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Abstract: The first goal of this paper is to investigate the Pierce decomposition of the endomorphism ring
End(G) = F̂ ⊕ Ends(G) of an abelian p-group G and its application to the recent studies of groups with mini-
mal full inertia and of thick-thin groups. The second goal is to investigate the Pierce embedding

Ψ : End(G)/H(G) →∏
n
Mfn(G) .

We prove that more classes of groups than those described by Pierce have the property that themap Ψ is surjec-
tive, and we furnish examples of groups which do not have this property. Several results connecting the Pierce
decomposition and the Pierce embedding of End(G) are obtained that allow one to derive general conditions on
a group G which ensure that the Pierce embedding of End(G) is not surjective.

Keywords: Primary groups, endomorphism rings, Pierce decomposition, Pierce embedding, fully inert
subgroups, minimal full inertia, thick-thin groups

MSC 2020: Primary 20K10, 20K27, 20K30; secondary 20K40


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1 Introduction

All groups considered in this paper are assumed to be additively written abelian p-groups, except if explicitly
stated otherwise, where p is a fixed but arbitrary prime number; we denote the ring of p-adic integers by Jp .
For unexplained terminology and notions, we refer to the recent monograph [5] by Fuchs.

This paper is heavily based on the pioneering and fundamental paper by Pierce [12], whose review by
Hulanicki started with these words: “The great value of the paper lies in the discovery of a new method of
investigating p-primary groups and their homomorphisms which enables the author to obtain many important
results." Few papers on abelian groups had the same influential impact on the theory of p-groups in the last
sixty years as this paper of Pierce.

Two tools play a central role in the “new method of investigating" the endomorphism ring End(G) of an
arbitrary p-group G. The first tool is the so-called Pierce decomposition of End(G), used by many authors for
different purposes; see, for instance, the realization theorems by Corner [3]. The second tool, which we call
Pierce embedding, was used by Pierce to describe properties of direct sums of cyclic groups and torsion-complete
groups; it is possible to connect it with the Pierce decomposition.We nowdescribe these two tools inmore detail.

The Pierce decomposition of the endomorphism ring of G is the group direct sum End(G) = A ⊕ Es(G),
where A = F̂ is a Jp-algebra which is the completion in the p-adic topology of a free Jp-module F, and Ends(G)
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is the two-sided ideal of the small endomorphisms. Recall that an endomorphism ϕ ∈ End(G) is small if, for
every k ≥ 1, there exists an integer n such that ϕ(pnG[pk]) = 0 (as usual, pnG[pk] denotes the intersection
pnG ∩ G[pk]).

In order to introduce the Pierce embedding of End(G), recall that in [12] Pierce defines a map

μ : End(G) → ∏
n∈ℕ

Mfn(G) ,

where G is an unbounded p-group, fn(G) = dim(pnG[p]/pn+1G[p]) is the Ulm–Kaplansky invariant of index
n ∈ ℕ, and Mfn(G) is the endomorphism ring of the vector space over the field with p elements of dimen-
sion fn(G). The map μ sends the endomorphism ϕ of G to the sequence {ϕn}n∈ℕ, where

ϕn : pnG[p]/pn+1G[p] → pnG[p]/pn+1G[p]

is the map canonically induced by ϕ.
Recall that, if B = ⨁n∈ℕ Bn is a basic subgroup of G, with Bn ≅ ⨁αn ℤ(p

n) being the n-th homocyclic com-
ponent (αn is a cardinal number), then Bn[p] is canonically isomorphic to pn−1G[p]/pnG[p], so

αn = fn−1(G) = fn−1(B).

In the sequel, we will often identify pn−1G[p]/pnG[p] with Bn[p] and Mfn−1(G) with End(Bn[p]).
Pierce proves in [12, Theorem 14.3] that μ is a ring homomorphism, whose kernel (called today the Pierce

radical of End(G)) is the two-sided ideal

H(G) = {ϕ | ϕ(pnG[p]) ≤ pn+1G[p] for all n ∈ ℕ},

and that⨁n∈ℕMfn(G) ⊆ Im(μ). Therefore, there is a ring embedding

Ψ : End(G)
H(G) →∏n

Mfn(G)

that we call the Pierce embedding of End(G), with abuse of terminology since it is not an embedding of End(G),
but of a factor ring of it (see also [5, Proposition 2.12, p. 626]).

Recently, the Pierce decomposition was applied in the paper [7], which investigates groups with minimal
full inertia, that is, groups whose fully inert subgroups are commensurable with fully invariant subgroups (for
these notions we refer to [7]). One notion which does not appear in [5] and which is central in the next theorem
proved in [7], is the notion of a semi-standard p-group. This terminology, which seems to have originated in the
work of Corner [3], is as follows: a p-group G is said to be semi-standard if for each n < ω the Ulm–Kaplansky
invariant fn(G) is finite; equivalently, each homocyclic component of exponent n + 1 of a basic subgroup of G is
a direct sum of finitely many cyclic groups of order pn+1.

Theorem 1.1 (Goldsmith–Salce). Let G be a separable semi-standard p-group such that in the Pierce decompo-
sition End(G) = F̂ ⊕ Ends(G), F̂ is the completion in the p-adic topology of a Jp-subalgebra F which is a free
Jp-module of at most countable rank. If H is a countably infinite subgroup of G, then the higher socles HF[pk]
(k ≥ 1) of the subgroup HF = ∑α∈F α(H) are fully inert in G, but not commensurable with any fully invariant
subgroup of G.

Thus the groups satisfying the hypotheses of Theorem 1.1 do not have minimal full inertia. Surprisingly enough,
a similar hypothesis on the Pierce decomposition furnished in [9] the key tool to obtain groups which are at the
same time thick and thin, consequently called thick-thin (for these notions we refer to [9]). In fact, the following
result was proved.

Theorem 1.2 (Keef–Salce). Suppose G is an unbounded separable group and End(G) = F̂ ⊕ Ends(G) is the Pierce
decomposition of its endomorphism ring. If F is a free Jp-module of rank strictly less than the continuum c = 2ℵ0 ,
then G is thick-thin.

