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ABSTRACT Wheat is the most important and dominating crop in Pakistan in terms of production and
acreage, which is grown on 37% of the cultivated area, accounting for 70% of the total production. However,
wheat yield is highly affected by stripe rust, which is considered the most devastating fungal disease,
causing 5.5 million tonnes of loss per year globally. In order to minimize this loss, the accurate and
timely detection of rust disease is crucial instead of manual inspection. Towards this end, we propose a
system to detect wheat rust disease and classify its infection types into four classes, including healthy,
resistant, moderate (moderately resistant to moderately susceptible), and susceptible. The wheat rust dataset
is collected indigenously from the National Agricultural Research Centre, Islamabad. A pre-trained U? Net
model is used to remove the background and extract the leaf containing the rust disease. Subsequently, two
deep learning classifiers, including the Xception model and ResNet-50 are applied to classify the stripe rust
severity levels, where the ResNet-50 model outperformed with the highest accuracy of 96%. This research
presents a comparison between two state-of-the-art deep learning classifiers in terms of accuracy, memory
utilization, and prediction time, which will assist the research community in selecting the most appropriate
model for plant disease detection. Moreover, to assess the external validity, the performance of these
classifiers is compared with the existing technique using a publicly available dataset, which confirms the
validity of the results. Additionally, an intelligent edge computing rust detection device has been developed,
where the trained ResNet-50 model is deployed, which facilitates the farmers to monitor the rust attack.
The proposed research is aimed to assist the agricultural community to employ preventive measures in a
site-specific manner based on the accurate diagnosis of rust disease & its severity, which is intended to
improve the quality of the wheat as well as production.

INDEX TERMS Deep learning, classification, wheat stripe rust disease, segmentation, rust infection types,
edge device.

I. INTRODUCTION Its average annual production is around 680 million tonnes

Wheat is the prime cereal crop that holds paramount impor-
tance worldwide due to its immense contribution to the
human diet. It is the third most harvested crop in the world and
contains carbohydrates, dietary fiber, protein, and vitamins.

The associate editor coordinating the review of this manuscript and

approving it for publication was Wai-Keung Fung

per year globally [1]. In Pakistan, wheat is considered the
most significant staple crop, accounting for 37.1% of the
cultivated area and 65% of the food grain acreage. It is culti-
vated by 80% farmers and covers almost 9 million hectares
of agricultural land. Its favorable temperature is 21° C to
24° C, where it requires a moist and cool temperature in the
early stages and a warm temperature in the mature stages with
substantial sunshine.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
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Several diseases can affect the wheat crop, which results in
a serious loss of wheat production and damage to the quality
of the yield. Among these diseases, rust is the most damaging
disease that can lead to 20% to 50% yield loss if it is not
diagnosed and controlled at an early stage. It has three main
types, including leaf, stripe, and stem rust. The rust severity
is assessed as the percentage infected leaf region on visual
basis where leaf samples are collected separately according
to their infection types and % severity for further image
analysis as discussed in [2]. However, the infection type is
computed from its severity, which is normally mapped into
ten levels (0-9) as discussed in [3]. Infection type O indicates
that there are no rust symptoms on the leaf, infection type
1 shows that there are necrotic flecks with no sporulation,
infection type 2 indicates that there are stripes or chlorotic
blotches with no sporulation, and infection type 3 contains
stripes with trace sporulation. However, there are chlorotic
blotches with light sporulation in infection type 4, interme-
diate sporulation in infection type 5, and high sporulation in
infection type 6. In infection type 7, there are stripes with
abundant sporulation, and infection type 8 holds chlorotic
blotches with sufficient sporulation. In infection type 9, there
is large sporulation without chlorosis or necrosis [4].

The wheat yellow rust spreads rapidly, which makes it quite
challenging to contain the disease. Therefore, early and pre-
cise detection of this disease is crucial to take remedial actions
to minimize economic loss. For this purpose, advanced tech-
niques and tools are used to automatically diagnose the rust
attack. Towards this end, artificial intelligence, the Internet
of Things(IoT), edge computing, machine, and deep learning
are playing an integral role in crop disease detection [5]. For
this purpose, heterogeneous data is captured from various
sources such as soil parameters, plant canopy, climate data,
IoT data, and vegetation indices extracted from the remote
sensing images [6]. The famous machine learning techniques
used to process agricultural data are Support Vector Machine
(SVM), Decision Tree, Random Forest, k-Nearest Neighbour
(kKNN), Artificial Neural Network (ANN), Principle Compo-
nent Analysis (PCA), Naive Bayes, Logistic Regression, and
k-mean Clustering [7], [8], [9].

