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a b s t r a c t

The propagation of water waves of finite depth and flat bottom is studied in
the case when the depth is not small in comparison to the wavelength. This
propagation regime is complementary to the long-wave regime described by the
famous KdV equation. The Hamiltonian approach is employed in the derivation
of a model equation in evolutionary form, which is both nonlinear and nonlocal,
and most likely not integrable. Possible implications for the numerical solutions
are discussed.
© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under

the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Most of the model equations for water waves are approximations for the long-wave propagation regimes,
since most of the energy of the wave motion is concentrated in these waves. Long waves (or shallow-water
waves) are defined usually as the depth to wavelength ratio δ = h/λ < 0.05. Several famous integrable
nonlinear equations, like the KdV equation [1,2], are models for long waves of small amplitude. The short
waves (or waves over deep water) are usually defined with δ > 0.5, and the intermediate waves (or transitional
waves) - with 0.05 < δ < 0.5. The intermediate and short waves received a lot less attention, and one reason
is perhaps the fact that the corresponding approximations lead to more complicated, nonlinear and nonlocal
equations. In [3] an integral equation for surface waves has been proposed for arbitrary wavelengths and finite
depth. The problem has been studied in [4] and model equations both for long and short waves are derived
from the governing equations as well. The short-wave effects usually compete with the capillarity effects and
then resonances can be observed — these have been studied quite a lot, see for example [5–12].

For the intermediate long waves or for waves on deep water the so-called Benjamin–Ono (BO) [13–15]
and the Intermediate Long Wave Equation (ILWE) [16–18] are derived for the internal waves below a flat
surface, which leads to some simplifications and these models are in fact integrable.
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Fig. 1. Coordinates and general setup.

The aim of this work is to illustrate one application of the Hamiltonian approach in the derivation of
water waves model for a single layer of water in the case of small amplitude short and intermediate waves.

Following the seminal paper of Zakharov [19], the Hamiltonian approach for water waves propagation
has been developed extensively, see for example [20–25]. A convenient explicit representation of the
Hamiltonian involves the non-local Dirichlet–Neumann operator, e.g. [26–28]. In our derivation we are using
the Hamiltonian approach for a single layer gravity waves, and only the assumption for a small amplitude
compared to depth has been made.

2. Preliminaries

2.1. The governing equations

We choose a Cartesian coordinate system with a horizontal coordinate x and vertical coordinate y. We
denote with t the time variable. We recall briefly the governing equations for gravity water waves with a
free surface (denoted y = η(x, t)) of a two dimensional irrotational water flow bounded below by a flat
bed y = −h (h being some positive constant) and above by the surface itself, see Fig. 1. Denoting with
(u(x, y, t), v(x, y, t)) the velocity field, with P (x, y, t) the pressure and with g the gravitational constant the
equations of motion are the Euler equations (for fluid density ρ = 1)

ut + uux + vuy = −Px

vt + uvx + vvy = −Py − g,
(2.1)

and the equation of mass conservation
ux + vy = 0. (2.2)

The system (2.1) and (2.2) is complemented by the kinematic boundary conditions

v = ηt + uηx on y = η(x, t),
v = 0 on y = −h,

(2.3)
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and P = Patm on y = η(x, t). The fluid motion in the absence of vorticity can be expressed through the
velocity potential φ as

u = φx(x, y, t), v = φy(x, y, t), (2.4)

The zero vorticity within the flow is chosen for simplicity, that is uy −vx = 0, the surface tension is neglected
as well.

Introducing ξ(x, t) = φ(x, η(x, t), t), the one-dimensional wave propagation on the surface in the x

direction can be expressed in a Hamiltonian form [19,23,27]

ηt = δH

δξ
and ξt = −δH

δη
, (2.5)

where

H = 1
2

∫
R

∫ η

−h

(u2 + v2)dydx + g

∫
R

∫ η

−h

ydydx (2.6)

is the total energy of the fluid (with density ρ = 1). It could be written in terms of the surface variables ξ, η.

2.2. The Hamiltonian for the short and intermediate gravity water waves

In the case of gravity waves the Hamiltonian could be expressed through the surface variables as

H[ξ, η] = 1
2

∫
R

ξG(η)ξ dx + g

2

∫
R

η2 dx (2.7)

where G(η) is a nonlocal self-adjoint operator, known as Dirichlet–Neumann operator, see more details for
example in [27]. The Hamiltonian variables ξ, η are assumed Schwartz class functions with respect to both
arguments, so that the integrals and operators under consideration make sense.