We now present an outline of the contents of the paper indicating the principal new results obtained in each
section.
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Section 2 is devoted to weakening the hypotheses in Theorem 1.1. Our principal result there is Theorem 2.1,
in which we remove the restriction that F be closed under multiplication and replace the rank restriction of
countability by the much weaker restriction of being smaller than the continuum. The significance of this for
the study of groups with minimal full inertia is noted in Remark 2.5. We also provide an example of a complete
Jp-algebra F̂ that is the completion in the p-adic topology of a free Jp-module F which fails to be an algebra with
the induced multiplication.

In Section 3, we move to consideration of the Pierce embedding; recall that Pierce states in [12, Remark,
p. 288] that the map Ψ is epic (hence an isomorphism) provided that G is either a direct sum of cyclic groups
or is torsion-complete. In [5, Proposition 2.12 (ii), p. 627] it is stated that Ψ is epic if and only if G is torsion-
complete, a claim which is clearly in conflict with Pierce’s remark. In fact, our principal result in this section,
Theorem 3.6, shows that for a countably infinite family of groups having the property that for each group the
Pierce embedding is surjective, then their direct sumwill also have a surjective Pierce embedding provided their
Ulm–Kaplansky invariants satisfy a suitable independence condition. As a consequence, a large class of groups
including direct sums of cyclic groups and certain direct sums of torsion-complete groups will have a surjective
Pierce embedding. We also establish in Corollary 3.9 the hitherto unobserved fact that a direct summand of
a group with surjective Pierce embedding also has this surjective property.

In Section 4, we investigate a question arising naturally from our results in Section 3: does an arbitrary
direct sum of torsion-complete groups have a surjective Pierce embedding? We provide examples showing that
this question has a negative answer. Our main results in this section, Theorem 4.4 and Theorem 4.5, show that
the Pierce embedding of a direct sum may fail to be surjective if there are infinitely many common non-zero
Ulm–Kaplansky invariants.

In Section 5, we investigate the relationship between the Pierce decomposition and the Pierce embedding.
In Theorem 5.2, we establish that if the rank of the free Jp-module appearing in the Pierce decomposition is “not
too large”, then the Pierce embedding will fail to be surjective. Our final result, Theorem 5.4, shows that certain
separable groups which are “close to being torsion-complete”, and are in fact thick-thin groups, may also fail to
have a surjective Pierce embedding.

2 Applications of the Pierce decomposition

Theorem 1.1 can be improved as follows.

Theorem 2.1. Let G be a separable semi-standard p-group such that in the Pierce decomposition

End(G) = A ⊕ Ends(G),

A is the completion in the p-adic topology of a free Jp-module F of rank strictly smaller than the continuum. If H
is a countably infinite subgroup of G, then the higher socles HF[pk] (k ≥ 1) of the subgroup HF = ∑α∈F α(H) are
fully inert in G, but not commensurable with any fully invariant subgroup of G.

The proof of Theorem 1.1 made use of the following lemma, whose hypothesis of countability will be modified
in the next Lemma 2.3.

Lemma 2.2 (Goldsmith–Salce). Let G be an unbounded separable semi-standard p-group with Pierce decompo-
sition of its endomorphism ring End(G) = A ⊕ Ends(G). If A is the completion in the p-adic topology of a free
Jp-module F of countable rank, then G is uncountable.

The next lemma provides the new version of Lemma 2.2; although its proof is similar to that of Lemma 2.2, we
include it for the sake of completeness.

Lemma 2.3. Let G be an unbounded separable semi-standard p-group with Pierce decomposition of its endomor-
phism ring End(G) = A ⊕ Ends(G). If A is the completion in the p-adic topology of a free Jp-module F of rank ρ
strictly smaller than the continuum, c, then G is uncountable.
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Proof. Assume, by way of contradiction, that G is countable. Then, by [5, Theorem 5.3, p. 96], G is a direct sum
of cyclic groups, say G = ⨁i∈ℕ Ci .

Let χ : End(G) → Hom(G[p], G) be the restriction map sending ϕ ∈ End(G) into ϕ ↾ G[p]. We claim that
χ(End(G)) has cardinality at least c. In fact, every element of Hom(G[p], G) can be thought of as an infinite
vector of the form δ = (δ1 , δ2 , . . .)where the δi correspond to homomorphisms from Ci[p] into G. If we choose
the δi to be either the zeromap or the identitymap, we can clearly produce c homomorphisms in Hom(G[p], G).

Furthermore, since the zero map and the identity map from Ci[p] → G both extend trivially to maps
from Ci → G, the vector δ clearly extends to a map γ : G → G which satisfies χ(γ) = δ. This proves that
|χ(End(G))| ≥ c.

However, the image of A under the map χ has cardinality at most ρ = max{rkJp F,ℵ0}, since χ(pA) = 0 and
A/pA ≅ F/pF ≅ (Jp/pJp)(ρ) has cardinality at most ρ. Additionally, as G is semi-standard, every small endomor-
phism vanishes on a cofinite subgroup pnG[p] of G[p] for some n. Consequently, the image χ(Ends(G)) is count-
able. Thus χ(A ⊕ Ends(G)) has cardinality at most ρ, and so is strictly smaller than c, which is a contradiction.
We conclude that G must be uncountable.

In Lemma 2.3, we could also replace the hypothesis that G is semi-standard by the hypothesis that a basic sub-
group of G has cardinality strictly smaller than c, deducing that |χ(Ends(G))| < c. However, the hypothesis that G
is semi-standard is unavoidable in the proof of Theorem 2.1.

Using the notation of Theorem 1.1, the hypothesis that F is closed under multiplication is replaced by the
following lemma.

Lemma 2.4. HF is F-invariant.

Proof. Let ϕ ∈ F. Since HF = ∑α∈F α(H), it is enough to prove that (ϕ ⋅ α)(H) ≤ HF for each α ∈ F; note that
ϕ ⋅ α ∈ F̂. Let x ∈ H be such that pkx = 0. As F is dense in F̂, we have that ϕ ⋅ α = ψ + pkβ for some ψ ∈ F and
β ∈ F̂. Then we have

(ϕ ⋅ α)(x) = ψ(x) + pkβ(x).

But pkβ(x) = β(pkx) = 0, and therefore (ϕ ⋅ α)(x) = ψ(x) ∈ HF , as desired.

The proof of Theorem 2.1 is now identical to the proof of Theorem 1.1, just using Lemma 2.3 instead than
Lemma 2.2, eliminating the words “because F is closed under multiplication” and justifying the F-invariance
of HF by Lemma 2.4.

