
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Conference papers School of Electrical and Electronic Engineering 

2018 

Generalized Configurations for the Synchronization System Based Generalized Configurations for the Synchronization System Based 

on Transfer Function Approach on Transfer Function Approach 

Tuan Ngo 

Tuyen Vu 

Samet Biricik 

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart 

 Part of the Electrical and Computer Engineering Commons 

This Conference Paper is brought to you for free and 
open access by the School of Electrical and Electronic 
Engineering at ARROW@TU Dublin. It has been accepted 
for inclusion in Conference papers by an authorized 
administrator of ARROW@TU Dublin. For more 
information, please contact arrow.admin@tudublin.ie, 
aisling.coyne@tudublin.ie, gerard.connolly@tudublin.ie. 

This work is licensed under a Creative Commons 
Attribution-Noncommercial-Share Alike 4.0 License 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fengscheleart%2F352&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20gerard.connolly@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


Generalized Configurations for the Synchronization
System Based on Transfer Function Approach

Tuan Ngo1, Tuyen Vu2, and Samet Biriciki3

1Department of Electrical and Computer Engineering, The University of Texas at Austin, TX, USA
2Center for Advanced Power Electronics, Florida State University, FL, USA

3Department of Electrical and Computer Engineering, Dublin Institute of Technology, Dublin, Ireland

Abstract—This paper presents our research on deriving all
the generalized forms for the grid synchronization system of an
inverter in the grid-connected applications. The transfer function
approach is introduced in order to obtain the generalized second-
order and third-order synchronization systems. This approach
is based on the orthogonal property of two outputs from the
second-order generalized-integrator (SOGI) technique that these
two outputs are always 90◦ difference in phase but only equal in
magnitude at the grid frequency. The proposed approach then
can provide the generalized forms of any high-order synchro-
nization system, including the second-order and the third-order
systems. It is interesting to see that the systems derived from
this approach include all the previous synchronization systems
in the literature. The simulation results have confirmed that these
generalized systems are able to generate two perfectly orthogonal
outputs to determine the grid information, i.e. voltage magnitude
and phase angle. In addition, the generalized third-order system
shows its excellent performance in removing harmonics under
the distorted grid condition, and thus its ability to accurately
detect the grid information.

Index Terms—Grid synchronization, second-order generalized-
integrator, third-order synchronization system, distorted grid.

I. INTRODUCTION

The second-order generalized-integrator (SOGI) technique
was introduced and widely implemented in the grid-connected
inverter applications [1]. This technique utilizes two integra-
tors to form an oscillator in order to generate two orthogonal
output signals. From these output signals, the grid information
such as voltage magnitude and phase angle can be obtained.
Due to its simplicity and robustness, this technique is preferred
in the grid synchronization system of an inverter. However,
one major drawback of this technique is that it cannot oper-
ate properly under distorted grid conditions due to the low
attenuation capability of a second-order system. A possible
solution is using multiple SOGIs in which many SOGI blocks
are arranged in parallel to detect the fundamental voltage
waveform and the harmonics [2], [3]. The harmonics are then
used to cancel the harmonics in the input and thus results
in sinusoidal outptus. This method, however, requires the
information of all harmonic contents in the input voltage, and
also needs many SOGI blocks arranged in parallel to eliminate
harmonics and compute the fundamental waveform.

Few attempts trying to improve the performance of grid
synchronization under distorted grid conditions have been
proposed. The most common methods are adding another filter
such as a compensator [4], [5] or a digital filter [6], [7] to

remove harmonics. Another approach involve increasing the
SOGI system to a third-order one. This work can be simply
achieved by adding an integrator to the conventional SOGI
structure. Due to higher attenuation capability, the third-order
systems have better behaviors to harmonic distortions. For
example, in [8], the complex vector is employed to derive the
grid synchronization configuration. Since the complex-vector
pre-filter is adopted, the system is able to lock its outputs at the
fundamental frequency with sinusoidal waveforms. Another
similar work is presented in [9]. An integrator is employed to
the conventional SOGI to filter a DC offset from grid voltages.
This third-order configuration can simply remove offset in
comparison to the method proposed in [10]. More importantly,
this method can filter harmonics in unbalanced voltages for
grid synchronization. Our motivation in this paper is to search
all the generalized second-order and third-order systems that
can be utilized for the grid synchronization under various grid
conditions. We introduce the transfer function approach in
order to obtain all these generalized systems.

