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A B S T R A C T

The real roots of the cubic and quartic polynomials are studied geometrically with the help of their respective
Siebeck–Marden–Northshield equilateral triangle and regular tetrahedron. The Viète trigonometric formulæ
for the roots of the cubic are established through the rotation of the triangle by variation of the free term of
the cubic. A very detailed complete root classification for the quartic 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 is proposed for
which the conditions are imposed on the individual coefficients 𝑎, 𝑏, 𝑐, and 𝑑. The maximum and minimum
lengths of the interval containing the four real roots of the quartic are determined in terms of 𝑎 and 𝑏. The
upper and lower root bounds for a quartic with four real roots are also found: no root can lie farther than
(
√

3∕4)
√

3𝑎2 − 8𝑏 from −𝑎∕4. The real roots of the quartic are localized by finding intervals containing at most
two roots. The end-points of these intervals depend on 𝑎 and 𝑏 and are roots of quadratic equations — which
makes this localization helpful for quartic equations with complicated parametric coefficients.

1. Introduction

Until the XIXth century, algebra was, effectively, nothing else but
theory of polynomial equations, reflecting the immense importance
of the research on the problem of determination of the roots of an
equation. Cubic equations have been known since Classical Antiquity.
The geometric problem of doubling the cube, the so-called Delian
problem, seen in book VII of Plato’s Republic, amounts to solving 𝑥3−2 =
0. The first recorded mention of quartic equations is in Pacioli’s Summa
de Arithmetica, Geometria, Proportioni e Proportionalità from 1494, while
Cardano’s Artis Magnæ, Sive de Regvlis Algebraicis, Liber Unus from
1545 shows how to find the roots of cubic and quartic equations. The
applications of cubic and quartic equations in all branches of science
are vast. For example, the description of a real gas with the van der
Waals model is achieved through a cubic polynomial in the volume and
the richer structure of the cubic allows the accommodation of phase
transitions. There are well over 200 real gas equations, many of which
are also cubic. The elastic waves propagating on the surface of solids,
the so-called Rayleigh waves, are also described by a cubic equation
(for the velocity profile). Quartic and quintic polynomials are used to
represent cost functions in economics. The Hodgkin–Huxley model in
mathematical neuroscience encounters a quartic for the quantitative
description of membrane currents, conduction, and excitation in nerves.
Quartic equations need to be solved for the description of the velocities
in equatorial wave–current interactions. In general relativity, through
the d’Inverno and Russel–Clark algorithms, the Petrov classification of

E-mail address: emil.prodanov@tudublin.ie.

the Weyl conformal curvature and the Plebański or Segre classification
of the Ricci tensor can be achieved by the classification of the roots
of a quartic equation whose coefficients are functions of the space–
time coordinates — through the components of the Riemann curvature
tensor.

Roots of polynomials could be sought by the use of bracketing
methods, yielding an upper limit on the number of real roots (such as
Descartes’ rule of signs and Newton’s rule of signs) or the number of real
roots on a prescribed interval (through Budan’s theorem and Sturm’s
theorem). These methods could be used for the real-root isolation
of polynomials: finding a set of intervals so that only one root is
contained in each of them. The bisection and regula falsi methods
also fall under this category as with these a root can be spotted on
an interval, while interpolation and iterative methods (such as the
Newton–Raphson method or the secant method) seek convergence to
a root by the repeated application of a particular technique.

The roots of cubic and quartic polynomials with integer coefficients
can be easily found with methods of numerical analysis or using strong
computing power. However, these fail when the polynomials contain
parameters, that is, for symbolic polynomials. Presented in this work
is a geometrical study of the roots of the symbolic cubic and symbolic
quartic polynomials with which new features are revealed. This is a
new bracketing method that allows one to find an improved Complete
Root Classification of the quartic, that is, determine first all possible
cases of the roots (real and complex) and list their multiplicities (the
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so-called Root Classification), followed by the determination of the
conditions which the coefficients of the equation must satisfy for each
case of the root classification. Geometrical methods for the study of
the roots of the symbolic cubic and symbolic quartic include the ‘‘split-
ting’’ of the polynomial into two parts and studying the ‘‘interaction’’
between them, namely, the intersection points of their curves [1–4].
The continuous variation of one of the equation coefficients allows
one to trace how the discriminant of the polynomial is affected and,
through this, determine the type of the roots and localize them — also
leading to Complete Root Classification. In [3], through the continuous
variation of the free term of a ‘‘split’’ cubic, a very detailed Complete
Root Classification of the symbolic cubic is obtained and the isolation
interval of each root is found in terms of simple functions of the
coefficients of the cubic or the roots of simple quadratic equation,
while in [2], through a similar variation of the free term of a symbolic
quartic, a two-tier root classification is obtained, together with the
determination of the root isolation intervals by solving some auxiliary
cubic or quadratic equations. The root classification for the quartic is
also based on simple conditions on the individual coefficients and the
end-points of the root isolation intervals are roots of cubic or quadratic
polynomials. Rees [5] shows that the discriminant of a monic quartic is
256 times the product of the ordinates of the turning points of the graph
and ‘‘splitting’’ the depressed cubic as 𝑥4 + 𝑞𝑥2 + 𝑠 = −𝑟𝑥 allows one
to obtain a Complete Root Classification by realizing that the turning
points of the original quartic correspond to those points of the curve on
the left-hand side at which the tangent is parallel to the line 𝑦 = −𝑟𝑥.
However, the conditions for each case of the Root Classification involve
the determination of the sign of the quartic discriminant and in case of
symbolic polynomials, this is not an easy task.

Viète [6] and Descartes [7] first related the case of three real roots
of a cubic polynomial (the casus irreducibilis) to circle geometry [8]. The
symbolic cubic polynomial 𝑥3+𝑎𝑥2+𝑏𝑥+𝑐 with three real roots (not all
equal) is associated with an equilateral triangle, the Siebeck–Marden–
Northshield triangle [9–16], the vertices of which have 𝑥-coordinate
projections equal to the roots of the cubic. The centroid of the triangle
is at the 𝑥-coordinate projection of the inflection point −𝑎∕3 of the cubic
and the inscribed circle crosses the abscissa at the 𝑥-coordinate projec-
tions of the stationary points of the cubic. The radius of the inscribed
circle is (2∕3)

√

𝑎2 − 3𝑏, hence a necessary condition for the existence
of the Siebeck–Marden–Northshield triangle (or three real roots of the
cubic) is 𝑏 < 𝑎2∕3. If, additionally, the free term 𝑐 of the polynomial
is between the roots of a specific quadratic equation, then one has a
necessary and sufficient condition for three real roots of the cubic. This
makes the study of the real roots easier than when considering if the
cubic discriminant is positive. The variation of the free term results in
rotation of the Siebeck–Marden–Northshield triangle and from that a
relationship with Viète trigonometric formulæ for the roots of the cubic
is established.

On the other hand, a quartic polynomial with four real roots (not all
equal) is associated with a regular tetrahedron and its symmetries [9,
17–19]. The four real roots of the symbolic quartic 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑 are the 𝑥-coordinate projections of a regular tetrahedron in
R3. The inscribed sphere of this tetrahedron projects onto an interval
with endpoints given by the 𝑥 coordinates of the two inflection points
of the quartic. The equilateral triangle in the 𝑥𝑦-plane around that
sphere is exactly the Siebeck–Marden–Northshield triangle for the cubic
polynomial 4𝑥3 + 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐 and its vertices project onto the 𝑥
coordinates of the stationary points of the quartic. The continuous
variation of the free term of the quartic allows one to trace how
the discriminant of the quartic changes sign and, from there, get the
nature of the roots. This discriminant is cubic in the free term and the
discriminant of this cubic is very simple. This allows the presentation
of a very detailed complete root classification of the quartic with
all possible cases listed (e.g. two pairs of equal real roots) and the
conditions for these cases are conditions on the individual coefficients
of the polynomial. Some further new results are also reported here:

(i) the maximum and minimum lengths of the interval containing the
four real roots of the quartic are determined — the roots lie in an
interval of length between (

√

2∕2)
√

3𝑎2 − 8𝑏 and (
√

3∕3)
√

3𝑎2 − 8𝑏; (ii)
it is shown that a quartic with four real roots cannot have a root
greater than −𝑎∕4 + (

√

3∕4)
√

3𝑎2 − 8𝑏 and cannot have a root smaller
than −𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏; (iii) the real roots of the quartic are
localized by finding intervals containing at most two roots and the end-
points of these intervals depend on 𝑎 and 𝑏 and are roots of quadratic
equations — which makes this localization helpful for quartic equations
with complicated parametric coefficients. The first steps towards the
complete root classification for the quintic equation are also provided.

2. The Siebeck–Marden–Northshield triangle and Viète’s trigono-
metric formulæ for the roots of the cubic

2.1. The Siebeck–Marden–Northshield triangle

Due to the Siebeck–Marden–Northshield theorem [10–16], if the
cubic polynomial 𝑝3(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 has three real roots
𝑥1, 𝑥2, and 𝑥3, not all of which equal, these can be found geometri-
cally as the 𝑥-coordinate projections of the vertices (𝑥1, (𝑥2 − 𝑥3)∕

√

3),
(𝑥2, (𝑥3 − 𝑥1)∕

√

3), and (𝑥3, (𝑥1 − 𝑥2)∕
√

3) of an equilateral triangle —
the Siebeck–Marden–Northshield triangle.

The inscribed circle of this triangle is centred at 𝑥 = −𝑎∕3, the
𝑥-coordinate projection of the inflection point of 𝑝3(𝑥), while the inter-
section points of the inscribed circle with the 𝑥-axis are the 𝑥-coordinate
projections of the critical points 𝜇1,2 = −𝑎∕3±(1∕3)

√

𝑎2 − 3𝑏 of the cubic
polynomial. Thus, the radius of the inscribed circle is 𝑟 = (1∕3)

√

𝑎2 − 3𝑏
and the radius of the circumscribed circle is 2𝑟 = (2∕3)

√

𝑎2 − 3𝑏.
Each side 𝑙 of the Siebeck–Marden–Northshield triangle is equal to
(
√

12∕3)
√

𝑎2 − 3𝑏 — see Fig. 1.
Instead of requesting a non-negative discriminant 𝛿3 of the cubic

polynomial to ensure three real roots, one can find another necessary
and sufficient condition for their existence.

Theorem 1. The necessary and sufficient condition for three real roots
of the cubic 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is 𝑎2 − 3𝑏 > 0 and −2𝑎3∕27 + 𝑎𝑏∕3 −
(2∕27)

√

(𝑎2 − 3𝑏)3 ≤ 𝑐 ≤ −2𝑎3∕27 + 𝑎𝑏∕3 + (2∕27)
√

(𝑎2 − 3𝑏)3 [3,16].

Proof. Clearly, 𝑎2 −3𝑏 > 0 is a necessary condition for the existence of
the Siebeck–Marden–Northshield triangle — as this ensures that 𝑝3(𝑥)
will have two distinct critical points. But 𝑝3(𝑥) will not necessarily have
three real roots in this case.