Remark 2.5. The condition in Theorem 2.1 that the Jp-module F in the Pierce decomposition

End(G) = F̂ ⊕ Ends(G)

has rank smaller than c, in order thatG does not haveminimal full inertia, is a sufficient condition, but not neces-
sary. In fact, the groupG = B ⊕ B, where B = ⨁n∈ℕℤ(pn) and B is its torsion-completion, does not haveminimal
full inertia, by [7, Proposition 3.7], and End(G) contains End(B) = F̂ ⊕ Ends(B), where F is a free Jp-module of
rank c, the continuum.

The following question arises naturally: assuming that the completion F̂ in the p-adic topology of a free
Jp-module F is a Jp-algebra, is F necessarily an algebra with the induced multiplication? The next example
shows that the answer is in the negative.

Example 2.6. Let R = Jp[X] be the ring of polynomials over Jp and let R̂ be its completion in the p-adic topology.
Then R̂ is clearly a Jp-algebra. Consider R = ⨁n∈ℕ JpXn as a free Jp-module of countable rank and let ℚp be
the field of the p-adic numbers, which is a divisible torsion-free group. As a Jp-module,ℚp is generated by the
elements {p−n}n∈ℕ. Let Φ : R → ℚp be the surjective Jp-morphismdefined as follows: Φ(X) = 0 and Φ(Xn) = p−n

for n > 1. Let F = Ker Φ. Since R/F ≅ ℚp is a divisible torsion-free group, F is a pure and dense subgroup of R,
whence F̂ = R̂. Furthermore, F, as a submodule of a free Jp-module, is also a free Jp-module. To conclude, note
that F is not closed under multiplication, since X ∈ F but X2 ∉ F, because Φ(X2) ̸= 0.
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3 When the Pierce embedding is surjective

In order to extend Pierce’s claim that the Pierce embedding

Ψ : End(G)/H(G) →∏
n
Mfn(G)

is epic if one considers G either a direct sum of cyclic groups or a torsion-complete group, it is convenient to
introduce a new notation, analogous to the Pierce radical. If G and A are two groups, we set

H(G, A) = {ϕ ∈ Hom(G, A) | ϕ(pnG[p]) ≤ pn+1A[p] for all n ∈ ℕ}.

Notice that, if G = A, then H(G, A) coincides with the Pierce radical H(G) of End(G).
Every homomorphism ϕ : G → A induces maps

ϕn :
pnG[p]
pn+1G[p]

→
pnA[p]
pn+1A[p]

for all n ∈ ℕ.

Let B = ⨁n∈ℕ Bn and C = ⨁n∈ℕ Cn be basic subgroups of G and A, respectively, where Bn and Cn are the
homocyclic components. Consider the group homomorphism

ω : Hom(G, A) →∏
n
Hom(Bn[p], Cn[p])

sending ϕ ∈ Hom(G, A) to the sequence (ϕn)n∈N ; we identify Bn[p] with pnG[p]/pn+1G[p], and Cn[p] with
pnA[p]/pn+1A[p], in view of the natural isomorphisms

pnG[p]/pn+1G[p] ≅ Bn[p] and pnA[p]/pn+1A[p] ≅ Cn[p].

Clearly, ω has kernel H(G, A), and therefore we have a group embedding

Ω : Hom(G, A)H(G, A) →∏n
Hom(Bn[p], Cn[p]).

Given two groups G and A, we say that they are UK-independent (short for Ulm–Kaplansky independent)
if, for every positive integer n, fn(G) > 0 implies fn(A) = 0, and consequently fn(A) > 0 implies fn(G) = 0. The
following lemma connects the UK-independence of two groups G and A with the vanishing of the two quotient
groups Hom(G, A)/H(G, A) and Hom(A, G)/H(A, G). A key point is that the two implications

fn(G) > 0 󳨐⇒ fn(A) = 0

and
fn(A) > 0 󳨐⇒ fn(G) = 0

are equivalent.

Lemma 3.1. Let G and A be two groups. The following assertions are equivalent:
(i) Hom(G, A) = H(G, A).
(ii) G and A are UK-independent.
(iii) Hom(A, G) = H(A, G).

Proof. “(i) 󳨐⇒ (ii)”: Let B = ⨁n∈ℕ Bn and C = ⨁n∈ℕ Cn be basic subgroups of G and A, respectively. Assume,
by way of contradiction, that fn(G) > 0 and fn(A) > 0 for a fixed n ∈ ℕ. Then there is a non-zero homomor-
phism ϕn : Bn[p] → Cn[p], which obviously extends to a non-zero homomorphism from Bn to Cn . Sending the
complement in G of Bn to zero, we get a homomorphism ϕ : G → A which induces the sequence (ϕm)m∈ℕ with
ϕm = 0 for m ̸= n. Clearly, this ϕ does not belong to H(G, A). Thus we get that H(G, A) ⊊ Hom(G, A), which is
a contradiction.

“(ii) 󳨐⇒ (iii)”: Let G and A be UK-independent and assume, by way of contradiction, that there exists
a map ϕ : A → G such that ϕ(pnA[p]) is not contained in pn+1G[p[. This implies that pn+1A[p] ̸= pnA[p] so that
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fn(A) > 0, and so by hypothesis fn(G) = 0. Thus pnG[p] = pn+1G[p], giving us the desired contradiction since

ϕ(pnA[p]) ≤ pnG[p] = pn+1G[p].

“(iii) 󳨐⇒ (ii)” is similar to “(i) 󳨐⇒ (ii)”, and “(ii) 󳨐⇒ (i)” is similar to “(ii) 󳨐⇒ (iii)”.

Remark 3.2. Observe that the relation of UK-independence between two groups G and A is symmetric,
and this is confirmed in Lemma 3.1 by the equivalence with the two equalities Hom(G, A) = H(G, A) and
Hom(A, G) = H(A, G).

This contrasts with what happens if we replace H(G, A) with the subgroup of the small homomorphisms
Homs(G, A). In fact, the equality Hom(G, A) = Homs(G, A) is the object of the investigation in [9], and it gives
rise to small pairs of abelian p-groups and to the classes of fully-thick and fully-thin groups.

We introduce a new property for direct sums of groups concerning their Ulm–Kaplansky invariants.

