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ABSTRACT  
 To investigate the influence of starvation on the biochemical response of Aspergillus niger. The 

biochemical impact of starvation was determined by morphological observation, immunofluorescent 

analysis, High-performance liquid chromatography (HPLC) and western blot over 8 days. Results showed 

that starvation can inhibit fungi survival rate in a time-dependent manner.  A. niger exhibited active 

responses to starvation such as secretion of some 40 kDa proteins to manage changes in water balance. 

Conidiophores disintegrated from lack of nutrient. The immunofluorescent analysis demonstrated 

elevated ROS accumulation in starved cells (P<0.001). The fluorescent microscopy of the 

TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labelling) staining showed positive in the 

starved fungi. The mitochondrial stains revealed that the fluorescence emitted by the normal fungi was 

higher than the starving ones. Western blot analysis showed that starvation can induce up-regulation 

expression of cell cycle-associated proteins such as PKA, Caspase 1 and Heat Shock Protein 40 

(HSP40).These results suggest that upregulation of apoptosis-associated protein may contribute to fungi 

apoptosis. In conclusion, starvation can active PKA, Caspase 1 and HSP40 protein to inhibit A. niger 

growth by inducing cell apoptosis. 

Keywords: Aspergillus niger; starvation; apoptosis; PKA; Caspase 1; Heat Shock Protein 40 

 

INTRODUCTION 
Managing changes in water balance is a fundamental challenge for fungi in most environments. 

For survival in yeasts and fungi, starvation has been shown to depend on the nature of the missing 

nutrients. The missing nutrients of carbon, phosphate and nitrogen, amino acids or other metabolites can 

cause fungi death [1]. Apoptosis can be induced by aging or starvation. Apoptosis is cellular death that 

involves the active participation of the cell through the activation of a discrete signalling pathway(s) and 

has been an area of intensive study in multi-cellular organisms for many years.  In animals, the 

mitochondrion integrates diverse cellular stress signals and initiates the death execution pathway, and 

studies indicate a similar involvement for mitochondria in regulating apoptosis in plants [2]. During the 

past decade, evidence of apoptosis has been obtained in both yeast [3] and some filamentous fungi [4]. 

Amphothericin B [5], Hydrogen peroxide [6], Farnesol [7], Sphingoid long-chain bases [8] and Antifungal 

protein PAF [9] induced apoptosis have been studied in the area of  externalization of phosphatidylserine, 



release of cytochrome c, involvement of cysteine proteases, and the presence of mitochondrial-signalling 

pathways. However, the mechanism of the cell death by starvation response is not clear. 

ROS are important signalling molecules that induce several pathways [10]. During heat, the 

fusion hyphae undergo a series of apoptosis-associated morphological changes, including cytoplasm 

condensation, vacuolization, and shrinkage of the plasma membrane [11]. Several factors that control 

various molecular pathways (e.g. respiration, ROS production, mitochondrial DNA stability, dietary 

restriction, copper metabolism, translation fidelity, mitochondrial protein import and mitochondrial 

dynamics) are involved in lifespan control in fungus [12-14].  

Until recently, it had been assumed that apoptosis evolved only with the evolution of multi-

cellularity. However, it has been discovered that apoptosis inducing proteins from mammalian cells such 

as BAX could induce death with an apoptotic phenotype when expressed in the yeast Saccharomyces 

cerevisiae, and that this could be prevented by the simultaneous expression of the anti-apoptotic 

mammalian protein BCL-2 (B-cell lymphoma-2). An interact between BCL-2/BCL-XL (B-cell lymphoma-

extra large) has been reported in regulated apoptosis [15]. The caspase-like proteins have been found in 

C. elegans, Drosophila, zebrafish and mammals to involve apoptosis [16]. But many of the cell-death 

regulators that have been characterized in humans, worms and flies are absent from the fungi, indicating 

that fungi probably use other regulators to control this process. Fungi lack biochemical homologues of 

caspases, aspartate-specific cysteine proteases that are among the main players in mammalian apoptosis. 