Consider the discriminant

𝛿3 = −27𝑐2 + (18𝑎𝑏 − 4𝑎3)𝑐 + 𝑎2𝑏2 − 4𝑏3 (1)

of 𝑝3(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐.
It is quadratic in 𝑐 and the discriminant of this quadratic is

𝛿2 = 16(𝑎2 − 3𝑏)3. (2)

As 𝑎2 − 3𝑏 > 0, one has 𝛿2 > 0 and thus 𝛿3(𝑐) ≥ 0 for 𝑐2 ≤ 𝑐 ≤ 𝑐1, where
𝑐1,2 are the two distinct real roots (distinct, since 𝛿2 > 0) of 𝛿3(𝑐) = 0:

𝑐1,2(𝑎, 𝑏) = 𝑐0 ± 2
27

√

(𝑎2 − 3𝑏)3, (3)

where

𝑐0(𝑎, 𝑏) = − 2
27

𝑎3 + 1
3
𝑎𝑏. (4)

Hence, the cubic polynomial 𝑝(𝑥) = 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 with 𝑎2 − 3𝑏 > 0
and 𝑐2 ≤ 𝑐 ≤ 𝑐1 has three real roots.

Note that if 𝑎2 − 3𝑏 > 0 and 𝑐 = 𝑐1,2, then the cubic will have a
double real root and single real root. If 𝑎2 − 3𝑏 > 0 and 𝑐2 < 𝑐 < 𝑐1, the
three real roots will be distinct. Finally, if 𝑎2 = 3𝑏, then the cubic will
have a triple real root −𝑎∕3 if 𝑐 = 𝑎3∕27, for any other value of 𝑐, cubic
with 𝑎2 = 3𝑏 will have a single real root. □
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Fig. 1. The Siebeck–Marden–Northshield triangle and its rotation upon variation of 𝑐.

Theorem 2. The maximum length of the interval containing the three real
roots of the cubic 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 is

√

12𝑟 = (
√

12∕3)
√

𝑎2 − 3𝑏 = 𝑙 and
this is achieved when 𝑎2 − 3𝑏 > 0 and 𝑐 = 𝑐0 ∈ [𝑐2, 𝑐1]. The minimum
length of this interval is 3𝑟 =

√

𝑎2 − 3𝑏, occurring when 𝑎2 − 3𝑏 > 0 and
𝑐 = 𝑐1,2 [3,16].

Proof. The roots of the cubic 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 , with 𝑎2 − 3𝑏 > 0 and
𝑐 = 𝑐0 = −2𝑎3∕27 + 𝑎𝑏∕3 are 𝜈1,3 = −𝑎∕3 ± 𝑙∕2 = −𝑎∕3 ± (

√

3∕3)
√

𝑎2 − 3𝑏
and 𝜈2 = −𝑎∕3. Note that 𝜈1,3 are symmetric with respect to the centroid
−𝑎∕3 (point 𝐻 on Fig. 1) of the Siebeck–Marden–Northshield triangle
onto which the middle root projects. The 𝑦-coordinates of the vertices
of the Siebeck–Marden–Northshield triangle, which project onto the
biggest and smallest roots, are both equal to (

√

3∕3)
√

𝑎2 − 3𝑏, that is,
the triangle has a side parallel to the abscissa. In Fig. 1, this is the
triangle 𝑀0𝑁0𝑃0 with 𝑀0𝑃0 parallel to the 𝑥-axis. The centroid of the
Siebeck–Marden–Northshield triangle is at point 𝐻 and the angle which
𝑃0𝐻 forms with the abscissa is 𝜋∕6. The distance between the roots 𝜈3
and 𝜈1 is exactly equal to 𝑙 =

√

12𝑟 = (
√

12∕3)
√

𝑎2 − 3𝑏.
The roots of the cubic 𝑥3+𝑎𝑥2+𝑏𝑥+ 𝑐 , with 𝑎2−3𝑏 > 0 and 𝑐 = 𝑐1,2

are the double root 𝜇1,2 = −𝑎∕3± 𝑟 = −𝑎∕3± (1∕3)
√

𝑎2 − 3𝑏 (points 𝐾∕𝐽
on Fig. 1), which are roots to 𝑝′3(𝑥) = 3𝑥2 + 2𝑎𝑥 + 𝑏 = 0, and the single
root 𝜉1,2 = −𝑎−2𝜇1,2 = −𝑎∕3∓2𝑟 = −𝑎∕3∓(2∕3)

√

𝑎2 − 3𝑏 (points 𝑀1∕𝑃2).
In these cases, the respective equilateral triangles have a side per-

pendicular to the abscissa: these are 𝑀1𝑁1𝑃1 with 𝑃1𝑁1 ⊥ 𝑂𝑥, when
𝑐 = 𝑐1, and 𝑀2𝑁2𝑃2 with 𝑀2𝑁2 ⊥ 𝑂𝑥, when 𝑐 = 𝑐2 — see Fig. 1. This
yields the shortest possible interval, containing the three real roots of
the cubic (one of which is repeated). It is equal to the height of Siebeck–
Marden–Northshield triangle or 3𝑟 =

√

𝑎2 − 3𝑏. The angle which 𝑃1𝐻
forms with the abscissa is 𝜋∕3 and the angle which 𝑃2𝐻 forms with the
abscissa is 0 (as 𝑃2 is on the 𝑥-axis).

For any other 𝑐 such that 𝑐2 ≤ 𝑐 ≤ 𝑐1, the three real roots of the
cubic lie within an interval of length between 3𝑟 and

√

12𝑟 ≈ 3.4641𝑟.
In Fig. 1, these roots are represented by 𝑀𝑁𝑃 — the vertices of the
general Siebeck–Marden–Northshield triangle. The angle 𝜃, which 𝑃𝐻
forms with the 𝑥-axis, satisfies 0 ≤ 𝜃 ≤ 𝜋∕3. Note that 𝑐 = 𝑐2 corresponds
to 𝜃 = 0; 𝑐 = 𝑐0 corresponds to 𝜃 = 𝜋∕6; and 𝑐 = 𝑐1 corresponds to
𝜃 = 𝜋∕3. □

2.2. Roles played by the coefficients of the cubic

The coefficient 𝑎 of the quadratic term of 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 selects
the centroid of the Siebeck–Marden–Northshield triangle. This is where
the inflection point of 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 projects onto the abscissa.

For any given 𝑎, the coefficients 𝑏 < 𝑎2∕3 of the linear term of
𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 determines the radius 𝑟 = (1∕3)

√

𝑎2 − 3𝑏 of the
inscribed circle (the triangle exists only for 𝑎2 − 3𝑏 > 0) and, hence,
the size of Siebeck–Marden–Northshield triangle. The inscribed circle
projects to an interval on the abscissa with endpoints equal to the
projections of the critical points of the cubic, the distance between
which is always 2𝑟 = (2∕3)

√

𝑎2 − 3𝑏 — the radius of the circumscribed
circle. The inflection point of the cubic is always in the middle between
the two critical points. For 𝑎2 − 3𝑏 > 0, the variation of the free term
𝑐 of 𝑥3 + 𝑎𝑥2 + 𝑏𝑥 + 𝑐 rotates the Siebeck–Marden–Northshield triangle
counterclockwise from the position of 𝑀2𝑁2𝑃2, when 𝑐 = 𝑐2 (𝜃 = 0),
through that of 𝑀0𝑁0𝑃0, when 𝑐 = 𝑐0 (𝜃 = 𝜋∕6), up to that of 𝑀1𝑁1𝑃1,
when 𝑐 = 𝑐1 (𝜃 = 𝜋∕3).

Theorem 3. If the cubic 𝑥3+𝑎𝑥2+𝑏𝑥+𝑐 has three real roots, then no root
is greater than −𝑎∕3 + 2𝑟 = −𝑎∕3 + (2∕3)

√

𝑎2 − 3𝑏 and no root is smaller
than −𝑎∕3 − 2𝑟 = −𝑎∕3 − (2∕3)

√

𝑎2 − 3𝑏.

Proof. Three real roots of the cubic exist if 𝑎2 −3𝑏 > 0 and 𝑐2 ≤ 𝑐 ≤ 𝑐1.
The 𝑥-coordinate projections of the three real roots are between 𝜉1 and
𝜉2 — points 𝑀1 and point 𝑃2, respectively, in Fig. 1. When 𝑐 = 𝑐2,
the biggest of the three roots is given by 𝜉2 = −𝑎∕3 + 2𝑟 = −𝑎∕3 +
(2∕3)

√

𝑎2 − 3𝑏 (point 𝑃2 on Fig. 1). The other two roots in this case are
both equal to 𝜇2 = −𝑎∕3−(1∕3)

√

𝑎2 − 3𝑏 (point 𝐽 ). Increasing 𝑐 from 𝑐2
towards 𝑐1 results in the rotation of the Siebeck–Marden–Northshield
triangle around its centroid and, for any 𝑐 such that 𝑐2 ≤ 𝑐 ≤ 𝑐1, the
biggest of the three real roots will have 𝑥 coordinate projection between
𝜇1 and 𝜉2 (points 𝐾 and 𝑃2, respectively). Hence, no root can lie further
than −𝑎∕3 + (2∕3)

√

𝑎2 − 3𝑏.
Similarly, the smallest of the three real roots is between 𝜉1 = −𝑎∕3−

2𝑟 = −𝑎∕3− (2∕3)
√

𝑎2 − 3𝑏 and 𝜇2 = −𝑎∕3− (1∕3)
√

𝑎2 − 3𝑏 — points 𝑀1
and 𝐽 , respectively. When 𝑐 = 𝑐1, the smallest root is exactly equal to
𝜉1 = −𝑎∕3 − (2∕3)

√

𝑎2 − 3𝑏 and the other two roots are both equal to
𝜇1 = −𝑎∕3+ (1∕3)

√

𝑎2 − 3𝑏. For any 𝑐 such that 𝑐2 ≤ 𝑐 ≤ 𝑐1, the smallest
of the three real roots will have 𝑥 coordinate projection between 𝜉1 and
𝜇2 (points 𝑀1 and 𝐽 , respectively). Hence, no root can be smaller than
−𝑎∕3 − (2∕3)

√

𝑎2 − 3𝑏. □

2.3. Relationship to the Viète trigonometric formulæ for the roots of the
cubic

Under the coordinate translation 𝑥 → 𝑥 + 𝑎∕3, the centroid of
the Siebeck–Marden–Northshield triangle gets at the origin of the new
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coordinate system (this also depresses the cubic). It is straightforward
to determine the 𝑥-coordinate projections of the vertices of the triangle
in this new coordinate system and hence find that the real roots of the
cubic are given by:

𝑥1=−
𝑎
3

+ 2
3

√

𝑎2 − 3𝑏 cos 𝜃, (5)

𝑥2=−
𝑎
3

− 2
3

√

𝑎2 − 3𝑏 cos
(

𝜃 + 𝜋
3

)

, (6)

𝑥3=−
𝑎
3

− 2
3

√

𝑎2 − 3𝑏 cos
(

𝜃 − 𝜋
3

)

. (7)

These are the Viète trigonometric formulæ for the real real roots of the
cubic.