Definition 3.3. Let G = ⨁i∈I Gi be a direct sum of groups. We say that G has the property (P) if Gi and Gj are
UK-independent for i ̸= j.

Note that, if G has the property (P), then the index set I is countable, since, if fn(G) > 0, for every i ∈ I there is
a unique n ∈ ℕ such that fn(Gi) > 0. So we will assume that I = {1, 2, . . .}. We prove now a lemma that is the
essence of this approach.

Lemma 3.4. Let G = ⨁∞i=1 Gi be a direct sum of groups with the property (P). If ψ ∈ End(G) is an arbitrary endo-
morphism and Δ = (ψij) is a matrix representation of ψ, then the matrix Δ − diag{ψ11 , ψ22 , . . . , ψnn , . . . } belongs
to the Pierce radical H(G).

Proof. Let
Φ = Δ − diag{ψ11 , ψ22 , . . . , ψnn , . . . }

and consider an arbitrary element x ∈ G[p] so that x = (g1 , g2 , . . . , gn , 0, . . . ) for some n (depending on x),
where gi ∈ Gi[p]; the height of x is t = min{ht(gi)}. Then Φ.x is a vector whose j-th component is of the form
∑i ̸=j αji(gi) with each αji ∈ Hom(Gi , Gj). Since we are assuming that G has the property (P), it follows from
Lemma 3.1 that Hom(Gi , Gj) = H(Gi , Gj), so that the height satisfies ht(αji(gi)) > ht(gi) ≥ t. Thus each com-
ponent of Φ.x has height greater than t, so that the height of Φ.x must exceed the height of x. Thus Φ is
height-increasing on the socle G[p] of G and Φ ∈ H(G), as required.

Applying Lemma 3.4 to the Pierce embedding of the endomorphism ring of G = ⨁∞i=1 Gi we have the next
proposition.

Proposition 3.5. If G = ⨁∞i=1 Gi has the property (P), thenEnd(G)/H(G) is isomorphic (as a ring) to the ring direct
product∏∞i=1(End(Gi)/H(Gi)).

Proof. Let Δ + H(G) be an arbitrary element of End(G)/H(G). Then, by the previous Lemma 3.4, we have that
Δ + H(G) can be expressed uniquely in the form Δ1 + H(G)where Δ1 = diag{ψ11 , ψ22 , . . . , ψnn , . . . }. Now define

λ : End(G)/H(G) →
∞
∏
i=1
(End(Gi)/H(Gi))

by
λ(Δ1 + H(G)) = (ψ11 + H(G1), ψ22 + H(G2), . . . , ψnn + H(Gn), . . . ).

It is easy to check that λ is a well-defined surjective ring homomorphism. Furthermore, the kernel of λ consists
of those Δ1 + H(G) where ψjj ∈ H(Gj) for all j ≥ 1, and hence Δ1 ∈ H(G) follows easily.

As a main consequence, we can prove the following theorem.

Theorem 3.6. Assume that G = ⨁∞i=1 Gi has the property (P). If each Gi has the property that the Pierce
embedding of End(Gi) is surjective, so too is the Pierce embedding of End(G).
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Proof. By Proposition 3.5,

End(G)/H(G) ≅
∞
∏
i=1

End(Gi)/H(Gi).

From the hypotheses we have that, for each i, End(Gi)/H(Gi) is canonically isomorphic (as a ring) via a Pierce
embedding to∏n Mfn(Gi). Since the groups Gi are pairwise UK-independent, for every n ∈ ℕ there exists exactly
one index in such that Mfn(G) = Mfn(Gin ) and Mfn(Gi) = 0 for i ̸= in , whence we get

End(G)/H(G) ≅
∞
∏
i=1
∏
n
Mfn(Gi) = ∏

n

∞
∏
i=1

Mfn(Gi) = ∏
n
Mfn(Gin ) = ∏

n
Mfn(G) .

This concludes the proof.

The particular case of Theorem 3.6 when the groups Gi are torsion-complete is considered in the next result.

Corollary 3.7. Assume that G = ⨁∞i=1 Gi has the property (P), where each Gi is torsion-complete. Then the Pierce
embedding of End(Gi) is surjective.

Proof. The proof is an immediate consequence of Theorem 3.6, since the Pierce embedding for endomorphism
rings of torsion-complete groups is epic. We provide here an alternative, more direct proof.

The hypothesis of UK-independence on the direct summands ensures that, for every n ∈ ℕ for which
fn(G) > 0, there exists exactly one index i(n) ∈ I such that fn(G) = fn(Gi(n)). Therefore, if B = ⨁n Bn is a basic
subgroup of G and B(i) = ⨁n B

(i)
n is a basic subgroup of Gi , for every n ∈ ℕ there exists exactly one index

i(n) ∈ I such that Bn = B(i(n))n . In order to prove that the Pierce embedding Ψ is epic, we must show that, given
a sequence (ϕn)n∈ℕ of endomorphisms of pn−1G[p]/pnG[p] ≅ Bn[p], there exists an endomorphism ϕ of G
that induces the maps ϕn for all n. But each ϕn extends to an endomorphism of Bn = B(i(n))n ; collect all the Bn ’s
whose corresponding indices i(n) ∈ I are the same. Then the corresponding endomorphisms ϕn give rise to an
endomorphism of the basic subgroup of Gi(n), and since Gi(n) is torsion-complete, this endomorphism extends
uniquely to an endomorphism of Gi(n). All these endomorphisms produce the desired endomorphism of G,
since clearly G = ⨁n Gi(n).

The hypothesis of Corollary 3.7 also covers direct sums of cyclic groups, since they are direct sums of homocyclic
bounded groups which are torsion-complete and UK-independent. Notice that the hypothesis of UK-indepen-
dence may be assumed considering the Ulm–Kaplansky invariants of index n ≥ n0 for a fixed n0 ∈ ℕ. We
illustrate this with the following simple result.

Proposition 3.8. Let G = A ⊕ C, where A, C are separable p-groups. If J = {n ≥ 0 | fn(A) ̸= 0 ̸= fn(C)} is finite, then
G = E ⊕ X,where E is a bounded group, X = A󸀠 ⊕ C󸀠with A󸀠, C󸀠 beingUK-independent direct summands of A and C,
respectively, and the Pierce embedding of End(G) is surjective if and only if the Pierce embedding of End(X) is
surjective.

