faulty readings. This method reduces computational com-
plexity of the correlation algorithm, but we need to repeat the
test for intermittent fault nodes in WSNs.

A centralized method based on fuzzy logic and majority
voting technique to detect faulty nodes in WSNs is pro-
posed in [9] and [10]. The authors used fuzzy logic to
identify the ratio of the faulty nodes in the network and
in each sub-network. Detection of faulty nodes is done
by using the calculated ratio and majority voting. In [11],
Fuzzy rule-based faulty node classification and management
scheme to improve the quality of service for large scale
WSNs is proposed. The fuzzy based algorithm increases the
percentage of detecting faulty nodes with minimal computa-
tional complexity leading to minimizing end to end delay and
energy consumption in WSN. The problems in fuzzy classifi-
cation is it requires a better understanding of the network and
aprior information about fault type.

These methods are centralized where the fusion center is
deciding the fault status of each sensor node in WSNs. The
centralized method provides good accuracy as data from all
the sensor nodes are available while making decisions, but
involves more communication overhead for sharing the data
to the fusion center. To minimize communication overhead
in the network, a distributed approach is reported in [2] and
[22] where each sensor node is capable of detecting their
fault status by cooperating with the neighbours. In this way,
it reduces traffic overhead, improves the robustness, and min-
imizes the end-to-end delay over the network [23]. Although
a distributed method is energy efficient, this method has a
limitation of not having all the network data while making
decisions.

Because of energy inefficiency and higher diagnosis
latency a centralized approach cannot be applied in large-
scale WSNs. Statistical methods are used to detect the inter-
mittent data faults in the sensor network [7], [24]. Sensor
nodes are diagnosed for a specific period. Once the data is
collected from its neighbours, the mean, variance and higher
order statistics are computed and then a z-test or modified
three sigma edit test is followed for self diagnosis. Each data
is then decided either suspicious or not. Over a period if more
data (usually more than 50%) of a sensor node is suspicious,
the node is considered as faulty [25]. The authors in [26] used
a hypothesis testing method to find the fault status of a node.
In these self diagnosis methods, each sensor node is required
to compare its observed data with the neighbors. Fault status
of the sensor node is determined by the neighbors and final
decision is taken based on majority voting. These algorithms
are good in the early stage of deployment because most of the
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sensor nodes are fault free. The detection performance will
degrade with time progress. It is because a self-diagnosing
approach depends on the data from neighboring nodes. Fur-
ther, all these methods are tested by using synthesized data.
When real time data sets are used, there may be a wrong
decision due to masking effect and that has been shown in
our simulation results.

A fault diagnosis protocol using majority neighbors coor-
dination based approach for WSNs is proposed in [27].
To detect intermittent fault the mean difference and standard
error comparison with predefined threshold are used. A sta-
tistical method to classify the faults in power transmission
lines [28]. The authors used a decision tree method and
the measured parameters are the root mean square current
duration, voltage dip, and discrete wavelet transform. A novel
distributed fault detection algorithm for WSNs in smart grid
based on credibility and cooperation is presented in [12].
Based on temporal data correlation, a credibility model of
a sensor is established first. In this approach all the sensor
nodes are not going for fault diagnosis. The suspicious sensor
is then chosen as per the credibility model and then requested
for fault diagnosis. This approach improves the efficiency of
fault detection and uses neighbor cooperation. The problem
in majority voting is when the majority of nodes in the neigh-
bourhood are faulty (sometimes due to intentional attack),
all may be detected as fault free and will have an impact
on the performance of the algorithm. Further this testing to
be repeated for finding intermittent faulty sensor nodes in
WSNs.

To overcome this disadvantage, neural networks and
machine learning algorithms are used for fault diagnosis.
Composite types of fault are diagnosed in WSN using neural
networks [29], [30]. In recent years fault diagnosis based on
deep learning has been proposed because of its strong feature
representation capability.Machine learning is used for detect-
ing drift fault of sensors in cyber-physical systems which
may not be suitable for WSN scenario [31]. A Naive Bayes
classifier and convolution neural network (CNN) are used to
classify the faults in distributed WSN. These deep learning
methods are used to improve the convergence performance
over other neural networks [32]. Support vector machine
(SVM) has been used to classify the faulty sensor node in
WSN [5]. Fault diagnosis based on extremely randomized
trees in wireless sensor networks is proposed in [33] and [34].
The authors have compared the results with other grid search
approaches such as multilayer perceptron, SVM, decision
tree and random forest. Although the accuracy of detection
is improved, the computational complexity is also increased.
We are looking for a method that improves the detection
accuracy when less data is corrupted with less computational
complexity. The method should not depend on more data that
is more diagnostic period.