One can verify that the Viète formulæ 𝑥1 + 𝑥2 + 𝑥3 = −𝑎 and
𝑥1𝑥2 + 𝑥2𝑥3 + 𝑥1𝑥3 = 𝑏 are immediately satisfied. Due to the third Viète
formula, the product of the three roots is −𝑐. Thus one obtains

𝑐 = − 2
27

𝑎3 + 1
3
𝑎𝑏 − cos(3𝜃) 2

27

√

(𝑎2 − 3𝑏)3 (8)

and from this, one easily gets that the angle 𝜃 of rotation of the
Siebeck–Marden–Northshield triangle around its centroid is

𝜃 = 1
3
arccos

[

−2𝑎3 − 9𝑎𝑏 + 27𝑐
2
√

(𝑎2 − 3𝑏)3

]

. (9)

Note that when 𝜃 = 0, formula (8) yields 𝑐 = 𝑐2; when 𝜃 = 𝜋∕6, one
gets 𝑐 = 𝑐0; and when 𝜃 = 𝜋∕3, from (8) one gets 𝑐 = 𝑐1. That is, the
expression in the square brackets above takes continuous values from
−1 (when 𝑐 = 𝑐1), through 0 (when 𝑐 = 𝑐0), to 1 (when 𝑐 = 𝑐2).

When 𝑎2 − 3𝑏 > 0, but 𝑐 ∉ [𝑐2, 𝑐1], the value of the expression in the
square brackets of (9) has absolute value greater than 1. In this case,
𝜃 is a complex number (purely imaginary, if 𝑐 < 𝑐2). However, (5)–(7)
still produce the roots of the cubic – with only one of them real and
the other two – complex-conjugates of each other.

When 𝑎2−3𝑏 < 0, there will again be only one real root and a pair of
complex-conjugate roots. However, formulæ (5)–(7) no longer work. 𝜃
is again a complex number. One needs to get the roots, symmetric to
those in (5)–(7) with respect to the 𝑦-axis in the 𝑥 → 𝑥+𝑎∕3 coordinate
system:

𝑥1=−
𝑎
3

− 2
3

√

𝑎2 − 3𝑏 cos 𝜃, (10)

𝑥2=−
𝑎
3

+ 2
3

√

𝑎2 − 3𝑏 cos
(

𝜃 + 𝜋
3

)

, (11)

𝑥3=−
𝑎
3

+ 2
3

√

𝑎2 − 3𝑏 cos
(

𝜃 − 𝜋
3

)

. (12)

In this case, one has 𝑥1+𝑥2+𝑥3 = −𝑎 and 𝑥1𝑥2+𝑥2𝑥3+𝑥1𝑥3 = 𝑏 again,
while

−𝑥1𝑥2𝑥3 = 𝑐 = − 2
27

𝑎3 + 1
3
𝑎𝑏 + cos(3𝜃) 2

27

√

(𝑎2 − 3𝑏)3. (13)

2.4. Isolation intervals of the roots of the cubic

From the Siebeck–Marden–Northshield triangle, one can immedi-
ately read geometrically the isolation intervals of the three real roots
of the cubic. These are as follows [3,16]:

(i) For 𝑐2 ≤ 𝑐 ≤ 𝑐0 ∶ 𝜈3 ≤ 𝑥3 ≤ 𝜇2, 𝜇2 ≤ 𝑥2 ≤ −𝑎∕3, and
𝜈1 ≤ 𝑥1 ≤ 𝜉2.

(ii) For 𝑐0 ≤ 𝑐 ≤ 𝑐1 ∶ 𝜉1 ≤ 𝑥3 ≤ 𝜈3, −𝑎∕3 ≤ 𝑥2 ≤ 𝜇1, and
𝜇1 ≤ 𝑥1 ≤ 𝜈1.

3. Nature of the roots of the quartic equation

It has been long since the complete root classification for the
quartic equation was established — in 1861, Cayley [20] used the
Sturmian constants (the leading coefficients in the Sturm functions
modulo positive multiplicative factors) for the quartic (in binomial
form) to achieve this. In this work, Cayley also proposed the Complete
Root Classification for the cubic equation.

For the monic quartic polynomial

𝑝4(𝑥) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑, (14)

the sequence of Sturm functions for 𝑝4(𝑥) are [21]: 𝜋0(𝑥) = 𝑝4(𝑥), 𝜋1(𝑥) =
𝑝′4(𝑥), 𝜋𝑖(𝑥) = rem[𝜋𝑖−2(𝑥)∕𝜋𝑖−1(𝑥)] (𝑖 = 2, 3, 4) — the remainder of the
division of the polynomial 𝜋𝑖−2(𝑥) by the polynomial 𝜋𝑖−1(𝑥).

The Sturmian constants for 𝑝4(𝑥) are: 𝑆0 = 1, 𝑆1 = 1, 𝑆3 = 3𝑎2 −8𝑏,
𝑆4 = −3𝑎3𝑐 + (𝑏2 − 6𝑑)𝑎2 + 14𝑎𝑏𝑐 − 4𝑏3 + 16𝑏𝑑 − 18𝑐2, and 𝑆5 = 𝛥 — the
discriminant of the quartic:

𝛥=256 𝑑3 + (−27𝑎4 + 144𝑎2𝑏 − 192𝑎𝑐 − 128𝑏2) 𝑑2

+ 2 (9𝑎3𝑏𝑐 − 2𝑎2𝑏3 − 3𝑎2𝑐2 − 40𝑎𝑏2𝑐 + 8𝑏4 + 72𝑏𝑐2) 𝑑

− 4𝑎3𝑐3 + 𝑎2𝑏2𝑐2 + 18𝑎𝑏𝑐3 − 4𝑏3𝑐2 − 27𝑐4. (15)

The number of real roots of 𝑝4(𝑥) is equal to the excess of the number
of variations of sign in the sequence of 𝜋𝑗 (𝑥) at −∞ over the number
of variations of sign of these at +∞ (with vanishing terms ignored).
Denoting in round brackets the sequence of the signs of the Sturm
functions 𝜋𝑗 (𝑥) at +∞ and in square brackets — those at −∞, one
has [20]:

(i) (+ + + + +), [+ − + − +] — four real roots.
(ii) (+ + − + +), [+ − − − +] — no real roots.

(iii) (+ + + − +), [+ − + + +] — no real roots.
(iv) (+ + − − +), [+ − − + +] — no real roots.
(v) (+ + + + −), [+ − + − −] — two real roots.

(vi) (+ + − + −), [+ − − − −] — cannot occur (impossible to have
𝑆3 < 0, 𝑆4 > 0, and 𝑆5 = 𝛥 < 0).

(vii) (+ + + − −), [+ − + + −] — two real roots.
(viii) (+ + − − −), [+ − − + −] — two real roots.

It is clear from this complete root classification, that a positive discrim-
inant of the quartic is associated with either four real roots or no real
roots, while a negative one — with two real roots.

In 1908, Petrovich [22] proposed a very interesting approach for
finding a necessary and sufficient condition for the reality of all roots
of a polynomial with real coefficients, 𝑎0+𝑎1𝑧+⋯+𝑎𝑝𝑧𝑝, together with
the roots of any polynomial composed of the set of any number of its
first terms, i.e. 𝑎0 + 𝑎1𝑧 +⋯ + 𝑎𝑛𝑧𝑛, 𝑛 ≤ 𝑝.

The Sturm method allows the immediate determination of the na-
ture of the roots of a polynomial as, from the given coefficients, one can
immediately determine the Sturm functions and hence establish their
sequences of signs at +∞ and −∞.

However, one would pose the following, in some sense, inverse,
problem: would it be possible to ‘‘reverse-engineer ’’ a quartic, with a
priori specified nature of its roots, by working at the level of the
individual coefficients of the polynomial, that is, by knowing how
to choose the coefficients of the quartic suitably [and not by merely
expanding (𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4) in which the roots 𝑥𝑖 are
chosen]? In this work, an alternative method is proposed with which
not only complete root classification of the quartic is made (in the
following Section), but also allows one to ‘‘reverse-engineer ’’ quartics.
For example, could a quartic with 𝑎 = 5 have four real roots? (The
answer is yes.) And, if 𝑎 = 5, what should 𝑏, 𝑐, and 𝑑 sequentially
be so that the quartic will have four real roots? Indeed, a cubic (with
guaranteed three real roots in this case) has to be solved in the process
in order to achieve this, but the Viète trigonometric formulæ for the
roots of the cubic are quite easy to apply (as in the previous Section).

The discriminant of a monic polynomial of degree 𝑛 is ∏𝑖<𝑗 (𝑥𝑖−𝑥𝑗 )2,
where 𝑥𝑖 are all 𝑛 roots (real or complex) of the polynomial.

If the discriminant is positive, then, obviously, the number of com-
plex roots of the polynomial is a multiple of 4. If the discriminant is
negative, then there are 2 𝑚+1 pairs of complex-conjugate roots, where
𝑚 ≤ (𝑛 − 2)∕4.

If the quartic 𝑝4(𝑥) has a positive discriminant 𝛥, there are either
four real roots or there are two pairs of complex-conjugate roots. On
the other hand, if 𝛥 is negative, then the quartic has two real roots
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Fig. 2. Quartic polynomials with three stationary points.

and a pair of complex-conjugate roots. Vanishing discriminant means a
repeated real root (of multiplicity 2, 3, or 4) or a repeated complex root
(of multiplicity 2). One can find criteria to determine which of these
three cases (zero, two, or four real roots) applies by deriving conditions
on the coefficients of the quartic, rather than studying the discriminant
𝛥 alone.

The polynomial 𝑝4(𝑥) can be viewed as an element of congruence of
quartic polynomials {𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝐷 | 𝐷 ∈ R}, the graphs of
which foliate the 𝑥𝑦-plane by the continuous variation of the foliation
parameter 𝐷 — the free term. All polynomials in the congruence have
the same set of stationary points 𝑀𝑖 — the roots of the polynomial
𝑝′4(𝑥) = 4𝑥3 + 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐. The stationary points of 𝑝4(𝑥) are either
a single global minimum [when 𝑝′4(𝑥) has a single real root or a treble
real root], or a local maximum, sandwiched by two local minima [when
𝑝′4(𝑥) has three distinct real roots], or a saddle and a global minimum
[when 𝑝′4(𝑥) has a double real root and a single real root] — as these
are the determined by finding the roots of a cubic. Quartic polynomials
with one stationary point can have either no real roots or two real
roots, while the rest can have zero, two, or four real roots. Within this
congruence of quartic polynomials, there are either one or three (not
necessarily all different in the latter case) polynomials

𝑃 (𝑖)
4 (𝑥) = 𝑝4(𝑥) − 𝑝4(𝑀𝑖), (16)

for which the abscissa is tangent to their graph at the stationary point
𝑀𝑖. Each polynomial 𝑃 (𝑖)

4 (𝑥) has a zero discriminant as each one of them
has (at least one) at least double real root. These polynomials are shown
in Fig. 2 (for the case of polynomials with three distinct stationary
points) and in Fig. 3 (for those with a single stationary point).

When the free term 𝑑 of 𝑝4(𝑥) is large enough, the quartic will have
no real roots and, for as long as the free term 𝑑 satisfies 𝑑 > 𝑝4(𝑀𝑖) for
all 𝑖, the graph of this polynomial will lie entirely in the upper half-
plane and there will be no real roots — these are the polynomials in
the band above the uppermost solid curve on Fig. 2 and those above
the single solid curve on Fig. 3. Hence the band of polynomials whose
graphs lie above the (uppermost) solid curve in Figs. 2 and 3 all have
positive discriminants.