Wheat rust disease surveillance and diagnosis typically
involve imagery data that provides deep insights into the
particular disease. These images are captured using digital
cameras or some imaging systems, which contain noise,
impurities, and unwanted distortions. Thus, the preliminary
step after data acquisition is to preprocess the data to make
it suitable for any machine or deep learning technique. Data
augmentation, contrast enhancement, noise removal, bright-
ness adjustment, and image resizing are some common pre-
processing steps [10]. After image preprocessing, the region
of interest is extracted using several segmentation techniques
such as GrabCut, WaterShet, Fuzzy based methods, Thresh-
olding, Region growing, etc. as discussed in [11] and [12].
The next step is to use an appropriate machine/deep learning
approach to identify crop disease and its severity levels.
In this context, deep learning techniques, along with transfer
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learning, are gaining more success in imagery data for crop
disease diagnosis. The most famous deep learning architec-
tures are AlexNet, GoogleNet, ResNet18, ResNet-50, Deep
CNN, and VGG16 as discussed in [7].

Most of the existing research in crop disease detection
focuses on the detection and classification of different types
of diseases, where publicly available datasets are utilized.
The literature reveals that there is very little research to
deeply analyze a single disease and classify it into its severity
levels, which is difficult due to the similarity in single dis-
ease patterns. Moreover, small studies have been found in
which a real-time practical solution is presented by develop-
ing hardware for plant disease detection. Toward such end,
we propose a system to diagnose the wheat yellow rust and its
infection types where different deep learning techniques are
used (Figure 1). The dataset is collected using mobile cam-
eras, which is further preprocessed and segmented using the
U? net model. Subsequently, two deep learning models are
applied including ResNet-50, and the Xception models which
are used to classify wheat yellow rust severity levels. These
models are selected due to their high capability to perform
real-life complex classification tasks. Moreover, these models
are among the top five models that achieved the highest
accuracy on the benchmark dataset (ImageNet). In order to
validate the performance of these models, a publically avail-
able wheat yellow rust dataset is utilized where models have
been tested out on a standard, and unseen dataset. Further, the
trained model with the best performance is deployed on the
edge device for the purpose of on-device inferences that help
to detect rust disease and its infection types in real-time by
tanking images in the wheat fields. The main contributions
of the current research are given below:

« Development of a complete solution for wheat stripe rust
detection by addressing the research gap where a single
disease is considered and thoroughly investigated. For
this purpose, the collected dataset of wheat stripe rust
and the publicly available dataset are used. Two deep
learning models are evaluated, including ResNet-50 and
the Xception model, which will assist agricultural scien-
tists in selecting the most suitable model for rust severity
level classification.

« Data collection: The wheat stripe rust dataset has been
collected locally from the NARC fields throughout
the disease life cycle. The collected dataset will help
researchers to continue their investigation in wheat rust
detection and mature their research.

o Development of an edge device and on-device infer-
ence by deploying the most appropriate deep learning
model to identify the wheat rust infection type. This
edge device is portable and quite handy to perform
ground surveys which will assist farmers, agronomists,
and researchers to detect wheat rust and its severity
levels.

The rest of the paper is organized as follows: Section II

presents the related work; Section III discusses the mate-
rials and methods; Section IV presents the results and

23727



IEEE Access

U. Shafi et al.: Embedded Al for Wheat Yellow Rust Infection Type Classification

1

Datz collection

Segmentation using
U? Net

Classification using deep learning models:

1. Resnet50 model
2. Xception model

Resistant
Moderately
Susceptible :
 Susceptivle
. Inpute image Convolution + ReLu + Pooling A A Top layers A

Real time testing of yellow rust disease in
the wheat fields

Feature extraction using multiple convolution layers

Development of intzlligent rust detection device
(Trained Resnets0 is installed)

Output classification layers

| B
- ] |
= Recall : F1 score ] < .............
B : B
é ,,,,,,,,,,,,,,,,,,,,
Mesnan, ! Predictiontime |
conservation |

Evaluation of
classification models

FIGURE 1. Proposed framework for wheat stripe rust infection type classification.

discussion, and Section V discusses the conclusion and future
work.