We introduce, as usual, the scale parameters ε = a/h and δ = h/λ where a is the wave amplitude
(0 < |η(x, t)| ≤ a) and λ is the wavelength. For small amplitude short and intermediate wavelengths the
scaling is ε ≪ 1 but δ cannot be considered small, and the Dirichlet–Neumann operator has a perturbative
expansion in the form

G = G0 + εG1 + ε2G2 + · · · .

In what follows we need only the first two terms,

G(η) = D tanh(hD) + ε(DηD − D tanh(hD)ηD tanh(hD)) + O(ε2), (2.8)

where D = −i∂x ≡ −i∂. Let us introduce for convenience T := −i tanh(hD), then

G(η) = ∂T − ε∂η∂ − ε∂TηT∂ + O(ε2). (2.9)

The other scales are as follows. The wave elevation, η ≃ εh is of order ε, and ξ is of the same order as η,
i.e. of order ε. The operator hD has a Fourier multiplier hk ≃ 2πh/λ ≃ 2π as far as δ ≃ 1 then ∂x is of the
order of (1/h)(hD) ≃ 2π/h which is a fixed constant and therefore is O(1). The time derivative is assumed
to be also of order 1. Therefore, writing explicitly the scale parameter, and keeping terms up to ε3 we obtain

H(η, ξ) = ε2

2

∫
ξTξx dx + ε2g

2

∫
η2 dx + ε3

2

∫
ηξ2

x dx − ε3

2

∫
η(Tξx)2 dx. (2.10)
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3. The main result

3.1. Nonlinear Hamiltonian equations

From (2.5) and (2.10) we obtain the following system of coupled equations

ξt = −
(

gη + ε

2ξ2
x − ε

2(Tξx)2
)

,

ηt = Tξx − ε(ηξx)x − εT(ηTξx)x.

or, written through the variable u = ξx,

ut + gηx + ε

2
(
u2 − (Tu)2)

x
= 0, (3.1)

ηt − Tu + ε(ηu)x + εT(ηTu)x = 0. (3.2)

Now we introduce a new variable, v = u−εηxTux. Noticing that v = u+O(ε), and neglecting terms of order
ε2 we obtain the system

vt + gηx + εvvx − εgηxTηx = 0, (3.3)
ηt − Tv + ε(ηv)x + εT(ηTv)x = 0. (3.4)

Next, we differentiate (3.4) with respect to t. Using the asymptotic expansions vt = −gηx + O(ε), ηt =
Tv + O(ε) and Tv = ηt + O(ε) where possible, and neglecting terms of order ε2 we obtain a single equation
for η,

ηtt + gTηx − ε

[
gηηx + gT(ηTηx) − ηtT

−1ηt − 1
2T(T−1ηt)2 − 1

2T(η2
t )

]
x

= 0. (3.5)

This equation describes the surface motion of all types of waves, including the short and intermediate waves.
As it could be seen this is a complicated nonlinear and nonlocal equation since T in principle involves
infinitely many derivatives.

A further simplification comes in the case of short waves (or waves over deep water), when δ = h/λ ≥ 0.5,
then | tanh(kh)| ≥ tanh(π) = 0.99627, thus for the given range of δ, we observe that | tanh(kh)| approaches
1. Therefore we use the approximation T = −i tanh(hD) ≈ −isgn(D) ≡ H, where H is the well known
Hilbert transform, defined by

H{f}(x) := P.V.
1
π

∫ ∞

−∞

f(x′)dx′

x − x′ . (3.6)

It has also the property H−1 = −H, therefore the equation in this case becomes

ηtt + gHηx − ε

[
gηηx + gH(ηHηx) + ηtHηt − 1

2H(Hηt)2 − 1
2H(η2

t )
]

x

= 0. (3.7)

Using the following identity about the Hilbert transforms

H(f2) = H(Hf)2 + 2fHf

we can rewrite Eq. (3.7) in the form

ηtt + gHηx − ε
[
gηηx + gH(ηHηx) − H(Hηt)2]

x
= 0. (3.8)

This is the equation obtained in [4] by other methods from the governing equations. The equation is second
order in t, and in addition, it is nonlinear and nonlocal, because of the nature of the Hilbert transform.
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3.2. Evolution equation

The author of [4], Prof. Matsuno has posed the problem whether (3.8) could be written in an evolutionary
form, like for example the nonlinear KdV equation [1]. The evolutionary form which involves one time
derivative is definitely advantageous for numerical solutions in comparison to the second-order in time (3.8).
Here we show that this is possible, however the equation still remains highly nonlocal.