Sensor nodes in WSNs often operate under adverse con-
ditions and the probability of different kinds of faults is
also different. This leads to the extreme class imbalance and

long-tailed distribution between different faults [35]. In lit-
erature, imbalance learning is used for fault [36] diagnosis.
Numerous researches have been carried out and it is observed
that the imbalanced classification is a challenging issue in
the fault diagnosis [37]. A deep convolutional Generative
adversarial networks (DCGAN) model is presented in [37]
for simulating the original distribution from minority classes
and generating new data to solve the imbalance problem.
Recently, the extreme learning machine (ELM) has attracted
much attention because of faster speed and better generaliza-
tion performance [38], [39]. Whereas, ELM rarely involves
strategies for imbalanced data distributions in a sensor net-
work with few nodes being faulty. A class-specific cost
regulation extreme learning machine (CCR-ELM), together
with its kernel based extension, for binary and multiclass
classification problems with imbalanced data distributions
is proposed in [39]. In order to alleviate the learning bias
towards the majority class and to have better classifica-
tion performance, a weighted extreme learning machine (W-
ELM) is used. The difficulty in W-ELM is that we may
not have the optimal weights for the samples from different
classes. To overcome this issue, multi-objective optimization-
based adaptive class-specific cost extreme learning machine
(MOAC-ELM) is the best alternative to W-ELM [38].

An effective deep reinforcement learning for faulty node
detection and recovery schemes in largeWSNs is given in [4].
The method is integrated with the hosted cuckoo-based opti-
mal routing scheme and enhances the network life with least
energy utilization. The experimental results are compared
with recent optimization methods used in this purpose such
as harmony search algorithm, optimal emperor penguin opti-
mization and particle swarm optimization algorithm.

A transmission rate control method based on its traffic
loading information and Multiclassification using an effec-
tive data science technique, namely support vector machine
(SVM) is discussed in [40]. Swarm intelligence algorithms
like differential evolution (DE), genetic algorithm (GA) and
grey wolf optimization (GWO) are used to tune the SVM in
order to get less misclassification error. Enhanced random
forest based approach has detected the faults with better
accuracy and outperformed over the other classifiers in fault
detection. These methods are centralized based as it requires
an efficient processor.

In literature, hybrid approaches originated due to major
disadvantages in centralized and distributed approaches.
Extra equipment, such as an anchor node, needs to be added
in the hybrid approach to achieve diagnosis reliability, robust-
ness, energy efficiency, and minimization of traffic over-
head. Amobile sink-based distributed fault detection scheme,
which identifies the health status of each software and hard-
ware component separately is proposed in [41]. In fact the
sensor nodes near the base station die earlier than those far
away. To deal with this a mobile sink-based adaptive immune
energy-efficient clustering protocol by using a controlled
mobile sink is proposed in [42]. The main problem in these

VOLUME 11, 2023 6961



B. S. Gouda et al.: Distributed Intermittent Fault Diagnosis in WSN Using Likelihood Ratio Test

methods lies in the path planning of mobile sink nodes that is
related to the algorithm’s performance.

It is observed that in literature the statistical methods have
been used where mean, variance, z-score, robust median and
MAD are computed and comparedwith a threshold to find the
faulty node inWSNs.Majority voting and repeated testing are
major criteria for intermittent fault diagnosis. CentralizedML
methods are introduced to classify the faulty nodes in WSNs
which needmore computational complexity. Therefore in this
paper we proposed a simple simultaneous likelihood ratio
statistics (that can detect change in mean and variance or one
of themwhen fault occurs) method to identify the intermittent
fault in one shot with minimum computational complexity.
The proposed method follows a hybrid approach which has
the advantage of both centralized and distributed algorithms.

III. SYSTEM MODEL
Here the model for the sensor network and the topology
of the network along with communication methods between
the sensor nodes is explained. The fault model where the
behaviour of the various kinds of faulty sensor nodes is
described.

A. ASSUMPTIONS
In order to develop sensor network, without losing a general-
ity, the following assumption are taken [25]

1) Sensor nodes are of homogeneous nature and have
equal energy.

2) In the sensor network, the sensor nodes are capable of
communicating with themselves.

3) If any node fails to communicate refereed as cut or hard
fault.

4) If any error occurs in the communication link, then the
MAC layer will take care of that.

5) The UDP/IP communication protocol is used by the
sensor nodes for communication with others.

B. SENSOR NETWORK MODEL
Let us considerN number of sensor nodes deployed randomly
in a square terrain of area RXR. In a network, every sensor
nodes si, i = 1, 2, 3 . . . ,N have known unique identifier.
The position of si is Pi(xci, yci), where 0 ≤ xci ≤ R,
0 ≤ yci ≤ R. In the sensor network, sensor node si interacts
with the immediate neighbours in their basic transmission
mode. Let us define Tr be the transmission range of every
sensor node. Uniform energy and transmission range are the
common assumption in homogeneous sensor networks. Any
sensor node lies within the transmission range Tr of si is
assumed to be connected. All the connected sensor nodes are
called the neighbours of it. In general a sensor network may
be considered as a graphG(S,C) where S is the set of sensors
and C represent the set of communication links among the
sensors.

In wireless sensor networks, each sensor node is connected
through a wireless link. Every sensor node sends as well as

receives messages from the immediate neighbouring nodes
within a bounded time period in synchronous WSNs. The
IEEE 802.15.4 MAC layer protocol used here for data com-
munication of sensor nodes among themselves using one-to-
one primitives.