If the free term 𝑑 of 𝑝4(𝑥) is less than the smallest of 𝑝4(𝑀𝑖), but
larger than the other two values of 𝑝4(𝑀𝑖), if these exist, then the graph
of this quartic will cross the abscissa twice. Hence, all polynomials
in this band (bounded by the two uppermost solid curves in Fig. 2)
will have two real roots and a negative discriminant. One should note
however that in the case of a quartic polynomial with two double real
roots (not shown in Fig. 2), when 𝑑 is less than the two equal smallest
values of 𝑝4(𝑀𝑖) (at the two minima), but greater than the value of 𝑝4(𝑥)

at the maximum, there will be four real roots: the discriminant will not
become negative, but will ‘‘bounce back’’ from zero.

If the free term 𝑑 is less than 𝑝4(𝑀𝑖) at the two minima, but greater
than the value of 𝑝4(𝑥) at the maximum, there will be four real roots
and all polynomials in this band (bounded by the two lowermost solid
curves on Fig. 2) will be with positive discriminants.

Finally, if 𝑑 is smaller than all 𝑝4(𝑀𝑖), then the polynomial will
have two real roots and a negative discriminant — the band below the
lowermost curve on Fig. 2.

Clearly, with the variation of the free term, the discriminant of the
quartic changes sign three times (in case of three distinct stationary
points) or once (in case of either a single global minimum or a saddle
and a global minimum). This is indicative of the presence of a polyno-
mial cubic in 𝑑 and, indeed, the discriminant 𝛥 of the quartic [given
in (15)] is such polynomial [but it is quartic with respect to any other
coefficient of 𝑝4(𝑥)].

Consider the discriminant 𝛥3 of this cubic in 𝑑. It has a very simple
form:

𝛥3 = −314928 (𝑎3 − 4𝑎𝑏 + 8𝑐)2
[

4𝑐2 + 𝑎(𝑎2 − 4𝑏)𝑐 − 1
3
𝑏2

(

𝑎2 − 32
9
𝑏
)]3

.

(17)

The sign of the discriminant 𝛥3 and hence, the number of roots of the
cubic in 𝑑 equation 𝛥(𝑑) = 0, depend on the sign of the term in the
square brackets. The discriminant 𝛥3 could also be zero [leading to a
multiple root of 𝛥(𝑑) = 0] — either by virtue of 𝑐 = −𝑎3∕8 + 𝑎𝑏∕2 or
due to the term in the square brackets.

The term in the square brackets is quadratic in 𝑐. The discriminant
of this quadratic is also very simple:

𝛥2 =
1
27

(3𝑎2 − 8𝑏)3 (18)

and 𝛥2 is positive for 3𝑎2 − 8𝑏 > 0. In such case, the term in the
square brackets of 𝛥3 is negative when 𝑐 is between the roots 𝐶1,2 of
the quadratic 4𝑐2 + 𝑎(𝑎2 − 4𝑏)𝑐 − (𝑏2∕3) (𝑎2 − 32𝑏∕9), where

𝐶1,2 = 𝐶0 ±

√

3
72

√

(3𝑎2 − 8𝑏)3 (19)

and

𝐶0 = −1
8
𝑎3 + 1

2
𝑎𝑏. (20)

The discriminant 𝛥3, given by (17), can be written conveniently as

𝛥3 = −10077696 (𝑐 − 𝐶0)2 [(𝑐 − 𝐶1)(𝑐 − 𝐶2)]3. (21)
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Fig. 3. Quartic polynomials with a single stationary point.

Should 𝛥3 happen to be zero, either by virtue of 𝑐 = 𝐶0 or due to
𝑐 = 𝐶1,2 (the latter being real only when 𝑏 ≤ 3𝑎2∕8), then the cubic
equation 𝛥(𝑑) = 0 will have a repeated root, that is, either a double
real root 𝑑† and a single real root 𝑑, or a triple real root 𝑑. In either
case, the discriminant 𝛥(𝑑) of the quartic will change sign only once —
at 𝑑.

In the case of a triple root 𝑑, the quartic will have the form (𝑥−𝑥0)4

with 𝑥0 being a quadruple root.
If 𝑐 ≠ 𝐶0 and 𝑐 ≠ 𝐶1,2, the discriminant 𝛥(𝑑) of the quartic will not

be zero. It will have either 3 distinct roots 𝑑1 > 𝑑2 > 𝑑3 (in the case
of three stationary points of the quartic) or a single real root 𝑑0 (in the
case of a single stationary point (minimum) of the quartic).

In the case of three distinct real roots 𝑑1, 𝑑2, and 𝑑3 or a single real
root 𝑑0 of the discriminant 𝛥(𝑑), these can be easily found using the
Viète trigonometric formilæ (5)–(7):

𝑑1 = −𝐴
3

+ 2
3

√

𝐴2 − 3𝐵 cos𝛩, (22)

𝑑2 = −𝐴
3

− 2
3

√

𝐴2 − 3𝐵 cos
(

𝛩 + 𝜋
3

)

, (23)

𝑑3 = −𝐴
3

− 2
3

√

𝐴2 − 3𝐵 cos
(

𝛩 − 𝜋
3

)

, (24)

where:

𝐴 = 1
2

(

− 27
128

𝑎4 + 9
8
𝑎2𝑏 − 3

2
𝑎𝑐 − 𝑏2

)

, (25)

𝐵 = 1
16

( 9
8
𝑎3𝑏𝑐 − 1

4
𝑎2𝑏3 − 3

8
𝑎2𝑐2 − 5𝑎 𝑏2𝑐 + 𝑏4 + 9𝑏 𝑐2

)

, (26)

𝐶 = 1
64

(

−𝑎3𝑐3 + 1
4
𝑎2𝑏2𝑐2 + 9

2
𝑎𝑏𝑐3 − 𝑏3𝑐2 − 27

4
𝑐4
)

, (27)

and

𝜃 = 1
3

arccos

[

−2𝐴3 − 9𝐴𝐵 + 27𝐶
2
√

(𝐴2 − 3𝐵)3

]

= 1
3
arccos

⎡

⎢

⎢

⎣

√

(3𝑎2 − 8𝑏)−3

(243𝑎6 − 1944𝑎4𝑏 + 3456𝑎3𝑐 + 4032𝑎2𝑏2 − 13824𝑎𝑏𝑐 − 512𝑏3 + 13824𝑐2)3

×
(

19683𝑎12 − 314928𝑎10𝑏 + 419904𝑎9𝑐 + 1959552𝑎8𝑏2 − 5038848𝑎7𝑏𝑐

−5847552𝑎6𝑏3 + 3172608𝑎6𝑐2 + 21399552𝑎5𝑏2𝑐 + 8128512𝑎4𝑏4

−25380864𝑎4𝑏𝑐2 − 36274176𝑎3𝑏3𝑐 − 3833856𝑎2𝑏5 + 11943936𝑎3𝑐3

+55738368𝑎2𝑏2𝑐2 + 17694720𝑎𝑏4𝑐 − 262144𝑏6 − 47775744𝑎𝑏𝑐3

−17694720𝑏3𝑐2 + 23887872𝑐4
)

]

, (28)

provided that 𝐴2−3𝐵 = (1∕65536) (3𝑎2−8𝑏) (243𝑎6−1944𝑎4𝑏+3456𝑎3𝑐+
4032𝑎2𝑏2 − 13824𝑎𝑏𝑐 − 512𝑏3 + 13824𝑐2) is positive. The expression in
the last pair of parenthesis is quadratic in 𝑐 and its discriminant is

−55296(3𝑎2 − 8𝑏)3. Hence, if 3𝑎2 − 8𝑏 > 0, then this quadratic in 𝑐 is
positive. This, in turn, leads to 𝐴2 − 3𝐵 > 0. That is, 3𝑎2 − 8𝑏 > 0 is
a sufficient condition for 𝐴2 − 3𝐵 > 0. Depending on 𝐶 — whether
it lies in the closed interval between the roots −2𝐴3∕27 + 𝐴𝐵∕3 ±
(2∕27)

√

(𝐴2 − 3𝐵)3 or not, see (3), there will be either three distinct real
roots 𝑑1 > 𝑑2 > 𝑑3 or a single real root (denoted by 𝑑0), respectively.

However, if 𝐴2−3𝐵 < 0, then, in order to determine the roots of the
cubic equation 𝛥(𝑑) = 0, one should use the Viète formulæ (22)–(24)
with the signs in front of the radicals inverted — as in (10)–(12). Only
one of these roots, denote it by 𝑑0 again, will be real.

4. Complete root classification for the quartic

In the literature, the term Root Classification refers to the determi-
nation of all possible cases of the polynomial roots (real and complex)
and it consists of a list of the root multiplicities. The Complete Root Clas-
sification of parametric polynomials consists of the Root Classification,
together with the conditions which the equation coefficients should
satisfy for each case of the root classification — see, for example, [23].

With the results obtained in the preceding section, one can now
present the Complete Root Classification of the quartic 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 +
𝑐𝑥 + 𝑑. For any 𝑎, one has:

(i) 𝒃 > 𝟖𝒂𝟐∕𝟑, 𝒄 ≠ 𝑪𝟎, 𝒅 > 𝒅𝟎—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

In this case, 𝛥3 < 0. Thus, the discriminant 𝛥(𝑑) of the quartic has
only one real root 𝑑0. The quartic has one stationary point and
positive discriminant 𝛥. There are no real roots. Fig. 3 applies —
dotted curve.

(ii) 𝒃 > 𝟖𝒂𝟐∕𝟑, 𝒄 ≠ 𝑪𝟎, 𝒅 = 𝒅𝟎—𝐭𝐰𝐨 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

In this case, one again has 𝛥3 < 0 and the discriminant 𝛥(𝑑)
of the quartic having only one real root 𝑑0. The quartic has one
stationary point and zero discriminant 𝛥. There are two equal real
roots, but not a quadruple root as 𝑏 ≠ 8𝑎2∕3. Fig. 3 applies —
solid curve.

(iii) 𝒃 > 𝟖𝒂𝟐∕𝟑, 𝒄 ≠ 𝑪𝟎, 𝒅 < 𝒅𝟎—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

Again, one has 𝛥3 < 0 and the discriminant 𝛥(𝑑) of the quartic
having only one real root 𝑑0. The quartic has one stationary point
and negative discriminant 𝛥. There are two distinct real roots.
Fig. 3 applies — dashed curve.



Journal of Computational Science 73 (2023) 102123

7

E.M. Prodanov

(iv) 𝒃 > 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 > 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

When 𝑐 = 𝐶0, one has 𝛥3 = 0. Thus, the discriminant 𝛥(𝑑) of the
quartic either has a repeated real root 𝑑† and a single real root 𝑑
(it may also have a treble real root 𝑑). The discriminant 𝛥(𝑑) of
the quartic changes sign only once (at 𝑑) and, hence, the quartic
has one stationary point and positive discriminant 𝛥, except for
𝑑 = 𝑑†, where the discriminant 𝛥 is zero. There are no real roots
(if 𝑑 = 𝑑†, there are two double complex roots). Fig. 3 applies —
dotted curve.