Proof. Let B = ⨁n∈ℕ Bn and D = ⨁n∈ℕ Dn be basic subgroups of A and C, respectively. Set E to be the bounded
summand of G generated by the homocyclic components Bn , Dn with n ∈ J. Note that if X is a fixed comple-
ment of E, then E, X are UK-independent. Thus, if End(X) has a surjective Pierce embedding, it follows from
Theorem 3.6 that the Pierce embedding of End(G) is also surjective.

Conversely, suppose for a contradiction that the Pierce embedding of End(G) is surjective but that of End(X)
is not. Let Y be basic in X with homocyclic components Yk , so that there are endomorphisms ϕk ∈ End(Yk[p])
but no ϕ ∈ End(X) exists such that ϕ ↾ Yk[p] = ϕk . Every endomorphism of G can be represented as a matrix
( α γ
δ β )with α ∈ End(E), β ∈ End(X), γ : X → E and δ : E → X. Now consider the endomorphism ψ of G given by
ψ ↾ E = 0 and ψ ↾ Yk[p] = ϕk . Thus ψ(e, 0) = (α(e), δ(e)) = (0, 0) for all e ∈ E, so that δ must be the zero map.
However, for all yk ∈ Yk[p] we would then have that

(0, ϕ(yk)) = ψ((0, yk)) = (γ(yk), β(yk)),

so that β(yk) = ϕk(yk) = ϕk(yk) for all yk ∈ Yk . Hence β is an endomorphism of X with β ↾ Yk[p] = ϕk , which
is a contradiction. The result follows.
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Note that the argument used in the proof of necessity in Proposition 3.8 made no use of the fact that the sub-
group E was bounded, and thus we have an immediate corollary to the proof.

Corollary 3.9. If X is a direct summand of the group G and the Pierce embedding of End(G) is surjective, then so
too is the Pierce embedding of End(X).

Corollary 3.7 contrasts with a result proved by Kemoklidze in [10], which states that, given a separable p-group
Gwith basic subgroup B, every endomorphism of B extends to an endomorphism of G if and only if either G = B
or G = B. A similar result, with automorphisms replacing endomorphisms, was proved by Leptin in 1960.

As an application of Corollary 3.7,we obtain in thenext example anegative answer to the followingquestion.

Question. Does the hypothesis that the Pierce embedding Ψ : End(G)/H(G) → ∏n Mfn(G) is surjective imply
that G has minimal full inertia?

Recall that the answer to this question is positive ifG is either a direct sumof cyclic groups or is torsion-complete.

Example 3.10. Let G = B1 ⊕ B2, where B1 is an unbounded direct sum of cyclic groups and B2 is unbounded
torsion-complete and semi-standard. Furthermore, assume that B1 and B2 are UK-independent. Then G does
not haveminimal full inertia, by [7, Proposition 3.7], but the Pierce embedding of End(G) is epic, by Theorem 3.6.

4 When the Pierce embedding is not surjective

The results in the preceding section naturally pose the question whether there exist more classes of groups with
the surjectivity property of the Pierce embedding of their endomorphism rings, in particular, if this property
holds for arbitrary direct sums of torsion-complete groups. The next example provides a negative answer to the
latter question by employing two rather different approaches which will be exploited later.

Example 4.1. (i) Let B = ⨁n∈ℕℤ(pn) andG = ⨁i∈ℕ Bi , where Bi = B for all i ∈ ℕ. Then the Pierce embedding
of End(G) is not surjective.

(ii) Let B = ⨁n∈ℕℤ(pn) = C. Then, if G = C ⊕ B, the Pierce embedding of End(G) is not surjective.
To prove the claim in (i), let ⟨bi,n⟩ be the copy of ℤ(pn) in Bi for every i ∈ ℕ. A basic subgroup of G

is C = ⨁i∈ℕ Bi . If C = ⨁n∈ℕ Cn is a decomposition of C as direct sum of its homocyclic summands, then
Cn = ⨁i∈ℕ⟨bi,n⟩; setting pn−1bi,n = xi,n , we clearly have xi,n ∈ pn−1Cn[p], and the elements xi,n (i ∈ ℕ) form a
basis of Cn[p].

For every n ∈ ℕ, define the endomorphism ϕn : Cn[p] → Cn[p] as follows:

ϕn(xi,n) = xi+n,n for all i ∈ ℕ.

Note that the map ϕn is injective. We claim that the element (ϕn)n∈ℕ ∈ ∏n Mfn(G) does not belong to the image
of the Pierce embedding of End(G). Assume, by way of contradiction, that the endomorphism ϕ of G acts as ϕn
on Cn[p] for each n. By Lemma 4.3 below, the map ϕ is injective: The subgroup ϕ(B1) of G is torsion-complete,
being isomorphic to B1. By a result due to Enochs in [4] (see also [5, Lemma 4.2, p. 318]), there exist an m ∈ ℕ
and indices i1 , i2 , . . . , ik such that (pmϕ(B1))[p] is contained in Bi1 ⊕ Bi2 ⊕ ⋅ ⋅ ⋅ ⊕ Bik . It follows that

ϕ(pmB1)[p] ⊆ Bi1 [p] ⊕ Bi2 [p] ⊕ ⋅ ⋅ ⋅ ⊕ Bik [p].

As ϕ is injective, we have ϕ(pmB1)[p] = ϕ(pmB1[p]). Thus we get the desired contradiction since, for n
sufficiently large, x1,n ∈ pmB1[p] and ϕ(x1,n) = ϕn(x1,n) = x1+n,n does not belong to Bi1 [p] ⊕ Bi2 [p] ⊕ ⋅ ⋅ ⋅ ⊕ Bik [p].

For (ii), observe that each homocyclic component Gn of a basis of G is of the form ⟨cn⟩ ⊕ ⟨bn⟩, where each
of cn , bn is of order pn . Define endomorphisms ϕn of Gn[p] by setting ϕ(pn−1cn) = pn−1bn , while ϕ(pn−1bn) = 0.
We claim that there does not exist an endomorphism ϕ of G such that ϕ ↾ Gn[p] = ϕn; this is clearly enough to
prove the desired result. Suppose, for a contradiction, that such a ϕ exists. Then ϕ has a matrix representation
Δ = ( α γ

δ β ) where δ is a homomorphism from C → B; it is a well-known result of Megibben that such a homo-
morphism is necessarily small. However, Δ(pn−1cn) = pn−1bn ̸= 0, so that δ(pn−1C[p]) ̸= 0 for all n. As δ is small,
this is impossible, and the result follows.
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Elaborating on the idea in Example 4.1 (i), we obtain a more general result in the next Theorem 4.4. First, we
need two preliminary lemmas.