Il. RELATED WORK
There have been several lately studies in the plant disease

detection domain in which machine and deep learning tech-
niques are used. The performance of any machine or deep
learning model mainly depends on the dataset. In [13], wheat
disease classification is performed using texture and color
features, where images are collected by RGB camera along
with the public dataset. The normal wheat leaves are differen-
tiated from the rust leaves and nitrogen-deficient leaves using
an ensemble learning-based technique. The results indicate
that an accuracy of 96% is observed for nitrogen deficient
vs normal, and 98.25% is observed for leaf rust vs normal.
In [14], the impact of the variety and size of the dataset on
the effectiveness of the deep learning model is discussed. The
dataset containing different plant diseases is used, where each

23728

plant disease dataset varies in size and number of classes.
GoogleNet is applied to these datasets to classify plant dis-
eases, where the highest accuracy of 97% is recorded in the
case of sugarcane disease detection. In [15], wheat yellow
rust is detected using a CNN, where, a dataset comprising
2000 images is collected using a digital camera. The proposed
deep learning model obtained the highest testing accuracy of
97.3% on classifying the images into two classes i.e. healthy
leaf and yellow rust. Similarly, CNN is used to diagnose crop
disease which achieved an accuracy of more than 98% as
discussed in [16].

In [17], wheat spike and leaf disease detection is performed
in which the publicly available dataset (LWDCD2020) is used
along with some manually collected images from the wheat
fields. The dataset contains 10 classes representing different
types of wheat diseases. A deep learning CNN model is pro-
posed which has 21 convolution layers followed by 7 pooling
layers with 3 fully connected dense layers. The performance
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of the proposed deep learning model is compared with the
famous deep learning architectures such as VGG16 and
ResNet-50. The proposed model outperformed with the high-
est testing accuracy of 97.88%, where VGG16 and ResNet-50
obtained a testing accuracy of 90.87, and 81.96% respec-
tively. Similarly, in [18], ResNet-50 and VGG16 are used to
detect wheat leaf and stem rust. These deep learning models
are applied to different sizes of datasets to assess the effect
of dataset size on model accuracy. The results indicate that
VGG16 obtained the highest validation accuracy of 98.33%
on the large dataset containing 6000 images.

In [19], wheat rust disease classification is performed using
a deep CNN model in which 1486 wheat disease images are
obtained from the publicly available dataset (CGIAR), and
514 images of wheat stripe rust are obtained from the sec-
ondary source. The dataset contains 2000 wheat rust images
which are labeled into four classes such as healthy plant, leaf
rust, stripe rust, and stem rust. The proposed deep CNN model
is trained with the batch size = 64, dropout rate = 50%, learn-
ing momentum = 0.9, and optimizer = Adaptive Moment
Estimation (adam); which achieved the highest accuracy of
97.16%. In [20], AlexNet is used to classify wheat diseases
into stem rust, yellow rust, powdery mildew, and normal
(healthy). In order to train the model, 7062 wheat images
are used for training, and 1766 images are used to test the
trained model. The highest accuracy of 84.54% is observed,
where the batch size is set to 16, and the learning rate is set
to 0.0001 with the Rectified Linear Unit (ReLU) activation
function.

In [21], wheat stripe rust is detected using Resnet18, where
the dataset is collected using a DSLR camera. In order to
collect the images, the camera is fixed on a boom which
is mounted on a carrier so that images are acquired with
the specific setting. The distance of the camera from the
ground is set to 2 meters. Additionally, drone imagery is
acquired with the same imaging sensor mounted on the drone,
which is further used to compute the triangular greenness
index. The computed index has a good correlation with the
photosynthetic activity which helps to assess the rust attack.
The Resnet18 model obtained the highest accuracy of 97%
at the patch level, where a classification accuracy of 77% is
observed at the image level.

In [22], a deep CNN model is proposed to classify plant
diseases in which a publicly available dataset (PlanVillage)
is used. The dataset contains 70295 images of different plant
diseases which have 38 different classes. The proposed model
obtained a testing accuracy of 98.3%, where the batch size is
set to 32 with 25 epochs. Similarly, another deep CNN model
is presented in [23] to classify 5 different apple diseases. The
proposed model is trained on the dataset of 26,377 images
which obtained a mean average accuracy of 78.80%.