In addition, although homologues of BCL-2 family members – which function as inducers (pro-apoptotic) 

or inhibitors (anti-apoptotic) of apoptosis – have not, as yet, been identified in fungi, heterologous 

overexpression of the corresponding genes specifically affects apoptosis [17-19]. Increased PKA led to 

inflammation-independent activation of caspase-1. Caspase-1 plays a prominent role in inflammatory 

responses and the regulation of apoptosis of various tumour cells [10, 11]. 

Aspergillus niger will be incubated in the water without additional nutrition for serial of 8 days. 

The fungi growth is counted on the agar plates to investigate fungi survival rate in a time-dependent 

manner. Fungi morphology will be observed under light microscopy. The immunofluorescent analysis 

will be performed to demonstrate ROS accumulation. TUNEL (terminal deoxynucleotidyl transferase 

dUTP nick end labelling) and mitochondrial staining will be studied under fluorescence microscopy. 

Protein separation will be conducted to define the apoptosis related protein.  Different pore sizes of filter 

such as 10 kDa, 30 kDa and 50 kDa will be used to separate the proteins of different size ranges after 



fungi starvation. HPLC will be employed to identify differences among different filtrations. Several 

proteins with size of 40 kDa, such as, PKA, Caspase 1 and Heat Shock Protein 40 (HSP40) will be semi 

quantified by western blot to evaluate protein expression.  

 

MATERIALS AND METHODS 
A. niger fungal strain was supplied by Blades Biological Ltd. 100 l of re-suspended liquid was 

spread and incubated in a sterile container for inoculation on Sabouraud dextrose agar (SDA) at 25 oC for 

5 days. Fungi were harvested in the sterile ultrapure deionized water and centrifuged at 8,720 g for 10 

minutes. The fungi pellet was washed twice with sterile ultrapure deionized water. The pellet was re-

suspended in sterile ultrapure deionized water. Re-suspended liquids, at a concentration of 1-100 

CFU/mL, were prepared. The A. niger colonies were counted following the experimental procedure [20-

22].  

Preparation of Fungi Cultures on Potato Dextrose Agar (PDA) Plates  
Culture slant of A. niger was ordered from Blades Biological Ltd.  39g of PDA agar was weighed 

out (alternatively 62g of SDA agar could also be used), transferred to a Duran bottle and dissolved in 1L of 

distilled water (dH2O).  The agar mixture was autoclaved at 121 oC for 15 minutes,  poured  into  agar  

plates  in  a sterile  laminar  flow  hood  and  left  to  cool  and  solidify.  The agar plates were streaked with 

fungal samples obtained from Blades Biological and incubated at 25 oC for 5-7 days.  

Preparation of Fungi Water Matrix 
A Sterile glass container was obtained, filled with de-ionised water and autoclaved at 121 oC for 

15 minutes then left to cool completely for several hours. Fungi culture of A. niger was inoculated in the 

distilled water at 25 °C and incubated for 2, 4, 8 days. 

ROS Detection 
Intracellular ROS levels were monitored with the oxidant-sensitive probe 5-(and 6)-

chloromethyl-2′,7′-dichlorofluorescin diacetate CM-H2DCFDA (Invitrogen). Medium (50 mL) was 

inoculated with 1×107 conidia and incubated on a rotatory shaker (180 rpm) for 6 hours at 37 °C. The 

nonstarved cultures were centrifuged at 4000 rpm and the pellet was resuspended in 2 mL medium. The 

starved cultures were centrifuged at 4000 rpm and the pellet was resuspended in 2 mL medium without 

nutrition source. After starvation, the ROS assay was prepared from 20 µL of either culture (starved or 

nonstarved) plus 180 µL fresh medium or water without a nutrition source, respectively, and 2.9 µg/mL 



CM-H2DCFDA in a 96-well plates. The assay plate was incubated at 37 °C for 30 minutes under shaking. 

The arbitrary fluorescence units (AFUs) were measured at 503 nm of excitation and 529 nm of emission 

in the fluorimeter Synergy (Biotek) using the Gen5 software. 