Lemma 4.2. Let C = ⨁n∈ℕ Cn be an unbounded direct sum of cyclic groups, where Cn is its n-th homocyclic com-
ponent, and let C be its torsion-completion. Let χ : C → C be an endomorphism and χ its unique extension to C. If
χ(Cn[p]) = 0 for all n, then χ = 0

Proof. It is enough to prove that χ ↾ C[p] = 0. Let x = ∑n cn ∈ C[p], with cn ∈ Cn[p] for all n. Then

χ(x) = χ(∑
n
cn) = ∑

n
χ(cn) = ∑

n
χ(cn) = 0,

where the second equality follows by the continuity of χ with respect to the p-adic topologies. So the claim
follows.

Lemma 4.3. Let C = ⨁n∈ℕ Cn be an unbounded direct sum of cyclic groups, where Cn is its n-th homocyclic com-
ponent, and let C be its torsion-completion. For each n ∈ ℕ, let ϕn : Cn[p] → Cn[p] be an injective endomorphism.
(i) If ϕ : C → C is an endomorphism such that ϕ ↾ Cn[p] = ϕn for all n, then ϕ is injective.
(ii) If C is a basic subgroup of a group G and ψ : G → G is an endomorphism such that ψ ↾ Cn[p] = ϕn for all n,

then ψ is an injective map.

Proof. (i) It is enough to prove that ϕ ↾ C[p] is injective. Let 0 ̸= x = ∑n cn ∈ C[p], where cn ∈ Cn[p] for all n,
and let ck be the first cn not equal to 0. Assume, by way of contradiction, that ϕ(x) = 0. Then

0 ̸= ϕ(ck) = −ϕ( ∑
n>k

cn) ∈ Ck[p] ∩ ∑
n>k

Cn ,

which is manifestly absurd since
Ck ∩ ∑

n>k
Cn = 0.

(ii) Let ϕ = ⨁n ϕn . The maps ϕ, ψ : G → G coincide on Cn[p] for all n. Therefore, setting χ = ϕ − ψ, we get
that χ(Cn[p]) = 0 for all n ∈ ℕ. Thus χ = ϕ − ψ = 0 by Lemma 4.2. But ϕ is injective, by point (i), so ψ as well as ψ
are injective maps.

We are now able to prove that the Pierce embedding of the endomorphism ring of a direct sum of torsion-
complete groups with enough positive Ulm–Kaplansky invariants of the same index is not surjective.

Theorem 4.4. Let G = ⨁i∈ℕ Bi be a direct sum of countably many torsion-complete groups, with the Bi being
unbounded direct sums of cyclic p-groups. Assume that there is an infinite subset J ofℕ such that, for every n ∈ J,
fn−1(Bi) > 0 for i ∈ In−1, an infinite subset of ℕ depending on n. If there exists an index i belonging to infinitely
many subsets In−1, then the Pierce embedding of End(G) is not surjective.

Proof. For each n ∈ J, let ⟨bi,n⟩ be a cyclic summand of Bi of order pn , with i ranging over In−1. A basic sub-
group of G is C = ⨁i∈ℕ Bi , so that, for each n ∈ J, C has a homocyclic component Cn which has⨁i∈In−1⟨bi,n⟩ as
a summand: Cn = ⨁i∈In−1⟨bi,n⟩ ⊕ Yn for some Yn .

For each n ∈ J, define the endomorphism ϕn : Cn[p] → Cn[p] by setting ϕn to be the identity map on Yn
and, denoting pn−1bi,n by xi,n ,

ϕn(xi,n) = xji ,n for all i ∈ In−1 ,

where i + n ≤ ji ∈ In−1 and ji > ji󸀠 for all i󸀠 < i in In−1; such an index ji exists by the hypothesis that In−1 is
infinite. If n ∉ J, define the endomorphism ϕn : Cn[p] → Cn[p] to be the identity map. Note that the maps ϕn
are injective for all n ∈ ℕ.

We claim that the element (ϕn)n∈ℕ ∈ ∏n Mfn(G) does not belong to the image of the Pierce embedding of
End(G). Assume, by way of contradiction, that the endomorphism ψ of G acts as ϕn on Cn[p] for each n, that is,
ψ ↾ Cn[p] = ϕn . By Lemma 4.3 (ii), ψ is an injective map.

By hypothesis, there exists an index i belonging to infinitely many In−1. The subgroup ψ(Bi) of G is torsion-
complete, being isomorphic to Bi by the injectivity of ψ. By the result due to Enochs in [4] quoted above, there
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exist an m ∈ ℕ and indices i1 , i2 , . . . , ik such that (pmψ(Bi))[p] is contained in Bi1 ⊕ Bi2 ⊕ ⋅ ⋅ ⋅ ⊕ Bik . It follows
that

ψ(pmBi)[p] ⊆ Bi1 [p] ⊕ Bi2 [p] ⊕ ⋅ ⋅ ⋅ ⊕ Bik [p].

But ψ(pmBi[p]) = ψ(pmBi)[p]. Therefore, we get the desired contradiction since, for n sufficiently large,
0 ̸= xi,n ∈ pmBi[p] and ψ(xi,n) = ψn(xi,n) = xji ,n does not belong to Bi1 [p] ⊕ Bi2 [p] ⊕ ⋅ ⋅ ⋅ ⊕ Bik [p].

Example 4.1 (i) is, of course, a special case of Theorem 4.4. The condition that there exists an index i belonging to
infinitelymany subsets In−1 ensures that one can find one of the subgroups Bi with appropriate Ulm–Kaplansky
invariants. An alternative approach would be to start with a given fixed B1 and using this as group to define J,
and then construct the remaining groups Bi using the properties in the hypothesis on J.

In a similar way we also have the following result, which clearly is based on Example 4.1 (ii).

Theorem 4.5. Let A, C be separable p-groups such the invariants fn(A), fn(C) are both non-zero for n ∈ I, an
infinite set, and Hom(A, C) = Homs(A, C). If G = A ⊕ C, then the Pierce embedding of End(G) is not surjective.