In [24], high-resolution hyperspectral imagery is used to
automatically detect the yellow rust disease. A deep CNN
model is proposed in which several Inception Resnet layers
are introduced. The performance of the proposed model is
compared with the Random Forest classifier. The results
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show that the proposed model outperformed with an accuracy
of 85%, whereas the Random Forest obtained an accuracy
of 77%.

It is observed from the literature that most of the existing
research focuses on the detection of different types of plant
diseases, where each disease has some distinct patterns which
make a classification task much easier. Consequently, high
performance is achieved using machine and deep learning
techniques. Additionally, these techniques are mostly applied
to publicly available datasets, where no practical hardware
solution or disease detection device is proposed. However,
it is quite challenging to consider a single disease and diag-
nose its severity levels due to the similarity in the disease
patterns. Moreover, indigenous data collection and the devel-
opment of a real-time solution for plant disease detection
require substantial effort. Toward such end, we developed
a system to detect a single wheat rust disease and map it
into four severity levels including healthy, resistant, moderate
(moderately resistant to moderately susceptible), and suscep-
tible. For this purpose, multiple ground surveys are performed
to collect the dataset locally through the entire life cycle of the
rust disease. Subsequently, two deep learning classification
models are used including ResNet-50 and Xception mod-
els, where these models are tested on a publically available
dataset to assess the external validity. Additionally, an embed-
ded edge device is developed, where the most suitable model
is deployed which will help the farmers to diagnose the wheat
rust attack and its severity levels.

Ill. MATERIALS AND METHODS

A. DATA ACQUISITION

1) STUDY AREA

The study area for the proposed research is the National
Agriculture Research Center (NARC), Islamabad, which is
situated at 33.67°N latitude and 73.13°E longitude. Wheat
rust data is collected from several wheat experimental fields
listed in Table 1 and shown in Figure 2. There are sev-
eral small plots in each experimental field with different
wheat varieties, germplasm from Genebank, and landraces
(Figure 3).

The wheat disease images are collected using mobile
phones, where the wheat leaves are placed on a uniform
background. Initially, the collected dataset is comprised of
2000 images, which are further reduced due to cluttered
backgrounds, illumination variation, and compromised cam-
era quality. The final dataset contains 1640 wheat images,
which are labeled with the help of experts from NARC.
In this research, the dataset is labeled into four infection types
including (i) healthy, (ii) resistant, (iii) moderate, and (iv) sus-
ceptible. There are 645 images of healthy, 348 of resistant,
238 of moderate, and 409 of susceptible class (Table 2).

The collected dataset used for this research work is avail-
able on Github!

1Github
Dataset

Repository:  https://github.com/Uferah/Wheat-Stripe-Rust-
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TABLE 1. Experimental fields of wheat yellow rust disease.

Sr no Experimental Field Location Detail
. . 33°40°28.5"N .. . . .
1 Wheat Programme, NARC experimental Fields 73°07°44.2"E Containing different wheat trials and experiments
Plant Genetic Resources Institute, NARC Experimen- | 33°40°26.7"N .. .
2 tal fields 73°07°36.0"E Containing different wheat germplasm from genebank
. . 33°40°25.3"N .. . .
3 Wheat Experimental Fields of NIGAB, NARC 73°07°28.0"E Containing different wheat varieties and landraces

Location Map
of
Study Area

Islamabad|City)

. Baluchistan)

0.03 0.06
———

FIGURE 2. Study area location map.

Legend
Wheat Field 11_ __}
Wheat Field 2 [_ __}
Wheat Field 3

TABLE 2. Datasets used for wheat yellow rust detection.

Dataset Healthy Resistant Moderate Susceptible
Collected | ¢ 348 238 409
dataset
Dataset
2500 2500 2500 2500
[26])

available wheat yellow rust dataset [25] which contains six
infection types including healthy, resistant, moderately resis-
tant, moderately resistant moderately susceptible, moderately
susceptible, and susceptible. There are 2500 images of

FIGURE 3. Aerial view of wheat experimental fields containing small plots each infection type and a total of 15,000 images. How-

with different wheat varieties, germplasm from genebank and landraces.

ever, images of four infection types are merged with our
collected dataset, including healthy, resistant, moderate, and

The collected data is insufficient to train a deep learning susceptible. Table 2 shows the class-wise distribution of
model and achieve a good performance. To boost the model images in both datasets used for wheat rust infection type
performance, the dataset is enhanced by utilizing a publically classification.
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Resistant

FIGURE 4. Wheat yellow rust disease infection types.