The first observation is that the dispersion relation is c2(k) = g/|k|, or c(k) = ±
√

g/|k|. The two signs
are for the left- and the right-running waves. Let us take the plus sign and analyse the right-running waves.
In operator form the wave-speed is ĉ = √

g|D|−1/2, where |D| = Dsgn(D) = −isgn(D)∂ = H∂. Thus we
expect to obtain an evolutionary equation in the form

ηt + ĉηx + εF[η] = 0 (3.9)

where F is some expression defined via η. Using the fact that ∂t = −ĉ∂x + O(ε), we differentiate (3.9) with
respect to t and obtain

ηtt + ĉηxt + εFt = 0, (3.10)
ηtt + ĉ(−ĉηx − εF)x − εĉFx = O(ε2), (3.11)
ηtt − ĉ2ηxx − 2ε(ĉF)x = O(ε2). (3.12)

The comparison with (3.8) yields

F[η] = 1
2 ĉ−1 [

gηηx + gH(ηHηx) − H(Hĉηx)2]
. (3.13)

Thus we obtain a highly nonlocal equation in an evolutionary form:

ηt + ĉηx + ε

2 ĉ−1 [
gηηx + gH(ηHηx) − H(Hĉηx)2]

= 0. (3.14)

The equation is (most likely) not integrable, and in contrast to the famous integrable KdV or NLS
equations, it looks rather complicated — as a matter of fact it is strictly speaking an integro-differential
equation. The possible numeric solution would require a Fourier transform at every time step, then
calculation of the corresponding Fourier multipliers and eventually evaluation of all values of the function
at the next time step. Introducing a Fourier transform,

η(x) = 1
2π

∫
eikxE(k)dk, E(k) =

∫
e−ikxη(x)dx, (3.15)

after a substitution in (3.14) we obtain an integro-differential equation for E(k, t) :

− iEt + sgn(k)
√

g|k|E +
ε
√

g|k|
4π

∫ [
q + sgn(k)(

√
|q||k − q| − |q|)

]
E(k − q)E(q) dq. (3.16)

This form of the equation may have advantages for the application of numerical methods of solutions.

3.3. Example

Since the model Eq. (3.14) is nonlocal, it is not possible to formulate a proper initial value problem.
What is possible is to generate a solution working perturbatively, starting from some solution η(0)(x, t) of
the linearised equation. Let us take for simplicity η(0)(x, t) = η0 cos(k0x−

√
g|k0|t) which solves the equation

in its leading order (linear approximation), η0, k0 are constants. Then

E(0) = πη0(δ(k − k0) + δ(k + k0))e−isgn(k)
√

g|k0|t.
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looking for a solution

η(x, t) = η(0)(x, t) + εη(1)(x, t) + · · · , (3.17)
E(k, t) = E(0)(k, t) + εE(1)(k, t) + · · · (3.18)

we obtain

E(1)(k, t) = πη2
0k0

4(
√

2 − 1)
(δ(k − 2k0) + δ(k + 2k0)) e−2isgn(k)

√
g|k0|t, (3.19)

η(1)(x, t) = η2
0k0

4(
√

2 − 1)
cos(2k0x − 2

√
g|k0|t). (3.20)

This is the second harmonic, and its amplitude is smaller by a factor of ε. Apparently the nonlinearities
generate (in principle) all other multiple modes, but the smallness of their amplitudes makes them
insignificant.

4. Discussion

We point out that other quantities could be determined from the solution η(x, t). From (3.2) and (3.14)
by excluding ηt one can find an expression for the “tangential” velocity u in terms of η :

u = ĉHηx − εH(ηĉHηx)x − εHF[η] + O(ε2). (4.1)

Furthermore, it is known that in the irrotational case from the surface variables (η, u) one can recover
the variables like the pressure and the velocity potential φ(x, y) in the bulk of the fluid.

The solitary waves are stable travelling wave solutions η(x − ct), which are characterised by a constant
speed c and fast decay of the wave profile, η(x − ct) → 0 at x → ±∞. Eq. (3.8) in this case simplifies to

Hη′ = g

c2 (η + εH(ηη′)) + O(ε2). (4.2)

The solitary waves have a different nature in comparison to the periodic waves. Their existence has been
studied in [29] where the claim is that solitary waves for deep water do not exist. The result is based on
the analysis of an equation, which is asymptotically equivalent to (4.2). A particular parameterisation of
the water surface is used, which introduces a new variable, see also [30]. The presence of surface tension
changes the situation and capillary–gravity waves of solitary type on deep water do exist. This has been
proven in [31], although numerically these have been studied previously for example in [32,33].

Additional effects like vorticity, currents and surface tension can also be handled in the Hamiltonian
framework and included as generalisations, see for example in [12,25] and this will be accomplished in a
separate publication.

Data availability

No data was used for the research described in the article.
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