(v) 𝒃 > 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 = 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐭𝐰𝐨 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

One again has 𝛥3 = 0 as 𝑐 = 𝐶0. The quartic has zero discriminant
𝛥. There are two equal real roots. Fig. 3 applies — solid curve.

(vi) 𝒃 > 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 < 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

Again, as 𝑐 = 𝐶0, one has 𝛥3 = 0. The quartic now has negative
discriminant 𝛥. There are two distinct real roots. Fig. 3 applies —
dashed curve.

(vii) 𝒃 = 𝟖𝒂𝟐∕𝟑, 𝒄 ≠ 𝑪𝟎 = 𝒂𝟑∕𝟏𝟔, 𝒅 > 𝒅𝟎—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

When 𝑏 = 8𝑎2∕3 and 𝑐 ≠ 𝐶0 = 𝑎3∕16 , one has 𝛥3 =
−19683(𝑎3 −16𝑐)8∕65536 < 0. Thus, the discriminant 𝛥(𝑑) of the
quartic has only one real root 𝑑0. The quartic has one stationary
point and positive discriminant 𝛥. There are no real roots. Fig. 3
applies — dotted curve.

(viii) 𝒃 = 𝟖𝒂𝟐∕𝟑, 𝒄 ≠ 𝑪𝟎 = 𝒂𝟑∕𝟏𝟔, 𝒅 = 𝒅𝟎—𝐭𝐰𝐨 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The situation is the same as the one in case (vii) with the only
difference that this time the quartic has zero discriminant 𝛥. There
are two equal real roots. Fig. 3 applies — solid curve.

(ix) 𝒃 = 𝟖𝒂𝟐∕𝟑, 𝒄 ≠ 𝑪𝟎 = 𝒂𝟑∕𝟏𝟔, 𝒅 < 𝒅𝟎—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

Same situation as in cases (vii) and (viii), with the difference
that the quartic now has negative discriminant 𝛥. There are two
distinct real roots. Fig. 3 applies — dashed curve.

(x) 𝒃=𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎=𝒂𝟑∕𝟏𝟔, 𝒅 > 𝒅𝟎 = 𝒂𝟒∕𝟐𝟓𝟔—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

When 𝑏 = 8𝑎2∕3 and 𝑐 = 𝐶0 = 𝑎3∕16, one has 𝛥3 = 0 and the
discriminant 𝛥(𝑑) of the quartic being a complete cube: 𝛥(𝑑) =
−(𝑎4 − 256𝑑)3∕65536, that is, there is a triple root 𝑑0 = 𝑎4∕256.
With 𝑑 > 𝑑0, the quartic has one stationary point and positive
discriminant 𝛥. There are no real roots. Fig. 3 applies — dotted
curve.

(xi) 𝒃 = 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎 = 𝒂𝟑∕𝟏𝟔, 𝒅 = 𝒅𝟎 = 𝒂𝟒∕𝟐𝟓𝟔—𝐟𝐨𝐮𝐫 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥
𝐫𝐨𝐨𝐭𝐬−𝒂∕𝟒

The quartic in this case is (𝑥 + 𝑎∕4)4. It has one stationary point,
zero discriminant 𝛥 and quadruple root −𝑎∕4. Fig. 3 applies —
solid curve.

(xii) 𝒃 = 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎 = 𝒂𝟑∕𝟏𝟔, 𝒅 < 𝒅𝟎 = 𝒂𝟒∕𝟐𝟓𝟔—
𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

Same situation as in cases (x) and (xi), with the difference that the
quartic now has negative discriminant 𝛥. There are two distinct
real roots. Fig. 3 applies — dashed curve.

(xiii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄 < 𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅 > 𝒅𝟏—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

In this case, one has 𝛥3 > 0 and the discriminant 𝛥(𝑑) of the
quartic having three distinct real roots 𝑑1 > 𝑑2 > 𝑑3. With 𝑑 > 𝑑1,
the quartic has three stationary points and positive discriminant 𝛥.
There are no real roots. Fig. 2 applies — curves in the band above
the uppermost curve.

(xiv) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄 < 𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅 = 𝒅𝟏—
𝐭𝐰𝐨 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

This time the discriminant 𝛥(𝑑) of the quartic is zero. There are
two equal real roots (the abscissa is tangent to the quartic at one
of its minima). Fig. 2 applies — the uppermost curve.

(xv) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄 < 𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅𝟐 < 𝒅 < 𝒅𝟏—
𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

This time the discriminant 𝛥(𝑑) of the quartic is negative. There
are two distinct real roots. Fig. 2 applies — curves between the
two uppermost curves.

(xvi) 𝒃<𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄<𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅 = 𝒅𝟐—𝐟𝐨𝐮𝐫 𝐫𝐞𝐚𝐥
𝐫𝐨𝐨𝐭𝐬, 𝐭𝐰𝐨 𝐨𝐟 𝐰𝐡𝐢𝐜𝐡 (𝐭𝐡𝐞 𝐭𝐰𝐨 𝐥𝐚𝐫𝐠𝐞𝐬𝐭 𝐨𝐫 𝐭𝐡𝐞 𝐭𝐰𝐨 𝐬𝐦𝐚𝐥𝐥𝐞𝐬𝐭) 𝐚𝐫𝐞 𝐞𝐪𝐮𝐚𝐥

The quartic has zero discriminant 𝛥 again. There are four real
roots, two of which are equal (the abscissa is tangent to the quartic
at the other of its minima, see case xiv). Fig. 2 applies — the
second curve from the top.

(xvii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄 < 𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅𝟑 < 𝒅 < 𝒅𝟐—
𝐟𝐨𝐮𝐫 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The discriminant of the quartic is now positive. There are four
distinct real roots. Fig. 3 applies — the dashed curve.

(xviii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄 < 𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅 = 𝒅𝟑—
𝐟𝐨𝐮𝐫 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬, 𝐭𝐡𝐞 𝐦𝐢𝐝𝐝𝐥𝐞 𝐭𝐰𝐨 𝐨𝐟 𝐰𝐡𝐢𝐜𝐡 𝐚𝐫𝐞 𝐞𝐪𝐮𝐚𝐥

The quartic has zero discriminant 𝛥 again. There are four real
roots, with the middle two being equal (the abscissa is tangent to
the quartic at its local maximum). Fig. 2 applies — the lowermost
curve.

(xix) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝑪𝟐 < 𝒄 < 𝑪𝟏, 𝒄 ≠ 𝑪𝟎, 𝒅 < 𝒅𝟑—
𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The quartic has negative discriminant 𝛥 again. There are two
distinct real roots. Fig. 2 applies — curves below the lowermost
curve.

(xx) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟏,𝟐, 𝒅 > 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

When 𝑐 = 𝐶1 or 𝑐 = 𝐶2, one has 𝛥3 = 0. The discriminant 𝛥(𝑑)
of the quartic has a double real root 𝑑† and a single real root 𝑑
(it may also have a treble real root 𝑑). Thus it changes sign only
once — at 𝑑. The stationary points of the quartic are a global
minimum and a saddle (the latter to the right of the minimum if
𝑐 = 𝐶1 and to the left of it if 𝑐 = 𝐶2). When 𝑑 > 𝑑, the quartic
has a positive discriminant 𝛥(𝑑) and no real roots.

(xxi) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟏,𝟐, 𝒅 = 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐭𝐰𝐨 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

This time the quartic has a zero discriminant 𝛥(𝑑) and there
are two equal real roots. The abscissa is tangent to the graph at
the double root — the minimum. The saddle point is above the
abscissa.
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(xxii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟏,𝟐, 𝒅† < 𝒅 < 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅) 𝐚𝐧𝐝 𝒅† 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐨𝐮𝐛𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟 𝜟(𝒅)]—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The discriminant of the quartic is negative and there are two
distinct real roots. The minimum is below the 𝑥-axis, while the
saddle is above it.

(xxiii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟏,𝟐, 𝒅 = 𝒅† [𝐰𝐡𝐞𝐫𝐞 𝒅† 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐨𝐮𝐛𝐥𝐞 𝐫𝐨𝐨𝐭
𝐨𝐟 𝜟(𝒅)]—𝐟𝐨𝐮𝐫 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬, 𝐭𝐡𝐫𝐞𝐞 𝐨𝐟 𝐰𝐡𝐢𝐜𝐡 𝐞𝐪𝐮𝐚𝐥

The discriminant of the quartic is zero. There are four real roots
and three of them are equal. The quartic has a saddle point and
it lies on the abscissa — at the triple root. The minimum is below
the 𝑥-axis.

(xxiv) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟏,𝟐, 𝒅 < 𝒅† [𝐰𝐡𝐞𝐫𝐞 𝒅† 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐨𝐮𝐛𝐥𝐞 𝐫𝐨𝐨𝐭
𝐨𝐟 𝜟(𝒅)]—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The discriminant of the quartic ‘‘bounces back’’ from zero and
is again negative. There are two real roots. The saddle and the
minimum of the quartic are both below the abscissa.

(xxv) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 > 𝒅† [𝐰𝐡𝐞𝐫𝐞 𝒅† 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐨𝐮𝐛𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

When 𝑐 = 𝐶0, one has 𝛥3 = 0. The discriminant 𝛥(𝑑) of
the quartic has a double real root 𝑑† and a single real root 𝑑
(it may also have a treble real root 𝑑). The quartic has three
stationary points, but its discriminant changes sign only once — at
𝑑 < 𝑑†. The quartic is a symmetric curve with respect to its local
maximum. When 𝑑 > 𝑑†, the quartic has a positive discriminant
𝛥(𝑑) and no real roots.

(xxvi) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 = 𝒅† [𝐰𝐡𝐞𝐫𝐞 𝒅† 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐨𝐮𝐛𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐭𝐰𝐨 𝐩𝐚𝐢𝐫𝐬 𝐨𝐟 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The discriminant of the quartic is zero. As the quartic‘‘sinks’’ with
𝑑 becoming smaller, the two local minima ‘‘land’’ simultaneously
on the abscissa, that is, when 𝑑 = 𝑑†, the 𝑥-axis is tangent to the
graph of the quartic at both its minima. There are two pairs of
equal real roots.

(xxvii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 < 𝒅 < 𝒅† [𝐰𝐡𝐞𝐫𝐞 𝒅† 𝐢𝐬 𝐭𝐡𝐞 𝐝𝐨𝐮𝐛𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅) 𝐚𝐧𝐝 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟 𝜟(𝒅)]—𝐟𝐨𝐮𝐫 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The discriminant of the quartic ‘‘bounces back’’ from zero and is
again positive. The two local minima are now below the abscissa,
while the local maximum is above it. There are four distinct real
roots.

(xxviii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 = 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐟𝐨𝐮𝐫 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬, 𝐭𝐡𝐞 𝐦𝐢𝐝𝐝𝐥𝐞 𝐭𝐰𝐨 𝐨𝐟 𝐰𝐡𝐢𝐜𝐡—𝐞𝐪𝐮𝐚𝐥

The discriminant of the quartic is again zero. The abscissa is
tangent to the quartic at its local maximum. There are four
real roots and the two in the middle are equal — at the local
maximum.