Proof. Let Bn (n ∈ I) be a homocyclic component of a basic subgroup of G so that Bn has a summand of the form
⟨an⟩ ⊕ ⟨cn⟩ where pnan = 0 = pncn , with an ∈ A, cn ∈ C. For each n ∈ I, define an endomorphism ϕn of Bn[p]
by sending pn−1an 󳨃→ pn−1cn and extending this trivially to the whole of Bn[p]. Now, if the Pierce embedding
of End(G) were surjective, there would exist an endomorphism ϕ of G with ϕ ↾ Bn[p] = ϕn . However, since
G = A ⊕ C, the action of ϕ on pn−1an is given by the action of γ on pn−1an , where γ is a fixed homomorphism in
Hom(A, C) = Homs(A, C). Thus, we have that

0 ̸= pn−1cn = ϕ(pn−1an) = γ(pn−1an) for all n ∈ I.

Since, by assumption, I is infinite, this contradicts the fact that γ ∈ Homs(A, C), and therefore establishes the
claim.

If we strengthen the hypotheses in Theorem 4.5, we obtain the following satisfactory equivalence:

Corollary 4.6. Let A, C be separable p-groups such that Hom(A, C) = Homs(A, C) and the Pierce embeddings of
both End(A), End(C) are surjective. If G = A ⊕ C, then the Pierce embedding of End(G) is surjective if and only if
the set J = {n | fn(A) ̸= 0 ̸= fn(C)} is finite.

Proof. If J is not finite, then it follows immediately from Theorem 4.5 that the Pierce embedding of End(G) is
not surjective.

Conversely, suppose that J is finite. Then, as in the proof of Proposition 3.8, wemaywrite G = E ⊕ X, where E
is bounded and X has the form X = A󸀠 ⊕ C󸀠 with A󸀠 , C󸀠 being summands of A, C, respectively. Furthermore, the
Pierce embedding of End(G) is surjective precisely if that of End(X) is surjective. It follows from Corollary 3.9
that the Pierce embeddings of End(A󸀠), End(C󸀠) are both surjective and,moreover, A󸀠 , C󸀠 are UK-independent, so
that an application of Theorem3.6 yields the desired result that the Pierce embedding of End(X) is surjective.

There are many concrete examples arising from Theorem 4.5: if (A, C) is a small pair in the sense of [9], we can
take any A ∈ A and C ∈ C satisfying the hypothesis on the Ulm–Kaplansky invariants required by the theorem.
There are 22c (c denotes the continuum) examples of such pairs, the most important being the one formed by
thick and fully thin groups, and that formed by fully thick and thin groups (we refer to [9] for these notions).
The choice of A = B and C = B, a standard basic group, provides a simple example.

5 Relationships between the Pierce decomposition and the Pierce
embedding

Now, we look for general conditions ensuring that the map Ψ is not surjective. These conditions can be deduced
from some relationships between the Pierce decomposition and the Pierce embedding of the endomorphism
ring.
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First, we prove the following lemma, making use of the notation above and of the fact that Pierce in [12]
proved that H(G) = J(E(G), Es(G)), where

J(E(G), Es(G)) = {ϕ ∈ End(G) | ϕθ ∈ J(Ends(G)) for all θ ∈ Ends(G)}

where, as usual, J( ⋅ ) denotes the Jacobson radical.

Lemma 5.1. Let G be an unbounded group and let End(G) = F̂G ⊕ Ends(G) be the Pierce decomposition of its
endomorphism ring.

(i) Ψ((F̂G + H(G)/H(G)) has cardinality at most p ⋅ rkJp FG .
(ii)Ψ((Ends(G) + H(G))/H(G)) is contained in the direct sum⨁n∈ℕMfn(G) and is isomorphic to⨁n∈ℕMfn(G).

Proof. (i) Since p End(G) ⊆ H(G), (F̂G + H(G))/H(G) is an epimorphic image of

(F̂G + p End(G)/p End(G)) ≅ F̂G/pF̂G ≅ FG/pFG ,

and FG/pFG has cardinality p ⋅ rkJp FG (which coincides with rkJp FG if this rank is infinite).
(ii) If ϕ ∈ Ends(G), there exists a k such that ϕ(pnG[p]) = 0 for all n ≥ k. Hence, μ(ϕ) ∈ ⨁n∈ℕMfn(G) because

ϕn = 0 for all n ≥ k. Therefore, μ(Ends(G)) ≤ ⨁n∈ℕMfn(G), and consequently

Ψ((Ends(G) + H(G))/H(G)) ≤⨁
n∈ℕ

Mfn(G) .

The final statement was proved in [12, Theorem 13.6]; we include here the proof for the sake of complete-
ness. Recalling that H(G) = J(E(G), Es(G)), by [12, Lemma 14.2 (e)], one has that H(G) ∩ Ends(G) = J(Ends(G)).
However, Ψ is monic, so that

Ψ((Ends(G) + H(G))/H(G)) ≅ (Ends(G) + H(G))/H(G)
≅ Ends(G)/(H(G) ∩ Ends(G))
= Ends(G)/J(Ends(G))
≅⨁
n∈ℕ

Mfn(G) ,

where the final isomorphism comes from [12, Theorem 13.6].

Theorem 5.2. Let G be an unbounded group and let End(G) = F̂G ⊕ Ends(G) be the Pierce decomposition of its
endomorphism ring.
(i) If rkJp FG is countable and G is semi-standard, then |Im(Ψ)| is countable.
(ii) If rkJp FG < c and fn(G) < c for all n ∈ ℕ, then |Im(Ψ)| < c.
In both cases, Ψ is not epic.

Proof. In both cases, apply Lemma 5.1, noting that if G is semi-standard, then Mfn(G) is finite for all n since Bn
is such. Since the cardinality of∏n Mfn(G) is c, in both cases Ψ cannot be epic.

Note that, if in Theorem 5.2 we assume in addition that rkJp FG is finite, then Im(Ψ) is a finite extension of
a subgroup of⨁n∈ℕMfn(G), and hence, as an additive group, is a semi-standard direct sum of cyclic groups.

Our next example shows that evenwhen a semi-standard separable p-group has the completion of a “large”
free Jp-module in its Pierce decomposition, the Pierce embedding of its endomorphism ring may fail to be
surjective.