B. SEGMENTATION USING U?— NET

Segmentation refers to partitioning an image into multiple
groups or segments by assigning each pixel to a specific
category. Generally, it is used to localize different objects
in the image, which further helps to perform advanced
image analysis. Several image segmentation techniques have
been proposed in the literature, including region growing,
thresholding, K-Means clustering, watershed method, graph
cuts, and model-based techniques as discussed in [27].
However, deep learning models developed in recent years
have shown remarkable results in image segmentation tasks.
Among these models, U-Net is a widely used segmentation
technique to extract salient objects from the image. Its archi-
tecture consists of two sections (i) the contraction path, which
captures the contextual information; and (ii) the expansion
path, which learns precise localization [28].

Several variants of the U-Net model have been introduced,
where the U2-Net model is used in this research work. It is a
nested U-Net architecture [29] rather than a cascaded one,
which is shown by the exponential use of ‘2’ in the title.
U?-Net is primarily used for Salient Object Detection (SOD)
which focuses on separating salient object(s) in the image
from the background by increasing the foreground intensity
and decreasing the background intensity. The architecture
of the network emphasizes going deeper without adding a
massive overhead on memory and computation costs. This
is accomplished by nesting the normal U-Net structure on the
bottom level with a ReSidual U-block (RSU) which allows
it to extract intra-stage multi-scale features from the image
without necessarily degrading the feature map resolution.
At the top level, there is a U-Net architecture, where each
stage is filled by an RSU block.

The presence of different backgrounds across the images
can be a source of noisiness in the dataset. This makes classi-
fication inferences difficult. To deal with this challenge, this
paper uses the pre-trained U2-Net architecture from the Ailia
SDK (Ailia 1.2.3) provided by the original paper [29]. This
version is optimized in terms of its weights for segmenting a
foreground object from the background as discussed in [12].
The results of segmentation are shown in Figure 5.

C. CLASSIFICATION
Wheat yellow rust disease detection and its infection-type
classification is performed on an Intel(R) Xeon(R) CPU with
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Moderate

Susceptible

a clock speed of 2.20GHz. The GPU used is an Nvidia Tesla
K80 GPU with 4GB memory. Two pre-trained deep learning
models, including ResNet-50, and Xception are applied to the
dataset which is explained below.

1) ResNet-50 MODEL

In order to tackle more complicated tasks, deep learning
architectures are becoming deeper and more complex, which
has also boosted classification and recognition task perfor-
mance and strengthened their robustness. However, if we
keep on adding extra layers to the network, it becomes con-
siderably more difficult to train the model because it starts
to saturate due to vanishing gradients. This problem is solved
by the ResNet model in which residual blocks are introduced,
as discussed in [30]. The core concept of this model is to
skip connections by adding original data to the output of
convolution blocks.

To perform wheat yellow rust infection type classification,
the top of the model is replaced with two dense layers, each
with a depth of 1024. The ReLU is used as an activation
function, which is computed by Eq 1.

y = max(0, x) (1)

The dense layers are followed by a dropout layer where the
dropout ratio is set to 0.5, which reduces the number of
connections going into the classification layer. This increases
computational efficiency by only using a subset of the total
connections to the classification layer. The dropout layer
is then followed by the classification layer containing four
nodes that carry the softmax function.

The model has been compiled with the adam optimizer
which aims to combine the properties of AdaGrad and
RMSProp, where Categorical Cross Entropy is used as the
loss function which can be computed using Eq 2.

C
CE = — ) tilog(f (s)) )

2) XCEPTION MODEL

The Xception model is another deep convolutional neural
network comprising 71 layers, which makes it more pow-
erful to perform complex image classification and recogni-
tion tasks [31]. However, to reduce the computational cost,
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Wheat yellow rust images without segmentation

(c)

Wheat yellow rust images after segmentation

(e) ()

(9) (h)

FIGURE 5. U2 Net segmentation results (a) Healthy image and (e) Segmented image of (a); (b) Resistant image and (f) Segmented image of (b);
(c) moderate image and (g) Segmented image of (c); (d) Susceptible image and (e) Segmented image of (d).