This paper begins in Section II by reviewing the operation
principle of the second-order generalized-integrator through
the transfer functions and its Bode plots. The proposed transfer
function method is then introduced to obtain the generalized
forms of a second-order and a third-order systems for grid
synchronization. This method is based on the observation that
the two outputs of a synchronization system are always orthog-
onal and are only equal in magnitude at the grid frequency.
Many configurations for grid synchronization are derived, and
it is interesting to see that this proposed method includes all
the previous synchronization configurations in the literature.
Section III presents the performance the derived second-order
and third-order systems under different scenarios: a purely
sinusoidal input and a distorted input. Simulation results
show that the two derived systems are able to generate two
perfectly orthogonal outputs from the input. In other words,
these systems can be used for the grid synchronization. The
performance of two derived systems are also verified with a
distorted input. The results show that the second-order system
cannot completely the harmonics, and thus results in two
distorted outputs. The third-order system, on the other hand, is
able to reject the harmonics. The outputs from this system are
therefore perfectly sinusoidal and orthogonal. Finally, Section
IV delivers remark conclusions for the applications of the
transfer function approach for the grid synchronization system.
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II. GRID SYNCHRONIZATION CONFIGURATIONS BASED ON
THE TRANSFER FUNCTION APPROACH

This section first reviews the operating principle of second-
order generalized-integrator through its transfer functions and
Bode plots. The transfer function approach for second-order
and third-order systems are then presented to obtain the
generalized grid synchronization configurations.

A. Review of the second-order generalized-integrator

The second-order generalized-integrator (SOGI) method
was introduced for the grid-connected inverter applications to
synchronize with the power grid [1]. This method utilizes two
integrators to form a second-order oscillator as shown in Fig.
1. The SOGI generates two outputs, v′ and qv′, which are
purely sine and cosine signals to calculate the rms value and
the phase angle of the sinusoidal input vin.

+
- εv

ks +- X

∫

∫
X

ω′

vin v′

qv′

Fig. 1. A typical SOGI configuration for the grid synchronization.

The operating principles of SOGI can be explained from the
transfer functions of two outputs [1] and from the Bode plots.
Assuming GV ′(s) and GQV ′(s) are the transfer functions of
outputs V ′(s) and QV ′(s) corresponding the input Vin(s),
respectively, then

GV ′(s) =
ksω

′s
s2 + ksω′s+ ω′2

(1)

GQV ′(s) =
ksω

′2

s2 + ksω′s+ ω′2
(2)

where ω′ is the central frequency, i.e. the power system
frequency [11], and ks is a gain that can be changed for
the system dynamics [1]. It is worthwhile to mention that
the SOGI also behaves as an active filter oscillating at the
frequency ω′ [1] and is able to remove the harmonics in case
the input vin is not purely sinusoidal. The Bode plot of these
two transfer functions are visualized in Fig. 2. It can be seen
that the magnitudes of two outputs are only equal at the central
frequency ω′ while the phases are different in 90◦ at any
frequency which means the two outputs are always sine and
cosine signals.

B. The transfer function approach for second-order systems

Validating the two transfer functions GV ′(s) and GQV ′(s)
at the central frequency s = jω′, then

GV ′(s = jω′) =
ksω

′(jω′)
(jω′)2 + ksω′(jω′) + ω′2

= 1 (3)

GQV ′(s = jω′) =
ksω

′2

(jω′)2 + ksω′(jω′) + ω′2
= -j (4)
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Fig. 2. Bode plots of GV ′ (s) and GQV ′ (s).

The results from (3) and (4) explain for the sine and cosine
signals in the SOGI if the input is a sinusoidal waveform. Note
that the relation GQV ′(s) = (ω′/s) × GV ′(s) is always held
for a sine and a cosine functions. The generalized second-order
forms for GV ′(s) and GQV ′(s) can be given by

GV ′(s) =
a0s

2 + a1s+ a2
s2 + b1s+ b2

(5)

GQV ′(s) =
ω′

s
× a0s

2 + a1s+ a2
s2 + b1s+ b2

=
ω′(a0s2 + a1s+ a2)

s(s2 + b1s+ b2)

A quick notice from (5) that if a2 6= 0 then GQV ′(s) is
a third-order system while GV ′(s) is a second-order system.
Since GV ′(s) and GQV ′(s) are derived from one system, they
should be the same denominator. In other words, a2 should
be equal to 0. Evaluating GV ′(s) at the central frequency,
s = jω′, and set it to 1 then