C. SENSOR FAULT MODEL AND TAXONOMY
In this paper, we are diagnosing different types of intermittent
faults such as spike, or random intermittent faults. These
faults are either due to the noise while collecting data or due
to the malfunction of the sensor system. These faults in WSN
are classified into two main categories such as time-span and
location based faults [6]. In the timespan-based faults, there
are transient and persistent type faults based on the period of
the fault. At first, transient faults are temporary and occur for
a short period due to weather conditions, network congestion,
etc. On the other hand, persistent faults are permanent and
exist until recovery is carried out. The entire WSN is not
normally defective.

For a fault free node, the measurement of a nth sensor at
ith time is xn(i) modeled as

xn(i) = dn(i) + vn(i), n = 1, 2, 3, . . . ,N (1)

where dn(i) is actual value of the nth sensor at ith instant of
time and vn(i) is the error or called the noise due to sensor
calibration, noise added during transmission or because of
other malfunction in the node and network. But it is assumed
that the error is within the tolerance limit, then only we
can say that the measurement is fault free. vn(i) is normally
distributed zero mean random and variance σ 2. Now, when a
node becomes faulty, the sensor output is given as [5], [6]

x faultn (i) = b+ gdn(i) + vn(i) (2)

where b is the additive bias (which is a constant) and called
offset, g is the multiplicative constant called gain. Two dif-
ferent kinds of intermittent faults such as random or spike are
defined here based on different values of b, g and the noise
variance. We define the data for a faulty or fault free node
over a period of T and measure in the interval of δT . Thus
the number of discrete measurements is K =

⌈ T
δT

⌉
. Now the

different types of intermittent fault are defined as follows.

1) RANDOM/INTERMITTENT FAULT
The intermittent faulty sensor nodes provide arbitrary data
for some time duration and behave as a good node for the
remaining time. In order tomodel the arbitrary behavior of the
intermittently faulty sensor nodes, the Bernoulli distribution
function is used. It is assumed that a sensor node gives faulty
reading at time i with probability α and fault free reading
with probability 1− α. To formalize the idea of approximate
normality, one can imagine that a proportion 1 − α of the
observations is generated by the normal model, while a pro-
portion α is generated by an unknown mechanism [25].

This may be described by supposing

F = (1 − α)G+ αH (3)
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where, G = N (A, σ 2) and H may be any distribution; for
instance, another normal with a larger variance [30]. In gen-
eral, F is called a mixture of G and H , and is called a normal
mixture when both G and H are normal. If G and H have
probability density functions g and h, respectively, then F has
probability density function defined as

f = (1 − α)g+ αh (4)

Therefore, the data model of an intermittent faulty sensor
node is given as

xIntermittentn (i) = [dn(i) + vn(i)] + bivimpn (i) (5)

where, vn(i) and v
imp
n (i) are independent zero mean Gaussian

random variable with variances σ 2 and σ 2
imp, respectively; bi

is a switch sequence of ones and zeros and is modeled as
an independent and identically distributed Bernoulli random
process with occurrence probability Pr (bi = 1) = α and
Pr (bi = 0) = 1 − α [43]. The value of α is in between 0 to
1. The variance of vimpn (i) is chosen to be very large than that
of vn(i) so that when bi = 1, a large error is experienced in
xi(n). The bi is given in (6).

bi =

{
1, r ≥ α

0, r < α
(6)

where, r is a random variable in between 0 and 1 having a
uniform probability density function (pdf).

2) SPIKE FAULT
In sensor node, this kind of fault is observed intermittently
in the form of high-amplitude spikes. The probability of the
occurrence of the spike fault is ps. Randomly with the defined
probability, a constant bs is added to the ith element of the
non-faulty signal to obtain spike fault. It is modeled as [5]:

xSpiken (i) = dn(i) + bibs + vn(i) (7)

where bi = 1 with probability ps and 0 with probability
1−ps. Therefore, bi is binary random variable with Bernoulli
distribution defined before.

IV. FAULT DETECTION USING LIKELIHOOD TEST
Let us consider a sensor network with N sensor nodes dis-
tributed in an unattended geographical area for specific appli-
cation. The sensor nodes are having one or more sensors
to measure the physical environment such as humidity and
temperature. The sensor nodes are collecting data in the
regular interval of time 1T for time duration T known as
diagnosis period. The random erroneous data are tempo-
rally and spatially independent and have the same distribu-
tion function at each node. It follows that the observation
xn(1), xn(2), . . . , xn(K ) are independent with common dis-
tribution function and can say that the xn(i)’s are i.i.d. i.e
independent and identically distributed. A conventional way
to represent ‘‘well-behaved’’ data, i.e. data from a fault free
sensor node, is assumed to be normal distribution with mean
A and variance σ 2 which implies N (A, σ 2) [25].

FIGURE 1. Network model where nodes are connected with anchor node.

Now each sensor node is to be diagnosed whether it is
faulty or not. The node has measured data over a certain
period. Let the measured data by nth node is represented as
Yn. The diagnosis can be done at each node if nodes are well
equipped with sufficient memory and a good processing unit.
As the technology is advanced and also sensor technology,
nodes are capable of that, but price may be high. Otherwise,
the best way to diagnose the sensor network is at the sink
node. Anchor node is the intermediate node to send the
information to the fusion center in a network [45]. Since the
anchor/sink node has higher energy, memory and processing
capability than the normal node and is also connected to
neighbors, it is the better option for diagnosing the network
locally. The network model is given in Fig. 1.