=2
2

64

64
256
128
128
512
256

64 s

Input image

max pool 3%3 s
Conv 1x1,T
Corw 3x3,f
Conv 1x1,f
Conv 1x1,f
Conv 3x3, T
Conv 1x1,f
Conv 1x1,T

Conv 7x7

E
Moderately
Susceptible

256
1024
512
512
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Dense 1024
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Cony 3x3, f
Conv 1x1,
Conv 1x1,
Conv 3x3, f
Conv 1x1, T

— (3x) (4x)

(6x) (3x) [

FIGURE 6. Redesigned ResNet-50 model for wheat rust infection type classification.

depth-wise separable convolutions have been introduced in
this model. Additionally, there are skip connections between
convolutional blocks as shown in Resnet. It initially applies
the filters to each depth map before utilizing 1 x 1 convolution
to eventually compress the input space across the depth. This
leads to the production of similar results with less compu-
tation, making this model extremely efficient in terms of its
prediction time and memory. Its architecture has three flows
including (i) entry flow, (ii) middle flow, and (iii) exit flow,
as discussed in [31].

For wheat rust infection type classification, a pre-trained
Xception model is used where model weights are optimized
on the ImageNet dataset. The input layer of the model is set as
a three-channel image of dimensions 250 x 250. Meanwhile,
the top of the model is where the resultant image from the
convolutional layers are flattened and then two dense layers
of 1024 nodes activated by the ReLU function are added at
the top of the model, as shown in Figure 7. These layers are
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followed by a dropout layer with a dropout ratio of 0.5, which
makes the model more efficient. The final classification layer
has 4 nodes and is activated by the softmax function, which
is computed by the Eq 3.

eZi
Z}K:l v

Here, the numerator computes the score of a particular node,
which represents one of the four classes and is divided by
the sum of the squares of all the nodes in the classification
layer. This gives a class-based probability of a particular input
image belonging to that class. In the softmax function, the
sum of all the probabilities in the layer is always equal to 1.

o(z) =

3

3) PERFORMANCE EVALUATION METRICS

There are several evaluation metrics that are being used in
different applications to assess the performance of classifiers
including specificity, sensitivity, F1-score, precision, recall,
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FIGURE 7. Schematic architecture of Xception model for wheat rust infection type classification.

7inch Touch Screen

Nvidia Jetson Nano

FIGURE 8. Components used in an intelligent wheat rust detection device.

accuracy, and others as discussed in [32] and [33]. In this
research, the performance of each classification model is
evaluated using accuracy, precision, F1 score, recall, and
efficiency as discussed in [34] and [35].

D. ON-DEVICE INFERENCE USING EDGE
COMPUTING/EMBEDDED Al

An intelligent edge computing/embedded Al system for
wheat stripe rust detection has been developed with the goal
of quickly and accurately identifying the disease, and having
real-time access to its severity levels. It consists of a camera
connected to a Single Board Computer (SBC) and a screen
that will capture high-resolution images of wheat, detects
the wheat rust disease severity level, and display the results
on the screen. The device is powered up with the help of a
rechargeable power bank so that it can be used in remote areas
and agricultural fields. Figure 8 shows all components used
in the wheat rust detection device, where the details of the
components are given below:

« Nvidia Jetson Nano: It is a small computer that enables
users to run several neural networks simultaneously for
image classification, object recognition, segmentation,
and audio processing applications (shown in Figure 8).
It contains a 128-core NVIDIA Maxwell architecture-
based GPU, Quad-core ARM® A57 CPU, 4 GB
64-bitDR4, and 25.6 gigabytes/second memory with
Gigabit Ethernet connectivity and operating support of
Linux for Tegra®.

o Touch Screen (7 inches): This type of display sup-
ports various systems such as Raspberry Pi/ Banana Pi/
NVIDIA Jetson. The built-in HDMI interface enables
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Power bank

Logitech Webcam

the display to work as a computer monitor just like any
other HDMI screen. The dimension of this screen is
194mm x 110mm x 20mm with a screen resolution of
800 x 480 pixels (shown in Figure 8). It is connected to
the Jetson nano developer kit using an HDMI port.

o Logitech Webcam C930e: It is a high-resolution HD
1080p webcam that can work in low-light and severely
illuminated environments. Its pixel resolution is 1920 x
1080 pixels with a frame rate of 30 frames per second.

« Power Bank: The developed wheat rust detection device
is charged with the help of a power band that has a
20000 mAh capacity. It also has an upgraded digital
display which consists of battery percentage, charging
voltage, and charging current.