GV ′(s = jω′) =
a0s

2 + a1s

s2 + b1s+ b2
=
−a0ω′2 + a1jω

′

−ω′2 + b1jω′ + b2
= 1 (6)

By grouping real and imaginary parts from (6), the co-
efficients relation is: b1 = a1 and b2 = (1 − a0)ω

′2. The
generalized transfer functions are then

GV ′(s) =
a0s

2 + a1s

s2 + a1s+ (1− a0)ω′2
(7)

GQV ′(s) =
ω′(a0s+ a1)

s2 + a1s+ (1− a0)ω′2
(8)

Equations from (7) and (8) present the generalized forms of
a second-order grid synchronization system. Fig. 3 shows the
Bode plots of these two transfer functions with a0 = 0.5 and
a1 =

√
2ω′. As can be seen from that figure, the two outputs

are only equal in magnitude at the central frequency. The
phases of these outputs, however, are always 90◦ difference.
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It is interesting to see that if a0 = 0 and a1 = kω′, then (7)
and (8) becomes

GV ′(s) =
ksω

′s
s2 + ksω′s+ ω′2

(9)

GQV ′(s) =
ksω

′2

s2 + ksω′s+ ω′2
(10)

which is nothing than the transfer functions of SOGI in the
literature and was presented in the previous section. In other
words, the equations in (7) and (8) provide the general forms
of any second-order grid synchronization system.
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Fig. 3. Bode plots of the generalized second-order synchronization system.

C. The transfer function approach for third-order systems

The third-order systems have benefits over the second-order
ones in terms of harmonic blocking [8], [9]. This section is
thus to derive the generalized forms for the third-order system.
Note that the third-order system still has two functions: 1)
generating two orthogonal output signals, and 2) satisfying
equations (3) and (4) for synchronization. It is worthwhile
to note that once the transfer function GV ′(s) is determined,
GQV ′(s) can be found by GQV ′(s) = GV ′(s) × (ω′/s).
Therefore, the first step is to find GV ′(s). Assuming the
transfer function starts with the general formulation of a third-
order system

GV ′(s) =
N(s)

D(s)
=

b0s
3 + b1s

2 + b2s+ b3
s3 + a1s2 + a2s+ a3

(11)

For the sake of simplicity, the denominator of (11) is first
evaluated at the central frequency, ω′. Denoting ki = (a2 −
ω′2), kr = (a1 − a3/ω′2), and j2 = −1, then at s = jω′

D(s = jω′) = (jω′)3 + a1(jω
′)2 + a2(jω

′) + a3

= (a3 − a1ω′2) + jω′(a2 − ω′2)
= kr(−ω′2) + ki(jω

′) = kr(jω
′)2 + ki(jω

′)

, kr(s)
2 + ki(s) for (s = jω′) (12)

From (12), the numerator of GV ′(s) can be simply selected
as: N(s) = krs

2 + kis. The transfer functions of the third-
order synchronization system is thus given by

GV ′(s) =
krs

2 + kis

s3 + a1s2 + (ω′2 + ki)s+ (a1 − kr)ω′2

GQV ′(s) =
(krs+ ki)ω

′

s3 + a1s2 + (ω′2 + ki)s+ (a1 − kr)ω′2
(13)

Fig. 4 shows the Bode plots of two transfer functions in
(13) with kr = 20, ki = 22214.41, a1 = 444.29. The system
is stable at pole locations s1 = −402.42, s2,3 = −20.94 ±
j321.90 and able to synchronize at the central frequency ω′.
The output signals are always orthogonal because the phase
difference is 90◦.
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Fig. 4. Bode plots of third-order synchronization system.

The transfer functions in (13) can be simplified for some
interesting cases: 1) kr = 0 and 2) ki = 0. These two cases can
lead to configuration derivations based on SOGI structure in
the literature [8], [9] for third-order synchronization systems.

Case 1: kr = 0 and the output transfer functions GV ′(s)
and GQV ′(s) are simplified as

GV ′(s) =
kis

s3 + a1s2 + (ω′2 + ki)s+ a1ω′2

GQV ′(s) =
kiω
′

s3 + a1s2 + (ω′2 + ki)s+ a1ω′2
(14)

Case 2: ki = 0 and the output transfer functions GV ′(s)
and GQV ′(s) become

GV ′(s) =
krs

2

s3 + a1s2 + ω′2s+ (a1 − kr)ω′2

GQV ′(s) =
krω

′s
s3 + a1s2 + ω′2s+ (a1 − kr)ω′2

(15)

From the transfer function expressions in (13), (14), and
(15), there are many configurations can be derived based on
the state-space model. The most familiar systems are the con-
trollable canonical form (CCF) and the observable canonical
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form (OCF) [12]. Fig. 5 shows an example of synchronization
structure for (13) under the controllable canonical form.