(xxix) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 = 𝑪𝟎, 𝒅 < 𝒅 [𝐰𝐡𝐞𝐫𝐞 𝒅 𝐢𝐬 𝐭𝐡𝐞 𝐬𝐢𝐧𝐠𝐥𝐞 𝐫𝐨𝐨𝐭 𝐨𝐟
𝜟(𝒅)]—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

The discriminant of the quartic is negative (it changes sign at 𝑑).
The local maximum now lies below the abscissa. There are two
distinct real roots.

(xxx) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 ∉ [𝑪𝟐,𝑪𝟏], 𝒅 > 𝒅𝟎—𝐧𝐨 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

When 𝑐 ∉ [𝐶2, 𝐶1], one has 𝛥3 < 0. The discriminant 𝛥(𝑑) of the
quartic has one real root 𝑑0. Thus it changes sign only once. The
quartic has one stationary point. When 𝑑 > 𝑑0, the quartic has a

positive discriminant 𝛥(𝑑) and no real roots. Fig. 3 applies — the
dotted curve.

(xxxi) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 ∉ [𝑪𝟐,𝑪𝟏], 𝒅 = 𝒅𝟎 —𝐭𝐰𝐨 𝐞𝐪𝐮𝐚𝐥 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

As 𝑐 ∉ [𝐶2, 𝐶1], one has 𝛥3 < 0 again. This time the quartic has a
zero discriminant 𝛥(𝑑) and there are two equal real roots. Fig. 3
applies — the solid curve.

(xxxii) 𝒃 < 𝟖𝒂𝟐∕𝟑, 𝒄 ∉ [𝑪𝟐,𝑪𝟏], 𝒅 < 𝒅𝟎—𝐭𝐰𝐨 𝐝𝐢𝐬𝐭𝐢𝐧𝐜𝐭 𝐫𝐞𝐚𝐥 𝐫𝐨𝐨𝐭𝐬

Again, 𝛥3 < 0, as 𝑐 ∉ [𝐶2, 𝐶1]. The discriminant 𝛥(𝑑) of the
quartic is negative and there are two distinct real roots. Fig. 3
applies — the dashed curve.

5. The quartic equation and its tetrahedron

From the Complete Root Classification in the previous Section, one
can immediately identify the necessary and sufficient conditions for the
quartic to have four real roots. These are given, according to the root
multiplicities, by the following four Theorems:

Theorem 4. The quartic polynomial 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 has
four distinct real roots if, and only if, its coefficients satisfy all of the
following three conditions:

(𝒊) 𝑏 < 3
8
𝑎2, (29)

(𝒊𝒊) 𝐶2 < 𝑐 < 𝐶1, (30)
(𝒊𝒊𝒊)

(

𝑐 ≠ 𝐶0 and 𝑑3 < 𝑑 < 𝑑2
)

or (𝑐 = 𝐶0 and 𝑑 < 𝑑 < 𝑑†). (31)

[These are cases (xvii) and (xxvii), respectively, of the Complete Root
Classification.]

Theorem 5. The quartic polynomial 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 has
four real roots, exactly two of which equal, if, and only if, its coefficients
satisfy any one of the following three conditions:

𝑏 < 3
8
𝑎2, 𝐶2 < 𝑐 < 𝐶1, 𝑐 ≠ 𝐶0, 𝑑 = 𝑑2, (32)

𝑏 < 3
8
𝑎2, 𝐶2 < 𝑐 < 𝐶1, 𝑐 ≠ 𝐶0, 𝑑 = 𝑑3, (33)

𝑏 < 3
8
𝑎2, 𝑐 = 𝐶0, 𝑑 = 𝑑. (34)

[From the Complete Root Classification, these are the respective cases: (xvi)
— the largest two or the smallest two of the four roots equal, (xviii) — the
middle two of the four roots equal, and (xxviii) — again, the middle two of
the four roots equal.]

Theorem 6. The quartic polynomial 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 has
two pairs of equal real roots, if, and only if, its coefficients satisfy:

𝑏 < 3
8
𝑎2, 𝑐 = 𝐶0, 𝑑 = 𝑑†. (35)

[This is case (xxvi) of the Complete Root Classification.]

Theorem 7. The quartic polynomial 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 has
four real roots, exactly three of which equal, if, and only if, its coefficients
satisfy:

𝑏 < 3
8
𝑎2, 𝑐 = 𝐶1,2, 𝑑 = 𝑑†. (36)

[This is case (xxiii) of the Complete Root Classification.]

The quartic polynomial 𝑝4(𝑥) = 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥+𝑑 with four real
roots (at least two distinct) — subject to any of Theorems 4 to 7 — is
associated with a regular tetrahedron and its symmetries [9,17–19].

The following Theorem is stated by Northshield in [9]: Given a quar-
tic 𝑝4(𝑥) with four real roots (at least two distinct), those roots are the first
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Fig. 4. The quartic polynomial and its regular tetrahedron.

coordinate projections of a regular tetrahedron in R3. That tetrahedron has
a unique inscribed sphere, which projects onto an interval whose endpoints
are the two roots of 𝑝′′(𝑥). The vertices of an equilateral triangle around
that sphere project onto the roots of 𝑝′(𝑥).

This equilateral triangle is exactly the Siebeck–Marden–Northshield
triangle for the cubic polynomial 𝑝′4(𝑥) = 4𝑥3 + 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐. It lies in
the 𝑥𝑦-plane — this is the triangle 𝑀𝑁𝑃 in Fig. 4.

Clearly, the Siebeck–Marden–Northshield triangle exists when 𝑏 <
3𝑎2∕8 and 𝐶2 ≤ 𝑐 ≤ 𝐶1.

In particular, when 𝑏 < 3𝑎2∕8 and 𝐶2 < 𝑐 < 𝐶1, then 𝛥3 will
be positive and 𝑝′4(𝑥) will have three distinct real roots. Hence, the
quartic will have three distinct stationary points 𝐸1, 𝐸2, and 𝐸3 (see
Fig. 4) and it will have either four distinct real roots, or four real
roots with two of them equal, or two pairs of equal real roots —
Theorem 4, Theorem 5, and Theorem 6, respectively. When 𝑐 = 𝐶0, the
side 𝑀𝑃 of the Siebeck–Marden–Northshield triangle will be parallel to
the abscissa.

In the case of 𝑏 < 3𝑎2∕8 and 𝑐 = 𝐶1,2, the discriminant 𝛥3 will be
zero and 𝑝′4(𝑥) will have three real roots, two of which — equal. The
Siebeck–Marden–Northshield triangle will have a side, perpendicular
to the 𝑥-axis: 𝑁𝑃 , if 𝑐 = 𝐶1, or 𝑀𝑁 , if 𝑐 = 𝐶2. As a result, the quartic
will have a treble real root and a single real root (Theorem 7). The
converse is also true: if the quartic has a treble real root, then the
Siebeck–Marden–Northshield triangle will have a side perpendicular to
the abscissa.

The stationary points of the polynomial 𝑝′4(𝑥), that is, the two points
of inflection 𝐼1 and 𝐼2 of 𝑝4(𝑥) (see Fig. 4) have 𝑥-coordinates given by
the two roots of 𝑝′′4 (𝑥) = 12𝑥2 + 6𝑎𝑥 + 2𝑏:

𝜌1,2 = −𝑎
4

±

√

3
12

√

3𝑎2 − 8𝑏. (37)

On Fig. 4, these are points 𝐾 and 𝐽 , respectively.
The inflection point of the cubic polynomial 𝑝′4(𝑥) is −𝑎∕4 — the root

of 𝑝′′′4 (𝑥) = 24𝑥 + 6𝑎. Thus, the inscribed circle of the Siebeck–Marden–
Northshield triangle is centred at (−𝑎∕4, 0, 0) (point 𝐻 on Fig. 4). The
radius of the inscribed circle is 𝑅 = (

√

3∕12)
√

3𝑎2 − 8𝑏 — same as the
radius of the inscribed sphere of the regular tetrahedron, whose section
with the 𝑥𝑦-plane is the inscribed circle.

The side of the equilateral Siebeck–Marden–Northshield triangle has
length 𝑙 =

√

12𝑅 = (1∕2)
√

3𝑎2 − 8𝑏. The edge of the regular tetrahedron
is 𝐿 =

√

24𝑅 = (
√

2∕2)
√

3𝑎2 − 8𝑏. Clearly, one has 𝐿 =
√

2𝑙.
When 𝑐 = 𝐶1,2, the Siebeck–Marden–Northshield triangle has a side

perpendicular to the abscissa. The roots of the cubic 𝑝′4(𝑥) in these two
cases are the double root 𝜌1,2 and the single root

𝜙1,2 = −3𝑎
4

− 2𝜌1,2 = −𝑎
4

∓

√

3
6

√

3𝑎2 − 8𝑏, (38)

respectively.

Theorem 8.
(1) The maximum length of the interval containing the four real roots

of the quartic 𝑥4 + 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 is equal to the length 𝐿 of the edge
of the tetrahedron: 𝐿 =

√

24𝑅 = (
√

2∕2)
√

3𝑎2 − 8𝑏.
(2) The minimum length of this interval is equal to the height ℎ of the

tetrahedron: ℎ = 4𝑅 = (
√

3∕3)
√

3𝑎2 − 8𝑏.

Thus, the four real roots of the quartic lie in an interval of length be-
tween approximately 0.577

√

3𝑎2 − 8𝑏 and approximately 0.707
√

3𝑎2 − 8𝑏.

Proof. As the roots of the quartic are the 𝑥-coordinate projections
of the vertices of a tetrahedron, which is of fixed size when 𝑎 and
𝑏 < 3𝑎2∕8 are fixed, variation of the coefficients 𝑐 and 𝑑 of the quartic
(while, of course, keeping 𝑐 between 𝐶2 and 𝐶1 inclusive for four real
roots to exist) will only result in rotation of the tetrahedron around
the 𝑦-axis and the 𝑧-axis (rotation around the 𝑥-axis leaves the roots
invariant). Note that, with the variation of 𝑐 (again, between 𝐶2 and
𝐶1 inclusive), the Siebeck–Marden–Northshield triangle also rotates in
the 𝑥𝑦-plane around its centroid, so that the 𝑥-coordinate projections of
its vertices alternate with the 𝑥-coordinate projections of the vertices
of the tetrahedron — as one cannot have two roots of the quartic
between a minimum and a maximum, that is, for a quartic polynomial
with four real roots, there could be only one extremum between two
neighbouring roots. Of course, in the case of a double middle root, it
coincides with the local maximum, while in the case of a triple root,
it coincides with the saddle point of the quartic. And these are exactly
the two extreme cases in the premise of this theorem.