Once the anchor node has the measured data from the con-
nected neighbor node, it tests the faulty status by following
the Likelihood Ratio Test. The details of LRT are given in the
following section.

A. LIKELIHOOD RATIO (LR) STATISTICS FOR THE
SIMULTANEOUS TEST
Let’s we have K independent measurements of a nth sensor
represent as

Xn = {xn(1), xn(2), . . . , xn(K )}

. Now fault is introduced as per the model defined above and
can have the sameK number of output data. The faulty output
of the nth sensor is

Yn = {yn(1), yn(2), . . . , yn(K )}

Now, let us assume that the mean and variance of the
above population by considering the distribution is Gaussian
as N (µ, σ 2) and N (µ1, σ

2
1 ) for fault free and faulty data

respectively.
Now we are going to apply the likelihood ratio (LR) prin-

ciple for testing the hypothesis H0 and H1. For the we need
to compute the following statistics as

X̄n =
1
K

K∑
k=1

xn(k) (8)

Ȳn =
1
K

K∑
k=1

yn(k) (9)

σ 2
xn =

1
K

K∑
k=1

(xn(k) − X̄n)2 (10)
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σ 2
yn =

1
K

K∑
k=1

(yn(k) − X̄n)2 (11)

Now combine the dataXn andYn as Zn = [XnYn], and the
compute the mean and variance as

Z̄n =
X̄n + Ȳn

2
(12)

σ 2
zn =

1
2K

2K∑
k=1

(zn(k) − Z̄n)2 (13)

Now X̄n, Ȳn, σ 2
xn and σ 2

yn are LR statistics under H0 ∪ H1.
Further Z̄n and σ 2

zn are also LR under H0. Now the LR
statistics LR(Xn,Yn; µ, µ1, σ

2, σ 2
1 ) to test

H0 : (X̄n = Ȳn) ∩ (σ 2
xn = σ 2

yn ) (14)

H1 : (X̄n ̸= Ȳn) ∪ (σ 2
xn ̸= σ 2

yn ) (15)

in the following way [15], [46]

LRn(Xn,Yn; µ, µ1; σ 2, σ 2
1 )

=
sup

{
f
(
Xn,Yn; µ, µ1; σ 2, σ 2

1

)
: H0 ∪ H1

}
sup

{
f
(
Xn,Yn; µ, µ1; σ 2, σ 2

1

)
: H0

} (16)

The LRn(Xn,Yn; µ, µ1; σ 2, σ 2
1 ) expressed in therms of the

statistics of the actual data and the combined data with the
measured as

LRn =

(
2πσ 2

xn

)−K/2
(
2πσ 2

yn

)−K/2
exp(K )(

2πσ 2
zn

)−K exp(K )

=

(
σ 2
zn

)K
(
σ 2
xn

)K/2
(
σ 2
yn

)K/2 (17)

As per the fact, one may reject H0 in favor of H1 for some
large value of LR in (17) in the view of the likelihood prin-
ciple. Taking logarithm on both side of the above equation,
we get

log (LRn) =
K
2

[
log

(
σ 2
zn

σ 2
xn

)
+ log

(
σ 2
zn

σ 2
yn

)]
(18)

Now, the logarithm of the LRn is to be compared with the
threshold value in order to decide either the node n is faulty
or faulty free.

B. DEFINING THRESHOLD
Let us define the variables Sx and Sy as

Sx =
σ 2
zn

σ 2
xn

and

Sy =
σ 2
zn

σ 2
yn

Now the Eq. (18) is defined as

log (LRn) =
K
2

[
log(Sx) + log(Sy)

]
=
K
2

[
log(SxSy)

]
(19)

Now let us assume the ratios defined are nearly equal, that
is Sx ≈ Sy when the measured data is very close to the
actual data when the sensor node is fault free. Then the above
equation (19) is written as

log (LRn) ≈ K
[
log(Sx)

]
(20)

Now, let the threshold λth is used to compare the LRn and the
following hypothesis are defined

H0 : K
[
log(Sx)

]
< λth

H1 : K
[
log(Sx)

]
≥ λth (21)

In fact, when the measured data set is exactly the same as that
of the actual, the ratio S is one and the threshold will be λth =

0. But the measurement is always noisy with acceptable lev-
els. It depends upon the environment, the sensor is calibrated
(usually more costly) or uncalibrated, the channel estimation
algorithm, accordingly the tolerance limit is defined. Let’s
define the tolerance in terms of change in the variance ratio
Sx = 1± p, where p is the percentage of increase or decrease
in the Sx and p < 1.

Therefore, the λth is defined as

λth =
K
2
[log(1 + p) + | log(1 − p)|] (22)

where | • | denotes the absolute value. The threshold depends
upon two parameters known as the number of data used for
diagnosis K and the tolerance limit in percentage p. The
impact of these parameters in the performance will be ana-
lyzed in the result section.

V. HYBRID FAULT DIAGNOSIS ALGORITHM USING LR
TEST
In this section, the distributed fault diagnosis method based
on the statistical likelihood ratio test as discussed in the
above section will be explained. Each sensor node shares the
measured data over a certain duration T with a time interval
of1T to the cluster head. In this way the number of data to be
shared by each sensor node to the cluster center is K =

T
1T .