Two state-of-the-art deep learning models are trained on the
collected wheat yellow rust dataset, where the most suit-
able model is deployed on the developed edge device. The
ResNet-50 model contains 158,860,164 parameters with a
size of 100MB, which is pretty heavy for a small edge device.
In order to deploy it on the edge device, the Tensorflow Lite
library is used, which enables the machine learning models
to run on the embedded systems, mobile or end devices [36].
Subsequently, the wheat rust detection device installed with
the ResNet-50 model is tested in a real-time environment
where the wheat rust severity level is measured by capturing
the wheat rust images as shown in Figure 9.

IV. RESULTS AND DISCUSSION

In order to classify wheat rust into four infection types,
two pre-trained deep-learning classifiers are applied. These
classifiers are trained on the combined dataset, including the
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FIGURE 9. Wheat rust disease detection device testing (a) Testing in the Lab (b) Image capturing in wheat fields, (c) Testing device with

constant white background (d) Result of (c).
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FIGURE 10. Confusion matrix of Xception model (a) Confusion matrix on combined data, (b) Confusion matrix on publically available data, (c) Confusion

matrix on collected data.

collected dataset and the publicly available dataset. However,
each classifier is evaluated on three different testing datasets,
i.e., (i) testing split of our collected data, (ii) testing split
of publicly available data, and (iii) combined testing split
(containing collected and publicly available datasets). The
distribution of each class in training, testing, and validation
splits is given in Table 3.

Figure 10 and Figure 11 show the confusion matrices of the
Xception model and ResNet-50 model on three testing splits.
The diagonal of the matrix shows all correctly classified
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predictions, whereas all other cells represent miss-classified
predictions. This elaborates an in-depth comparison of a
model’s performance in terms of each class. It is evident that
the ResNet-50 model achieved the highest accuracy of 96%
on the testing split containing the publicly available dataset
and 95.4 % on the combined testing dataset. However, when
applied to the collected dataset, the model performance is
slightly reduced to 91.87%. Similarly, the Xception model
achieved comparable performance on the combined dataset
and publically available dataset. However, its accuracy is
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TABLE 3. Dataset division into train, test, and validation splits for
classification.

Dataset Healthy Resistant Moderate Susceptible

Training
(dataset 1843 1858 1822 1845
[26])

Training
(collected 515 281 178 334
dataset)

Validation

- 157 142 178 155
split

Testing
split
(dataset
[26])

500 500 500 500

Testing
split
(collected
dataset)

130 67 60 75

Testing
split
(combined
dataset )

630 567 560 575

compromised a little when applied to the collected dataset due
to the quality of the dataset. The resolution of the collected
dataset is not high as compared to the publicly available
dataset, which has been captured using high-resolution cam-
eras in a controlled environment. Additionally, the size of
our collected dataset is substantially smaller than the publicly
available dataset. Consequently, the models have been trained
on the majority of images in the publicly available dataset,
which makes these models more robust on this dataset,
whereas the model’s performance is reduced a bit on the
collected dataset.

It is evident from the confusion matrices (Figure 10 and
Figure 11) that most of the healthy, and susceptible images are
correctly classified as compared to the resistant and moderate
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images. The resistant images are mostly misclassified as
healthy whereas healthy images are misclassified in resistant
class due to the similarity in leaf color because resistant
images contain very small rust disease patterns. Similarly,
there is a small difference between moderate and susceptible
images, which is the main reason for the misclassification into
these classes. Moreover, the collected data contains a smaller
number of images in the resistant and moderate classes, which
is another reason for the misclassification of these images.

In order to evaluate the model performance and assess the
external validity, the performance of each model is tested on
a publically available dataset and results are compared with
the existing approach for wheat yellow rust detection in terms
of accuracy, precision, F1 score, and recall, which is given in
Table 4.

It is noticeable from Table 4 that our redesigned Xception
and ResNet-50 models achieved the highest performance as
compared to the existing approach which obtain the highest
accuracy of 91%. The results show that the ResNet-50 model
slightly outperforms the Xception model in terms of accuracy
(96%) due to the skip connections, which allow contextual
information from the previous layers to be transported into
the next layer. These connections in the ResNet model enable
faster learning because the gradients at different points are
added rather than sole multiplication which results in a higher
gradient value for the optimizer in each timestamp. Hence,
we see that the ResNet-50 model manages to achieve conver-
gence more quickly as compared to the Xception model. The
comparison between the accuracy of each model at different
epochs is shown in Figure 12. The figure shows how the
training of each model progresses with respect to accuracy.
Each model has been stopped at different epochs to ensure
that the models do not end up as an overfit.