(1) The four real roots of the quartic will lie in an interval of
maximum length when they are at length 𝐿 = (

√

2∕2)
√

3𝑎2 − 8𝑏 apart,
as this is the maximum possible length of the 𝑥-coordinate projection of
the tetrahedron upon rotations about the 𝑦-axis and the 𝑧-axis. Namely,
one edge of the tetrahedron must have 𝑥-coordinate projection with the
same length 𝐿, that is, the tetrahedron must have an edge parallel to
the abscissa. There are two situations in which this can be realized. One
can either have:

(a) A double root of the quartic exactly at the 𝑥-coordinate
projection −𝑎∕4 of the centroid of the tetrahedron (which coincides
with the centroid of Siebeck–Marden–Northshield triangle) and two
simple roots on either side of the double root — at distance 𝐿∕2.
Hence, the four real roots of the quartic in this case are 𝑥1,4 = −𝑎∕4 ±
(
√

2∕4)
√

3𝑎2 − 8𝑏 and 𝑥2,3 = −𝑎∕4.
This is achieved when 3𝑎2 − 8𝑏 > 0, 𝑐 = 𝐶0, and 𝑑 = 𝑑, that is, the

third case of Theorem 5.
(b) Two pairs of double roots of the quartic (in this case, the

projection of the tetrahedron onto the 𝑥𝑦-plane is a square of side 𝐿,
with its diagonals drawn). Both pairs of equal roots are equidistant from
the centroid: 𝑥1 = 𝑥2 = −𝑎∕4 + (1∕4)

√

3𝑎2 − 8𝑏 = −𝑎∕4 + (
√

2∕4)𝐿 =
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−𝑎∕4 + 𝑙∕2 and 𝑥3 = 𝑥4 = −𝑎∕4 − (1∕4)
√

3𝑎2 − 8𝑏 = −𝑎∕4 − (
√

2∕4)𝐿 =
−𝑎∕4−𝑙∕2. [The Viète formulæ for a quartic with two pairs of equal real
roots are 2(𝑥1+𝑥2) = −𝑎, (𝑥1+𝑥2)2+2𝑥1𝑥2 = 𝑏, 2𝑥1𝑥2(𝑥1+𝑥2) = −𝑐, and
𝑥21𝑥

2
2 = 𝑑. From the first two of these, one gets 𝑥1 = [1∕(2𝑥2)](𝑏 − 𝑎2∕4)

to eliminate 𝑥1 from 2(𝑥1 + 𝑥2) = −𝑎 and get the quadratic equation
2𝑥22 + 𝑎𝑥2 + 𝑏 − 𝑎2∕4 = 0 from which all roots are determined.]

This is achieved when 3𝑎2 − 8𝑏 > 0, 𝑐 = 𝐶0, and 𝑑 = 𝑑† — the case
of Theorem 6.

The Siebeck–Marden–Northshield triangle in both cases (a) and (b)
has a side parallel to the abscissa (as 𝑐 = 𝐶0) and the three real roots
of 𝑝′4(𝑥) are 𝜎2 = −𝑎∕4 and

𝜎1,3 = −𝑎
4
± 𝑙

2
= −𝑎

4
± 1

4

√

3𝑎2 − 8𝑏 (39)

— the latter equidistant form 𝜎2 (which lies on the centroid).
Note that in case (b), the double roots of the quartic coincide with

the smallest and the largest root of 𝑝′4(𝑥), that is, two of the vertices
of the tetrahedron have 𝑥-coordinate projections equal to that of one
the vertices of the equilateral triangle, while the other two vertices of
the tetrahedron have 𝑥-coordinate projections equal to that of another
vertex of the triangle. The remaining vertex of the triangle projects onto
the 𝑥 axis in the middle of the projections of the other two — exactly
where the centroid of the tetrahedron projects.

(2) The four real roots of the quartic will lie in an interval of
minimum length when the 𝑥-coordinate projection of the tetrahedron
has a minimum length. Clearly, this minimum length is the height
ℎ = (

√

3∕3)
√

3𝑎2 − 8𝑏 of the tetrahedron. Therefore, the quartic will
have either a treble root −𝑎∕4 − 𝑅 = −𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏 and a
single root −𝑎∕4 + 3𝑅 = −𝑎∕4 + (3

√

3∕4)
√

3𝑎2 − 8𝑏 (when 𝑐 = 𝐶2) or
it will have a single root −𝑎∕4 + 3𝑅 = −𝑎∕4 − (3

√

3∕4)
√

3𝑎2 − 8𝑏 and a
treble root −𝑎∕4 − 𝑅 = −𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏 when 𝑐 = 𝐶1.
The Siebeck–Marden–Northshield triangle in this case has a side

perpendicular to the abscissa and the three real roots of 𝑝′4(𝑥) are either
the double root −𝑎∕4 − 𝑅 = −𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏 and the single
root −𝑎∕4 + 2𝑅 = −𝑎∕4 + (

√

3∕2)
√

3𝑎2 − 8𝑏 (when 𝑐 = 𝐶2) or the
double root −𝑎∕4 + 𝑅 = −𝑎∕4 + (

√

3∕4)
√

3𝑎2 − 8𝑏 and the single root
−𝑎∕4 − 2𝑅 = −𝑎∕4 − (

√

3∕2)
√

3𝑎2 − 8𝑏 (when 𝑐 = 𝐶1).
Clearly, this occurs only when 3𝑎2 − 8𝑏 > 0, 𝑐 = 𝐶1,2, and 𝑑 = 𝑑† —

the case of Theorem 7. □

Theorem 9. A quartic equation with four real roots cannot have a root
greater than 𝜆𝑚𝑎𝑥 = −𝑎∕4 + (

√

3∕4)
√

3𝑎2 − 8𝑏 and cannot have a root
smaller than 𝜆𝑚𝑖𝑛 = −𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏.

Proof. As the 𝑥-coordinate projection of the centroid of the tetrahedron
is at −𝑎∕4 and as the biggest distance within the tetrahedron from its
centroid is 3𝑅 = (

√

3∕4)
√

3𝑎2 − 8𝑏 (along the height), then, clearly, a
quartic equation with four real roots cannot have a root farther than
3𝑅 = (

√

3∕4)
√

3𝑎2 − 8𝑏 from −𝑎∕4. Hence, no real root of a quartic
can be bigger than 𝜆𝑚𝑎𝑥 = −𝑎∕4 + 3𝑅 = −𝑎∕4 + (

√

3∕4)
√

3𝑎2 − 8𝑏 and
no real root of the quartic can be smaller than 𝜆𝑚𝑖𝑛 = −𝑎∕4 − 3𝑅 =
−𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏. □

Note that when the quartic has a root which is at −𝑎∕4 ± 3𝑅 =
−𝑎∕4 ± (

√

3∕4)
√

3𝑎2 − 8𝑏, then each of the other three roots of the
quartic is equal to −𝑎∕4 ∓ 𝑅 = −𝑎∕4 ∓ (

√

3∕12)
√

3𝑎2 − 8𝑏. This falls
under Theorem 7: 𝑏 < 3

8𝑎
2, 𝑐 = 𝐶1,2, and 𝑑 = 𝑑†.

Also, note that there are no quartics that simultaneously have 𝜆𝑚𝑖𝑛
and 𝜆𝑚𝑎𝑥 as roots.

6. Localization of the roots of the quartic equation

As the roots of the quartic and its stationary points (namely, the
𝑥-coordinate projections of the vertices of the tetrahedron and those of
the vertices of the Siebeck–Marden–Northshield triangle) alternate, the
localization of the four real roots of the quartic can be easily done.

The two cases of Theorem 8, following under the premises of the
third case of Theorem 5 and of Theorem 6, on the one hand, and
Theorem 7, on the other, are such that the roots can be found explicitly
and hence, these cases will not have to be considered.

What remains to be considered are those that fall into the premises
of Theorem 4 and the first two cases of Theorem 5.

The isolation intervals of the three real roots 𝑥1 > 𝑥2 > 𝑥3 of the
cubic 𝑝′4(𝑥) = 4𝑥3 + 3𝑎𝑥2 + 2𝑏𝑥 + 𝑐 are:

(i) For 𝐶2 ≤ 𝑐 ≤ 𝐶0 ∶ 𝜎3 ≤ 𝑥3 ≤ 𝜌2, 𝜌2 ≤ 𝑥2 ≤ −𝑎∕4, and
𝜎1 ≤ 𝑥1 ≤ 𝜙2.

(ii) For 𝐶0 ≤ 𝑐 ≤ 𝐶1 ∶ 𝜙1 ≤ 𝑥3 ≤ 𝜎3, −𝑎∕4 ≤ 𝑥2 ≤ 𝜌1, and
𝜌1 ≤ 𝑥1 ≤ 𝜎1.

Consider first 𝐶2 ≤ 𝑐 ≤ 𝐶0. Under Theorem 9, the smallest possible root
of any quartic with four real roots is 𝜆𝑚𝑖𝑛 = −𝑎∕4 − (

√

3∕4)
√

3𝑎2 − 8𝑏
and the biggest possible root of any quartic with four real roots is
𝜆𝑚𝑎𝑥 = −𝑎∕4 + (

√

3∕4)
√

3𝑎2 − 8𝑏 (when 𝑐 = 𝐶2). The smallest possible
root of the cubic 𝑝′4(𝑥) (the left minimum of the quartic) is smaller than
or equal to 𝜌2, hence the smallest root 𝑥4 of the quartic is greater than
or equal to 𝜆𝑚𝑖𝑛 and smaller than or equal to 𝜌2. The next root 𝑥3 of
the quartic is between the left minimum and the maximum, that is, it
is greater than or equal to 𝜎3 and smaller than or equal to −𝑎∕4. The
root 𝑥2 is between the maximum and the right minimum, namely, it is
greater than or equal to 𝜌2 and smaller than or equal to 𝜙2. Finally, the
biggest root 𝑥1 of the quartic is greater than or equal to 𝜎1 and smaller
than or equal to 𝜆𝑚𝑎𝑥. Namely:

For 𝐶2 ≤ 𝑐 ≤ 𝐶0 ∶ 𝜆𝑚𝑖𝑛 ≤ 𝑥4 ≤ 𝜌2, 𝜎3 ≤ 𝑥3 ≤ −𝑎
4
,

𝜌2 ≤ 𝑥2 ≤ 𝜙2, 𝜎1 ≤ 𝑥1 ≤ 𝜆𝑚𝑎𝑥. (40)

In a similar manner:

For 𝐶0 ≤ 𝑐 ≤ 𝐶1 ∶ 𝜆𝑚𝑖𝑛 ≤ 𝑥4 ≤ 𝜎3, 𝜙1 ≤ 𝑥3 ≤ 𝜌1,

−𝑎
4
≤ 𝑥2 ≤ 𝜎1, 𝜌1 ≤ 𝑥1 ≤ 𝜆𝑚𝑎𝑥. (41)

As there is an overlap in the above intervals, these cannot be referred
as isolation intervals of the roots of the quartic — as two roots can occur
in any one of them.

Consider, as first example, the quartic 𝑥4+3𝑥3+2𝑥2−𝑥−19∕20. For
it, one has: 𝑎 = 3, 𝑏 = 2 < 3𝑎2∕8, 𝑐 = 2 which is between 𝐶2 = −1.2526
and 𝐶0 = −0.3750 (also, 𝐶1 = 0.5026) and 𝑑 = −19∕20 which is
between 𝑑3 = −1.000 and 𝑑2 = −0.9288 (also, 𝑑1 = 0.0967). Hence,
under Theorem 4, there are four distinct real roots. Indeed, these are:
𝑥1 = 0.6094, 𝑥2 = −0.7928, 𝑥3 = −1.2787, and 𝑥4 = −1.5379. One further
has: 𝐿 = 2.3452, 𝑅 = 0.4787, 𝜆𝑚𝑖𝑛 = −5.0584, 𝜌2 = −1.2287, 𝜎3 =
−1.5792, −𝑎∕4 = −0.7500, 𝜙2 = 0.2074, 𝜎1 = 0.0792, and 𝜆𝑚𝑎𝑥 = 3.5584.
Clearly, the roots are within their prescribed intervals.