Let the data is denoted asYn. The anchor computes mean and
variance and they are denoted as Ȳn and σ 2

yn respectively as
per the formula defined in (11).

Let us assume that the anchor node has the actual measured
data without fault, that is Xn from the nth node and the statis-
tics of that data too. Let the mean and variance are X̄n and
σ 2
xn respectively. Now the anchor node compares the mean

and variance of the actual data with the mean and variance
of the measured data in the diagnosis period by following
the likelihood ratio test as discussed in Section IV-A. Before
going to test the status of the node whether it is faulty or
not, first fix the tolerance limit of the deviation of measured
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data from the actual data without fault. That probability of
tolerance P and the number of data used to diagnose the node
are used to compute the threshold λth as defined in (22).
Now the anchor node computes the likelihood ratio as

given in (18). If the absolute likelihood ratio is less than
the predefined threshold, then the fault status of the node is
considered as fault free and we make FSj(n) = 0, where FSj
contains the fault status of the jth anchor node. On the other
hand, if the likelihood ratio is more than the λth, the node is
determined as faulty and FSj(n) = 1.
In this way a sink/anchor node diagnoses the faulty status

of each node connected to it. Similarly, all the anchor nodes
now can find the faulty status of all the nodes present in
a sensor network that is provided in the set FS that is the
union of all the fault status determined and stored in FSj. The
detailed algorithm is given in Algorithm 1

A. COST ANALYSIS
In this subsection, the computational complexity of the pro-
posed algorithm is discussed and then compared with exist-
ing modified three sigma edit test (Mod3Sigma) [25]. The
proposed likelihood ratio statistics for the simultaneous test
to detect the fault status needs to estimate the mean and
variance of the individual data Xn and Yn first. The mean and
sample variance statistics of the concatenated data Zn is to be
determined. The required computational complexity for each
node to calculate mean and variance is O(2K ). On the other
hand theMod3Sigma algorithm needs to compute the median
of data accumulated from the neighbouring nodes twice for
testing. The best computational complexity for computing
the median is O(d log d), where d is the average degree of
the nodes in a sensor network. Since the robust threshold
value needs to be computed for each observation, the total
complexity will be O(Kd log d). Therefore, the proposed
algorithm has less computational cost compared to that of
existing methods. On the other hand, the machine learning
algorithms required much more computational complexity
for their learning.

VI. MATHEMATICAL ANALYSIS OF THE ALGORITHM
In this section a mathematical analysis is presented to justify
why likelihood ratio statistics for the simultaneous test is
providing a good detection performance. The null-hypothesis
given in (14) has used union-intersection procedure. In order
to investigate the LR statistic given in (17) is to be decom-
posed to two components. The LRn is rewritten as

LRn =

(
σ 2
zn

σ 2
xn

)K/2 (
σ 2
zn

σ 2
yn

)K/2

(23)

Now, let us define the term used to find variance of the data
xn(k) with respect to the new mean Z̄ as

K∑
k=1

(xn(k) − Z̄n)2 =

K∑
k=1

(xn(k) − X̄ )2 + K (X̄n − Z̄n)2 (24)

Algorithm 1 Distributed Fault Diagnosis Algorithm
Using LR Test
Data: Observed time period T , sensed data

Yn = {yn(i)}Ki=1, actual data Xn = {xn(i)}Ki=1
at each node, allowed tolerance limit p

Result: Calculate threshold λth, Fault status of sensor
nodes FS

Determine threshold
λth =

K
2 [log(1 + p) + | log(1 − p)|]

for j = 1 · · ·M do
for l = 1 to|Nj| do

Aj collects the measured data Yn from each of
the node n ∈ Nj.
Compute mean Ȳn and σ 2

yn
if Ȳn== X̄n and σ 2

yn == σ 2
xn then

FSj(n) = 0
else

Combine actual and measure data as
Zn = {XnYn}

Measure the mean Z̄n as in (12)
Measure the variance σ 2

zn as in (13)
Measure the LR(n) as defined in (18)
Then the fault status are defined as per
Hypothesis defined in (21)

end
if |LR(n)| ≥ λth then

FSj(n) = 1
else

FSj(n) = 0
end

end
end

end
Each anchor node provides the fault status to its
connected node.
Combine all the fault status of the nodes of all
anchor node neighbors
FS =

⋃M
j=1 FSj

end

After using (12), above equation is rewritten as

K∑
k=1

(xn(k) − Z̄n)2 =

K∑
k=1

(xn(k) − X̄n)2 +
K
4
(X̄ − Ȳn)2 (25)

In similar way, the term used to find variance of the data yn(k)
with respect to Z̄ is given as

K∑
k=1

(yn(k) − Z̄n)2 =

K∑
k=1

(yn(k) − X̄n)2 +
K
4
(X̄n − Ȳn)2

(26)
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Now, the variance of zn(k) can be expressed by using equa-
tions (25) and (26) in (13) as

σ 2
zn =

1
2K

K∑
k=1

(xn(k) − X̄n)2

+
1
2K

K∑
k=1

(yn(k) − X̄n)2 +
1
4
(X̄n − Ȳn)2 (27)