Table 5 shows the number of parameters, size, and pre-
diction time of each model. The memory conservation of the
model is based on several factors, including the architecture
of the network and the inputs to it, which are reflected in
the size of the model. Larger models require more space on
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TABLE 4. Performance comparison of models.

Model / Class Precision Recall F1-score Accuracy
ResNet-50 model 96 %
Healthy 0.99 0.98 0.99

moderate 0.96 091 0.94

Resistant 0.97 0.98 0.97

Susceptible 0.92 0.97 0.94

Xception model 95.7%
Healthy 0.97 1.0 0.98

moderate 091 0.98 0.95

Resistant 1.0 0.89 0.94

Susceptible 0.95 0.97 0.96

Existing work [26] 91 %
Healthy 0.97 0.98 0.97

Moderate 0.90 0.82 0.86

Resistant 0.95 0.97 0.96

Susceptible 0.93 0.87 0.90

Accuracy vs Epochs for each model
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FIGURE 12. Comparison of Accuracy at each epoch.

any deployment device and also take more time to mount.
Particularly, models with smaller sizes are more suitable
for dealing with IoT microprocessors. Similarly, the num-
ber of parameters of the model is another strong indicator
of memory optimization since it reduces the workload of
the model. The number of parameters is shown in Table 5
which includes both trainable and non-trainable parameters.
The total number of parameters represents the approximate
number of calculations that each model has to make at each
timestamp. Thus, there is an ultimate tradeoff between model
size and the number of parameters that must be decided.
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TABLE 5. Efficiency comparison of models.

Model Size (MB) | No of parameters | Prediction time
ResNet-50 100 158,860,164 6 ms
Xception 95 156,133,932 5 ms

Table 5 demonstrates that the Xception model has fewer
parameters and size as compared to the ResNet-50 model
which results in a better prediction time but ResNet-50 pro-
vides a better classification score with minimal difference in
prediction time.

V. CONCLUSION AND FUTURE WORK

Wheat rust disease is considered the most damaging disease
that can lead to an acute loss in terms of wheat quality and
yield. The precise and timely detection of rust disease and
its severity is crucial to reduce this loss, which requires a
technology-based solution instead of the traditional manual
inspection. Towards this end, we proposed a system to detect
wheat dust disease in four severity levels, including healthy,
resistant, moderate, and susceptible. In order to remove the
background, the collected images are segmented using a pre-
trained U? net. Subsequently, two cutting-edge deep learning
models are applied to the dataset including ResNet-50, and
the Xception model, where ResNet-50 outperformed with the
highest accuracy of 96% with a prediction time of 6 ms.
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Additionally, the performance of these models is compared
with the existing approach on a publically available dataset
where our redesigned models (Xception and ResNet-50) out-
performed. Subsequently, an embedded edge device is devel-
oped using Nvidia Jetson Nano, a 7-inch Touch Screen, and
Logitech Webcam. The trained ResNet-50 model is installed
on the wheat rust detection device, which is further tested in
the wheat experimental fields. The system will help agricul-
tural users to monitor the wheat crop’s health and detect the
rust attack and its severity with an accuracy of 93% so that
remedial action can be taken on time.

Currently, we have collected the wheat yellow rust disease
dataset containing four infection types, including healthy,
resistant, moderate, and susceptible. In the future, the fre-
quency of data collection will be increased to cover more
classes, such as moderately resistant, and moderately suscep-
tible. Moreover, the data will not only be captured through
mobile cameras but drone imagery will also be used to
address this problem. For this purpose, drone flights will be
carried out at a low altitude to capture high-resolution images.
Currently, the wheat rust images are captured in a controlled
environment by placing the leaves on a uniform background
to deal with the cluttered background and illumination issues.
In the future, we will make the data collection phase more
flexible so that leaves under rust attack can be segmented
automatically. Moreover, we will make the model more
robust so that blurred images with variations in illumination
can be treated by the model efficiently. Subsequently, other
deep learning models will be investigated to accurately seg-
ment out the affected wheat leaf and detect the rust attack &
its severity levels.
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