As second example, the quartic 𝑥4 − 4𝑥3 + 5𝑥2 − (7∕4)𝑥 − 1∕5 has
𝑎 = −4, 𝑏 = 5 < 3𝑎2∕8, 𝑐 = −7∕4 which is between 𝐶0 = −2.0000
and 𝐶1 = −1.4557 (also, 𝐶2 = −2.5443) and 𝑑 = −1∕5 which is
between 𝑑3 = −0.2659 and 𝑑2 = −0.1681 (also, 𝑑1 = 0.1840). Again,
under Theorem 4, there are four distinct real roots and they are: 𝑥1 =
1.7679, 𝑥2 = 1.4535, 𝑥3 = 0.8682, and 𝑥4 = −0.0896. Additionally: 𝐿 =
2.0000, 𝑅 = 0.4082, 𝜆𝑚𝑖𝑛 = −2.6742, 𝜎3 = 0.2929, 𝜙1 = 0.1835, 𝜌1 =
1.4082, −𝑎∕4 = 1.0000, 𝜎1 = 1.7071, and 𝜆𝑚𝑎𝑥 = 4.6742 — again, the
roots are within their prescribed intervals.

Similar considerations can be extended to the cases of a quartic with
only two real roots, when the Siebeck–Marden–Northshield triangle still
exists, but the tetrahedron does not — one can bind the two real roots
with the help of the bounds of the stationary points of the quartic
(the vertices of the Siebeck–Marden–Northshield triangle), which are
invariant under the variation of the free term 𝑑, and the nearest roots
of the quartic when it has four real roots, i.e. simply within different
ranges of 𝑑.
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7. Towards the quintic equation

One can use the presented in this work complete root classification
of the quartic in order to determine the number of stationary points
of the quintic by solving the quartic equations which stem from the
different cases of the complete root classification, and which are with
known number of real roots for different ranges of the coefficients of
the quartic. Hence one can find the number of times the discriminant
of the quintic changes sign by variation of its free term. This will lead
to an improvement of the complete root classification for the quintic,
proposed (by other means) in [24]; see also [4] for the localization
of the roots of the quintic with the help of the roots of some specific
quadratic equations. For equations of degree 𝑛 ≥ 6, this method is no
longer applicable, as it is not possible to find their stationary points
which are roots of equations of degree 𝑛 − 1 ≥ 5.

The discriminant the quintic polynomial 𝑥5 + 𝑝𝑥4 + 𝑞𝑥3 + 𝑟𝑥2 + 𝑠𝑥+ 𝑡
is quartic in the free term 𝑡:

𝛥5 = 3125 𝑡4 + (256𝑝5 − 1600𝑝3𝑞 + 2000𝑝2𝑟 + 2250𝑝𝑞2 − 2500𝑝𝑠 − 3750𝑞𝑟) 𝑡3

+(−192𝑝4𝑞𝑠 −128𝑝4𝑟2 + 144𝑝3𝑞2𝑟 −27𝑝2𝑞4 +160𝑝3𝑟𝑠

+1020𝑝2𝑞2𝑠 +560𝑝2𝑞𝑟2 +108𝑞5

−630𝑝𝑞3𝑟 − 50𝑝2𝑠2 − 2050𝑝𝑞𝑟𝑠 − 900𝑝𝑟3 − 900𝑞3𝑠 + 825𝑞2𝑟2

+2000𝑞𝑠2 +2250𝑟2𝑠) 𝑡2

+(144𝑝4𝑟𝑠2 −6𝑝3𝑞2𝑠2 − 80𝑝3𝑞𝑟2𝑠 +16𝑝3𝑟4 +18𝑝2𝑞3𝑟𝑠 −4𝑝2𝑞2𝑟3

−36𝑝3𝑠3 − 746𝑝2𝑞𝑟𝑠2

+24𝑝2𝑟3𝑠 + 24𝑝𝑞3𝑠2 + 356𝑝𝑞2𝑟2𝑠 − 72𝑝𝑞𝑟4 − 72𝑞4𝑟𝑠 + 16𝑞3𝑟3 + 160𝑝𝑞𝑠3

+1020𝑝𝑟2𝑠2 + 560𝑞2𝑟𝑠2 − 630𝑞𝑟3𝑠 + 108𝑟5 − 1600𝑟𝑠3) 𝑡

−27𝑝4𝑠4 + 18𝑝3𝑞𝑟𝑠3 − 4𝑝3𝑟3𝑠2

−4𝑝2𝑞3𝑠3 + 𝑝2𝑞2𝑟2𝑠2 + 144𝑝2𝑞𝑠4 − 6𝑝2𝑟2𝑠3 − 80𝑝𝑞2𝑟𝑠3

+18𝑝𝑞𝑟3𝑠2 + 16𝑞4𝑠3 − 4𝑞3𝑟2𝑠2 − 192𝑝𝑟𝑠4

−128𝑞2𝑠4 + 144𝑞𝑟2𝑠3 − 27𝑟4𝑠2 + 256𝑠5. (42)

The discriminant of this quartic in 𝑡 is

𝛥𝑡 = −256 [8000 𝑠3 + (−1408𝑝4 + 7040𝑝2𝑞 − 9600𝑝𝑟 − 5200𝑞2) 𝑠2

+ (64𝑝8 − 640𝑝6𝑞 + 896𝑝5𝑟 + 2064𝑝4𝑞2 − 4192𝑝3𝑞𝑟 − 2392𝑝2𝑞3

+3120𝑝2𝑟2 + 2000𝑝𝑞2𝑟 + 1120𝑞4 + 1800𝑞𝑟2) 𝑠
−32𝑟𝑞𝑝7 + 8𝑝6𝑞3 + 16𝑝6𝑟2 + 288𝑝5𝑞2𝑟 − 69𝑝4𝑞4 − 568𝑝4𝑞𝑟2 − 660𝑝3𝑞3𝑟

+168𝑝2𝑞5 + 208𝑝3𝑟3 + 2234𝑝2𝑞2𝑟2 + 80𝑝𝑞4𝑟 − 80𝑞6 − 2340𝑝𝑞𝑟3

−440𝑟2𝑞3 + 675𝑟4]2

×[ − 2000 𝑠3 + (432𝑝4 − 2160𝑝2𝑞 + 2400𝑝𝑟 + 1800𝑞2)𝑠2

+ (−432𝑝3𝑞𝑟 + 108𝑝2𝑞3 + 120𝑝2𝑟2 + 1800𝑝𝑞2𝑟 − 405𝑞4 − 2700𝑞𝑟2) 𝑠

+128𝑝3𝑟3 − 36𝑝2𝑞2𝑟2 − 540𝑝𝑞𝑟3 + 135𝑟2𝑞3 + 675𝑟4]3. (43)

Clearly, the sign of 𝛥𝑡 is opposite to the sign of the cubed term (the last
pair of square brackets on the last three lines in the formula). This term
is cubic in 𝑠 and its discriminant is

𝛥𝑠 = −5038848(4𝑝3−15𝑝𝑞+25𝑟)2(8𝑝3𝑟−3𝑝2𝑞2−30𝑝𝑞𝑟+10𝑞3+25𝑟2)3. (44)

The sign of 𝛥𝑠 depends again on a cubed term (the last pair of paren-
thesis), which is quadratic in 𝑟. The discriminant of this quadratic in 𝑟
term is

𝛥𝑟 = 8(2𝑝2 − 5𝑞)3 (45)

and hence 𝛥𝑠 can be written as

𝛥𝑠 = −5038848(𝑟 − 𝑅0)2[(𝑟 − 𝑅2) (𝑟 − 𝑅1)]3, (46)

where 𝑅0 = −4𝑝3∕25 + 3𝑝𝑞∕5 and

𝑅1,2 = 𝑅0 ±

√

2
25

√

(2𝑝2 − 5𝑞)3. (47)

Analysis, similar to the one in Sections 3 and 4, should be performed
to reveal the Complete Root Classification for the quintic.

8. Discussion

The essence of the geometrical study of polynomial roots, presented
in this paper, is based on an approach rooted in the analysis of the
‘‘discriminant of the discriminant’’. It can be summarized as follows.
Polynomials can be viewed as elements of congruence of curves rep-
resenting same-degree polynomials, the graphs of which foliate the
𝑥𝑦-plane by the continuous variation of some foliation parameter. Most
conveniently, one could choose the free term as such foliation parame-
ter. All polynomials in this congruence have the same set of stationary
points. Among these polynomials, there are those for which the abscissa
is tangent to their graph at the stationary point. These polynomials have
vanishing discriminants and they can be viewed as ‘‘boundaries’’ setting
‘‘polynomial bands’’ in such a manner that within each polynomial
band, all polynomials have the same number of real roots and the
polynomial discriminants have the same sign. The variation of the
foliation parameter, ‘‘shifts’’ through the different bounds, and the
Complete Root Classification can be done with this technique. This is a
novel method and the Complete Root Classification obtained in such a
way is a significant improvement of those available in the literature —
as new features are uncovered and finer structure of the classification is
revealed. Moreover, the conditions for the various cases are conditions
on the individual parameters of the polynomial, rather than their
intricate combinations or the discriminant. For example, consider the
Sturmian constant 𝑆4 = −3𝑎3𝑐+(𝑏2−6𝑑)𝑎2+14𝑎𝑏𝑐−4𝑏3+16𝑏𝑑−18𝑐2 for
the quartic (see the beginning of Section 3) from Cayley’s classification
from 1861. In an attempt to determine its sign, note that 𝑆4 is cubic in
𝑎 and cubic in 𝑏 and each of these two cubics have very complicated
discriminants. The Sturmian constant 𝑆4 is also quadratic in 𝑐 with
discriminant simplifying to (3𝑎4 − 20𝑎2𝑏 + 36𝑏2 − 144𝑑)(3𝑎2 − 8𝑏) and
not being easy to analyse. It is linear in the free term 𝑑 with root given
by −(1∕2)(3𝑎3𝑐 − 𝑎2𝑏2 −14𝑎𝑏𝑐 +4𝑏3 +18𝑐2)∕(3𝑎2 −8𝑏). Knowing whether
𝑑 is less than, equal to, or greater than this root, sheds no light on the
sign of the Sturmian constant 𝑆5, which is the discriminant 𝛥 of the
quartic.

9. Conclusions

With the proposed method, the different polynomial bands for the
symbolic quartic are determined by different intervals for the free term
and the boundary points of these intervals are roots of cubic equations.
These cubic equations are themselves symbolic and the determination
of their roots may prove to be difficult. This limitation however can
be partially lifted using the presented method for these symbolic cubic
polynomials. This allows the determination of the isolation intervals of
their roots and hence advances the Complete Root Classification of the
quartic.

It will be interesting to study in the future polynomials of higher
degrees through the recursive determination of the discriminant of the
discriminant of the polynomial – in its consecutive coefficients, starting
with the free term. In view of the great simplifications occurring, one
can look for underlying structures.
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