Let us use the definition of σ 2
xn and σ 2

yn in (27), we get

σ 2
zn =

1
2

{
σ 2
xn + σ 2

yn +
1
2
(X̄n − Ȳn)2

}
(28)

The first product term in the (23) can be computed as(
σ 2
zn

σ 2
xn

)K
2

=

(
1
2

)K
2
{
1 +

σ 2
yn

σ 2
xn

1
2
(X̄n − Ȳn)2

σ 2
xn

}K
2

∝

(
1 +

σ 2
yn

σ 2
xn

)K
2
{
1 +

1
2
(X̄n − Ȳn)2

σ 2
xn + σ 2

xn

}K
2

(29)

Similarly, the second product term in the (23) is written as(
σ 2
zn

σ 2
yn

)K
2

∝

(
1 +

σ 2
xn

σ 2
yn

)K
2
{
1 +

1
2
(X̄n − Ȳn)2

σ 2
xn + σ 2

xn

}K
2

(30)

Now, the equation (23) is

LRn ∝

(
1 +

σ 2
yn

σ 2
xn

)K
2
(
1 +

σ 2
xn

σ 2
yn

)K
2
{
1 +

1
2
(X̄n − Ȳn)2

σ 2
xn + σ 2

yn

}K
(31)

The LR value in simultaneous testing in above equation (VI)

contains two terms such as the ratio between the variances
σ 2
xn

σ 2
yn

(and its reciprocal) and the differences between their means
(X̄n − Ȳn)2. Let us denote these variables as

S =
σ 2
yn

σ 2
xn

(32)

and

M =
(X̄n − Ȳn)2

σ 2
xn + σ 2

yn

(33)

Both the random variables are S > 0 and M > 0 and
considered as joint likelihood ratio statistics. Now, using
these statistically dependent variables S, and M defined in
above equations (32) and (33), equation can be rewritten as

LRn ∝
(1 + S)K

S
K
2

(
1 +

M
2

)K
= f (S)g(M ) (34)

where,

f (S) =
(1 + S)K

S
K
2

(35)

and

g(M ) =

(
1 +

M
2

)K
(36)

Thus, the LRn is the product of two functions, f (S) and
g(M ) and each of which function as a random variable S
and M respectively. The maximization of the simultaneous
LRn or its equivalent in (34) can be obtained by maximiz-
ing f (S) and g(M ) independently. Now consider the Roy’s
union-intersection (UI) test [44] based on f (S) and g(M ) or
equivalently S and M .

Let us use the variable M for the likelihood ratio test for
testing the sub-null hypothesis H01 : X̄n = Ȳn against H11 :

X̄n ̸= Ȳn. The LR testing rule may reject H01 : X̄n = Ȳn
for some large value of M . It is because the function g(M )
defined in (36) is a strictly increasing function in M . As we
know that M follows F-distribution with 1 and 2(K − 1) d.f.
and usually considered K is large. Therefore, the probability
of getting a large value is very less. It means the probability
of rejectingH01 when the mean of the observed data is nearly
the same as that of actual measurement.

Similarly, we can use the variance ratio S for testing the
sub-null hypothesis H02 : σ 2

xn = σ 2
yn against H12 : σ 2

xn ̸=

σ 2
yn . It can be shown that the function f (S) defined in (35)

is achieving its minimum at S = 1. This can be shown by
differentiating the function f (S) with respect to S. Therefore,
it is observed that the function f (S) attains its maximum value
when S is closer to zero or larger than 1. The LR testing rule
may rejectH02 : σ 2

xn = σ 2
yn for the value either in between 0 to

1 or greater than 1 [44]. When the variance of the observed
data Xn is nearly same to that of actual measurement YN , then
the variance ratio is nearly. This leads to the point that the
probability of rejectingH01 againstH02 is less as the function
is having minima at 1. In fact when intermittent fault occurs
the mean or variance or both of the measured data deviate
from the actual values. Then at least one of the functions f (S)
or g(M ) will be more dependent upon which statistics deviate
more. Therefore Roy’s union-intersection test ensures that the
detecting H1 against H0 is more probable.

VII. RESULTS AND DISCUSSIONS
In this section the evaluation of our proposed fault detection
technique by using LR test is described. Description of real
time data used is given first [47]. Next, the simulation results
of the new method are presented, analyzed and compared
with other techniques in the literature like three sigma edit
test.

Three performance parameters are used to analyze the fault
diagnosis algorithms. These are [25].

• Detection accuracy (DA): The DA is defined as the ratio
between the number of faulty sensor nodes detected as
faulty to the total number of faulty nodes in the network.

• False alarm rate (FAR): The FAR is defined as the ratio
between the number of fault free sensors detected as
faulty and the total number of fault free sensors in the
network.
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• False positive rate (FPR): The FPR is defined as the ratio
of number of faulty sensors detected as faulty free to
total number of fault free sensors in the network.

A. DATA SET
The labeled data set used for fault diagnosis is based on an
existing dataset published in [47]. The researchers collected
the measured humidity and temperature data from a simple
single-hop and a multi-hop WSNs by using TelosB motes.
They measure data in every five seconds during six hours
by introducing steam of hot water to increase the humidity
and the temperature. The labeled WSNs data set that we have
prepared consists of a set of sensor measurements where we
have injected different types of faults. We have used both
single hop and multihop measured data. Different faults are
introduced in the normal measurements. The impact of the
faults is introduced by changing the fault probability, additive
noise with varying noise variance, additive bias and gain
parameters. We have generated data for 512 sensor nodes and
40% sensor nodes are introduced as intermittent faulty nodes.