Example 5.3. There exists a semi-standard separable p-group G such that the Pierce decomposition of G has
the form End(G) = A ⊕ Ends(G), where A is the completion in the p-adic topology of a free Jp-module of rank c,
the continuum, but the Pierce embedding of End(G) is not surjective. Furthermore, the group G does not have
minimal full inertia.

To exhibit such a group, we utilize an example constructed by Braun and Strüngmann in their work on
Hopfian and co-Hopfian groups [2]. The group in question has the following properties: a basic subgroup of G
is of the form B = ⨁n∈ℕ(ℤ(pn))(n) and End(G) = Jp[[ϕ]] ⊕ Ends(G), where ϕ is transcendental over Jp and sat-
isfies ϕ(G[p]) = 0. Note that Jp[[ϕ]] is the completion in the p-adic topology of a free Jp-module F of rank c, the
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continuum:
F/pF ≅ F̂/pF̂ = ∏

ℵ0
Jp/p∏
ℵ0
Jp ≅ ∏
ℵ0
ℤ(p).

Suppose, for a contradiction, that the Pierce embedding of End(G) is surjective. Each homocyclic component
of B is of the formℤ(pn)(n), so wemay choose for each n > 1 a non-zero endomorphism ψn of Bn[p]which is not
an automorphism of Bn[p]. If the Pierce embedding of End(G) is surjective, then there exists an endomorphism
α of G such that α ↾ Bn[p] = ψn for all n. Now α has the form

α = (π0 + π1ϕ + ⋅ ⋅ ⋅ + πkϕk + . . . ) + θ,

where πi ∈ Jp and θ is a small endomorphism of G. Thus there is an integer, N > 1 say, with θ(pNG[p]) = 0. Since
BN+1[p] ≤ pNG[p], we have that

0 ̸= ψN+1(BN+1[p]) = π0(BN+1[p]),

so that π0 ̸= 0 and p ∤ π0, whence π0 is a unit in Jp , forcing α to be an automorphism of G. Since

α ↾ BN+1[p] = ψN+1 ,

this contradicts the choice of ψN+1, and the Pierce embedding of End(G) is not surjective.
Finally, since the group G is separable and uncountable, every fully invariant subgroup H of G has the form

H = {x ∈ G | UG(x) ≥ u} for someU-sequenceu and is then necessarily uncountable since it contains a subgroup
of the form pnG[p] for some integer n. The subgroup B[p] is countable, and thus cannot be commensurablewith
any fully invariant subgroup of G. However, B[p] is fully inert, since for every α ∈ End(G), arguing as above, we
have that α(B[p]) = (π0 + θ)(B[p]). Thus (B[p] + α(B[p]))/B[p] is finite since B is semi-standard and θ is small.
This concludes our example.

Suppose that G is a separable p-group and fix a basic subgroup B of G so that one may consider G as a pure
subgroup of B containing B. For convenience, wewill write D = G/B so that D ≅ ⨁μG ℤ(p

∞) is a divisible group
of rank μG , and D1 = B/G ≅ ⨁λG ℤ(p

∞) is a divisible group of rank λG .
It is well known (see [5, Theorem 3.5, p. 313]) that, if μG ≤ ℵ0, then G is Σ-cyclic. In the next theorem, we will

see that, if G is thin, the finiteness of λG implies the finiteness of the Jp-rank of FG , where End(G) = F̂G ⊕ Ends(G)
is the Pierce decomposition of End(G). Recall that G is thin if every homomorphism from a torsion-complete
group T to G is small.

Theorem 5.4. Let G be a separable thin group such that λG is finite, and let End(G) = F̂G ⊕ Ends(G) be the Pierce
decomposition of End(G). Then the Jp-rank of FG is finite, and consequently G is also thick and Ψ is not epic.

Proof. From the pure exact sequence 0→ G → B → D1 → 0, we get the following two sequences:

0→ Hom(B, G) α→ End(G) → PExt(D1 , G), where α is the obvious restriction map, (5.1)
0→ End(D1) → PExt(D1 , G) → PExt(D1 , B̄) = 0.

Thus
PExt(D1 , G) ≅ End(D1) ≅ ∏

n
⨁̂
n
Jp ,

where n = rk(D1).
Sowehave that End(G)/α(Hom(B, G)) is isomorphic to a free Jp-module of finite rank atmost n2. AsG is thin,

Hom(B, G) = Homs(B, G), and as α is the restriction map, it maps Hom(B, G) into Ends(G). In fact, the image is
precisely Ends(G) since, due toG being pure in B, small endomorphisms ofG extend to small homomorphisms in
Hom(B, G); see, for example [12, Theorem 4.4]. Since End(G)/ Ends(G) is isomorphic to F̂G , we conclude that FG
is a free JP-module of finite rank. The last claim follows by Theorem 1.2.

An immediate consequence of Theorem 5.4 and of Theorem 1.1 is that a semi-standard thin group with λG finite
does not haveminimal full inertia. Unfortunately, it is not clear how to proceed in the casewhere λG is countable,
since in this case

PExt(D1 , G) ≅ End(D1) ≅ ⨁̂
c
Jp .
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Concrete examples of separable thin groups G satisfying the hypotheses of Theorem 5.4 are easily con-
structed. In fact, the proof of that theorem actually shows that for any separable group G with λG finite, the
endomorphism ring satisfies End(G) = F ⊕ α(Hom(B, G)), where F is a free Jp-module of finite rank and α is
the restriction map in the exact sequence (5.1). The proof also shows that, to obtain the desired Pierce decom-
position, it suffices to show that every homomorphism from B to G is small. In the situation where λG = 1, so
that G is a maximal pure subgroup of B containing B, this is easily achieved using an old argument of Beaumont
and Pierce [1, Lemma 5.2]; further details may be found in the paper [6] by the first author.

Another example of a thin group G with λG = 1 is provided by Hill and Megibben in [8], where a proper
quasi-complete group is constructedwith λG = 1. Recall that a quasi-complete group is a reduced p-group G such
that the closure in the p-adic topology of every pure subgroup is still pure; it is well known that torsion-complete
groups are quasi-complete, and a quasi-complete group is proper if it is not torsion-complete. Megibben proved
in [11] that a proper quasi-complete group is thin.
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