+
∫ ∫ ∫

kiω
′ +

vin x3 x2 x1 v′

−a1

−(ω′2 + ki)

−a1ω
′2

krω
′

ki +
qv′

kr

Fig. 5. A grid synchronization configuration based on CCF.

The third-order synchronization system can be also con-
structed based on a typical SOGI configuration in order to
get benefits for the frequency controller. Denoting a1 = ksω

′,
ki = kaksω

′, and kr = kksω
′, a state-space model for the

system in (13) is given by


ẋ1
ẋ2
ẋ3


 = −




0 −1 0
ω′2 ksω

′ (k − 1)ksω
′

ω′2 ka

1−k 0





x1
x2
x3


+




0
kksω

′
ka

1−k


Vin (16)

The structure for (16) is shown in Fig. 6a based on the
SOGI configuration. In addition, the configurations for (14)
and (15) are investigated and presented in Fig. 6b and Fig. 6c,
respectively. It is interesting to note that in case where kr = 0
and ki = 0, the configurations match with structures in [8],
[9]. The detailed analyses can be found in these references.

III. SIMULATION RESULTS

The generalized second-order and third-order systems are
then modeled in MATLAB/SIMULINK to verify their syn-
chronization capability. Note that for the third-order system
in theory has 60 dB harmonic attenuation compared to 40 dB
of that in the second-order system. The third-order system is
thus expected to have better performance with the harmonics,
and this functionality is also verified. The two systems are
therefore tested at two different scenarios: with a sinusoidal
input and with a distorted input.

A. Performance with a sinusoidal input

In this case, the input is a sinusoidal waveform as shown
in Fig. 7a and is given by

vin(t) = 120
√
2 sin(2π × 60× t) (17)

The outputs of the generalized second-order and third-order
systems are presented in Fig. 7b and Fig. 7c, respectively. As
can be seen from these figures, the outputs v′(t) and qv′(t) are
perfectly sinusoidal and equal in magnitudes. This means the
two proposed systems can be used for grid synchronization. It
is worthwhile to mention that the third-order system requires
more time to reach the steady state compared to the second-
order system because it has higher order.

+
− ka

1−k +−

∫
1-k +

−
− ks +− X

∫vin x3 εv x2 v′

∫
XX

x1qv′

ω′ω′

k

(a)

+
−

ka +−

∫
1-k +

−
− ks +− X

∫vin x3 εv x2 v′

∫
XX

x1qv′

ω′ω′

(b)

+
−
− ks +− X

∫vin εv x2 v′

∫
XX

x1qv′

ω′ω′

∫
k

x3

(c)

Fig. 6. Configurations based on SOGI: a) general case, b) kr = 0, and c)
ki = 0.

B. Performance with a distorted input

In this scenario, the input voltage also contains the third-
order and fifth-order harmonics as shown in Fig. 8a and is
expressed as

vin(t) = 120
√
2 sin(2π × 60× t) + 20

√
2 sin(2π × 180× t+ π/3)

+ 5
√
2 sin(2π × 300× t+ π/5) (18)

The performance of the generalized systems are shown in
Fig. 8b and Fig. 8c. As expected, the second-order system
cannot completely reject the harmonics and thus the outputs
are not purely sinusoidal. The generalized third-order system,
on the other hand, is able to generate two perfect sine and
cosine waveforms. This result verifies the benefits of the third-
order system over the second-order system in synchronization
under harmonic conditions.

IV. CONCLUSION

In summary, this paper presents the research on grid syn-
chronization based on the transfer function approach. By
utilizing this method, the generalized forms of the second-
order and third-order systems are derived. These transfer
function forms are more general and cover all the previous
forms in the literature. Based on these transfer functions, many
grid synchronization configurations have been constructed
and verified in the simulation. The results confirm that the
proposed second-order and third-order systems can be used for
synchronization under normal and distorted grid conditions.
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Fig. 7. Performance with a sinusoidal input voltage: a) the input voltage, b)
the second-order system outputs, and c) the third-order system outputs.
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