B. DETECTION OF INTERMITTENT/SPIKE FAULTY NODE
It is one of the difficult tasks in diagnosing the intermittent
fault of the sensor node. It is because the nodes behave
well sometimes and have suspicious behavior at other times.
Sometimes the suspicious data is completely random and
different from the normal distribution. Other kinds of inter-
mittent behavior like a spike either occur in regular intervals
or randomly occur with the same constant value. In our sim-
ulation study, we consider the random location of suspicious
data in both scenarios.

Let the probability of occurrence of suspicious data is pr .
In fact, if the pr is high, then it will be easy to detect the
faulty status of the node using any conventional techniques.
It is challenging when it is very less. In literature, most of the
authors have diagnosed the intermittent behaviors when the
pr is more than 0.5. But in this paper we analyzed the per-
formance of the proposed fault diagnosis algorithm for pr is
from 0.05 to 0.50. The DA and FAR performance is provided
in Fig. 2 when the tolerance of the change in data from the
original is ±0.05. It is observed that the new methodology
detects the fault status of the faulty node correctly, that is
DA = 1 when the pr is greater than 0.25. This is for both the
scenarios, either the suspicious data is random or a fixed bias
known as spike. In literature, as per our knowledge, no fault
diagnosis algorithm is providing this detection accuracywhen
pr is 0.25. The better detection accuracy is When fault occurs
the position and spread of the measured data varies. The
simultaneous mean and variance comparison between mea-
sured and the actual data provides better accuracy.

In literature, the performances are measured by varying the
percentage of faulty sensor nodes in a network. It is because,
in a distributed approach a sensor node diagnoses its fault
status by accumulating data from the neighbours. When more
neihbours are faulty, then the ability of a node to identify
its own status is reduced and that leads to degradation in

the detection performance. Whereas in the proposed work,
a completely hybrid approach is adapted. Here the anchor
node is diagnosing the sensor node independentlywithout any
other node data. Therefore, in this paper the performances are
measured by varying the percentage of faulty data in when a
sensor node underlying intermittent fault. When more data
are faulty in a faulty sensor node, the deviation in mean and
variance will be more. That helps the LRT based algorithm to
classify the faulty node with more noisy data as faulty sensor
node easily. Therefore, the DA, FAR and FPR performance
improves with increase in probability of faulty data in a faulty
sensor node. Please note this is different from the percentage
of faulty nodes in WSNs.

The DA, FAR and FPR are determined using the proposed
LRT method for L = 30 and plotted in Fig. 3. It is observed
that the performance is improved here over the scenario when
L = 20 data are used for the diagnosis. When more data that
has a longer diagnosis period is used for diagnosis, the proba-
bility of having faulty data points of intermittent faulty sensor
nodes increases. Then the LRT algorithm can detect the faulty
status easily with high accuracy. But, the computational cost
along with required memory size is increased whenmore data
is used for diagnosis.

After having the DA, FAR and FPR performance analysis,
then the other performance parameters like positive likeli-
hood ratio (PLR) and negative likelihood ratio (NLR) are
determined and compared. These parameters are defined as

PLR =
TPR
FAR

=
DA
FAR

, (37)

and

NLR =
FAR
TNR

=
1 − DA
1 − FAR

(38)

where TPR is the true positive rate and TNR is the true
negative rate. Likelihood ratios are used to summarise diag-
nostic accuracy. Each LRT result has its own likelihood ratio.
It summarizes how many times more (or less) likely the
nodes are faulty to have that particular result for a fault free
node. The PLR and NLR are plotted in Figs. 4 and 5 for
20 and 30 numbers of samples used for diagnosis respectively.
In general, when the PLR > 1 indicates that the test LRT
result is associated with the presence of faulty sensor nodes,
whereas the NLR < 1 indicates that the test result is associ-
ated with the fault free sensor node. PLR above 10 and NLR
below 0.1 are considered as strong evidence of the test rule in
most circumstances.

In fact, the PLR gives the change in the odds of having a
diagnosis in sensor nodes with a positive test and the change
is usually greater than 1. The larger the PLR value, the more
informative the test result. From the Figs. 4(a) and 5(a) shows
that the PLR is more than 10 when pr ≥ 0.1 and give very
high after the pr ≥ 0.25 for L = 20 and 30 respectively. This
is due to the fact that the FAR decreases with increase in pr
and nearly zero after pr = 0.25.
Similarly, the NLR gives the change in the odds of having

a diagnosis in sensor nodes with a negative test. The change
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FIGURE 2. DA, FAR and FPR versus fault probabilities plots of
intermittent/spike fault when the tolerance probability is ±0.05 and by
suing the LRT criterion. The number of data used for diagnosis L = 20.

is usually less than 1. The test is more informative for the
smaller value of NLR. It is observed from the Figs. 5(b) and
Figs. 4(b) that the NLR value is asymptotically approaching
zero when the pr = 0.25 for both random and spike inter-
mittent faults. The NLR value decreases when the diagnosis
is carried out by taking 30 samples rather than 20, which

FIGURE 3. DA, FAR and FPR versus fault probabilities plots of
intermittent/spike fault when the tolerance probability is ±0.05 and by
suing the LRT criterion. The number of data used for diagnosis L = 30.

indicates improvement of detection accuracy with an increase
in the number of samples.

The likelihood ratio performance parameters shows that
the proposed simultaneous LR statistics is providing better
detection accuracy. The probability of detection accuracy
increases with increase in the fault probability of the observed
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FIGURE 4. PLR and NLR versus fault probabilities plots of
intermittent/spike fault by using the LRT criterion. The tolerance
probability is ±0.05 and the number of data used for diagnosis L = 20.

data in a sensor node. It is also evident from the results that
the test rule achieves 100% accuracy when the pr ≥ 0.25.

C. COMPARISON WITH MODIFIED THREE SIGMA EDIT
TEST
In this subsection, the performance of the LRT method is
compared with a robust statistical method known as modi-
fied three sigma edit test (Mod3Sigma) [25]. In Mod3Sigma
method, the robust statistics parameters such as median,
median of absolute difference between data and median and
robust standard deviation are computed first from the mea-
sured data set. Then each individual data is tested using the
Modified Three Sigma Edit Test algorithm. It is a repeated
test and the number of repetition is the same as the number
of data used for diagnosis. Let us assume that if 20% of data
are found suspicious, then the node is considered as faulty,
otherwise it is fault free as against the 50% in [25] in. Thus
we have added fault the measure data with pr = 0.3 to 0.6 with
step size of 0.1. Both the fault detection algorithms are used
to diagnose the faulty status. It is already observed that when
the pr is 0.25 or more the LRT algorithm attains DA =1,

FIGURE 5. PLR and NLR versus fault probabilities plots of
intermittent/spike fault by using the LRT criterion. The tolerance
probability is ±0.05 and the number of data used for diagnosis L = 30.

TABLE 1. Performance comparison between LRT and Mod3Sigma
algorithms when L = 20.

FAR = 0 and FPR is also 0. Now, the same performance for
Mod3Sigma is provided in Tables 1 and 2.

It is found in the table that the detection performance of the
Mod3Sigma algorithm is improving first with pr increasing
from 0.3 to 0.4, then decreasing. In particular the FPR is
increasing when more data points are faulty. It may be due
to the masking effect. When more data points are becoming
faulty, then the estimated robust standard deviation is very
high. Any suspicious data near the median is considered as
good data. Whereas, the LST is detecting the faulty node with
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TABLE 2. Performance comparison between LRT and Mod3Sigma
algorithms when L = 30.

TABLE 3. Performance comparison between LRT and machine learning
algorithms [33].

100% accuracy when the pr is more than 0.3%. In general
the performance improves when the number of data used for
diagnosis L is increased as expected.

D. COMPARISON WITH MACHINE LEARNING
ALGORITHMS
In the recent past machine learning (ML) algorithms are used
to classify different kinds of faults that occur in WSNs [5],
[33]. The algorithms like multi-layer perception (MLP), ran-
dom forest (RF), decision tree (DT), support vector machine
(SVM) and extreme tree (ET). It has been reported that among
all the machine learning algorithms, ET and RF perform
better than the SVM, MLP and DT. We have defined the
precision of the fault detection as

Precision =
DA

DA+ FPR
(39)

The precision of the proposed algorithm is compared with
all the above said machine learning algorithms such as MLP,
SVM, ET, DT and RF. The comparison result is provided

in Table 3. It has been observed from the table that the
performance improves with the increase in pr value. With
the same real time testing data, all the methods perform well
with high percentage faulty data. Overall, the performance of
SVM, ET and RF is at par with the proposed LRT test and
outperformed over other classifiers. Another observation is
that detecting accuracy of the random intermittent faults using
ML methods is better than the spike intermittent fault.

Although the ML methods like ET are providing at par
detection accuracywith the proposed algorithm, the computa-
tional complexity and processing time is very less for the LRT
test based fault detection algorithm over the ML approach.
Because the LRT test is a one shot calculation of likelihood
ratio. Thus, the proposed method is one of the best candidates
to diagnose intermittent faulty status of the sensor node in
WSN.

VIII. CONCLUSION
In this paper we proposed a one shot likelihood ratio test to
find the intermittent fault status of a sensor node in a wireless
sensor network. The proposedmethodmeasures themean and
variance of the received data combined with the stored data
set and then compares the likelihood ratio with the threshold
value with certain tolerance. When the nodes are underlying
intermittent fault, the statistics of the data is changing and
hence the new LRT based fault diagnosis algorithm detecting
the faulty node with 100% detection accuracy, 0% false alarm
rate and 0% false positive rate when the probability of the
faulty data is more than 25%. Whereas the robust modified
repeated three sigma edit test fails to perform when the prob-
ability of faulty data is less than 30%. Further, the precision of
the LRT algorithm is at par with machine learning approaches
with very less computational complexity. In the future, we can
extend the analysis to other kinds of faults in wireless sensor
networks and improve the false positive rate performance.
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