Staining and Microscopy 
Sterile coverslips were overlaid with 5 mL liquid medium containing approximately 

1×106 conidia and incubated at 25 °C for 12 hours before starvation. Starvation was induced by replacing 

medium with distilled water and incubating at 25 °C for different time periods. Germlings starved for 0, 2, 

4, 8 day were fixed with 4% Paraformaldehyde (PFA), and stained with TUNEL (In Situ Cell Death 

Detection Kit; Roche Diagnostics) for 1 hour at 37 °C, along with 100 ng/mL Hoechst 33258 (Molecular 

Probes), for 2 minutes and subsequently washed three times with PEM plus BSA. Hoechst double staining 

was performed at room temperature for 2 minutes and then washed three times for 5 minutes with 

phosphate buffered saline (PBS). The samples were examined using a Zeiss epifluorescence microscope 

with excitations of 359 and 563 nm and emissions of 461 and 582 nm for Hoechst and TUNEL, 

respectively. The phase contrast bright field and fluorescent images were captured with AxioCam camera 

(Carl Zeiss) and processed using the Image J software. 

To determine mitochondrial mass, the strains were grown on coverslips overlaid with 

MitoTracker  

Green FM, and Propidium iodide (2mg/L) staining were performed at 37 °C for 10 minutes. The germlings 

were examined using a Zeiss epifluorescence microscope with MitoTracker Green FM examined under 

excitations of 470/20 nm and emissions of 525/50 nm; and Propidium iodide examined under excitations 

of 572/25 nm and emissions of 626/62 nm. The phase contrast bright field and fluorescent images were 

captured with AxioCam camera (Carl Zeiss) and processed using the Image J software. 

Aspergillus niger Protein Separation Using Amicon Ultra Centrifugal Filters 
Commercially available centrifugal filtering devices, Amicon Ultra- 0.5 mL (Millipore – Merck, 

Germany), with cut-off points at 50 kDa, 30 kDa and 10 kDa, were employed in this study as examples. At 

first, 0.5 mL of fungi after 8 days starvation was placed in the 50 kDa centrifugal filtration device, with no 

washing, and centrifuged at 14 000 g for 30 min. The filtrate obtained from the 50 KDa device was then 

centrifuged using the 30 KDa and 10 KDa, consequently. The filter devices were then placed upside down 

in a new Eppendorf and spun down at 1000g for 2 min in order to collect the remainder of the 

concentrate retained in the filter devices. In current study, 4 fractions were obtained; the first 



representing full proteins without filtration; the second corresponding to the fraction between 50 KDa 

and 30KDa named 50 KDa filtrate; the third corresponding to the fraction between 30 kDa and 10 KDa 

named 30 filtrate, the fourth corresponding to the fraction less than 10 KDa. 

As indicated by the manufacturer, the ultrafiltration membranes in Amicon® Ultra-0.5 devices 

contain trace amounts of glycerine. If this material interferes with analysis, pre-rinse the device with 

buffer or Milli-Q® water. If interference continues, rinse with 0.1 M NaOH followed by a second spin of 

buffer or Milli-Q® water. For both washing and rinsing, 0.5 mL of the respective liquid was added to the 

filters and the centrifugation was applied for 30 min at 14 000g followed by a spinning with the devices 

upside down at 1000g for 2 min in order to remove any residual solution contained in the filter. The fungi 

filtrates were then placed into High-performance liquid chromatography (HPLC) to analysis the 

difference among different size filtrates after 8 days starvation.   

Reverse-Phase High-Performance Liquid Chromatography 
The mobile phase was made up of 900 mL of HPLC grade water and 100 mL of HPLC grade 

Acetonitrile, and was vacuum filtered using a 0.22 micron filter then sonicated for 30 minutes to remove 

trapped air bubbles. 

 The solvent tube was placed into the mobile phase and the HPLC vials containing the fungi 

filtrates were loaded into the HPLC injection compartment. A C18 column was obtained and attached to 

the machine then washed by selecting needle wash, dry prime and wet prime. Each sample was run for 40 

minutes and the needle washed after the last sample. The conditions were set as mentioned in the HPLC 

specification below. After sample analysis, the column was eluted. 

The reverse-phase high-performance liquid chromatography (RP-HPLC) analysis was performed 

on a Waters 1525 pump (Waters, Milford, Massachusetts) with a PDA detector 2487 (Waters) using a 

Luna C18 column (5 µm, 250 mm x 4.6 mm, Phenomenex). Flow rate was kept at 0.45 mLmin−1. The 

mobile phase, composed of an isocratic solution of Acetonitrile and water (90:10 v/v), was maintained at 

25 oC. The column was eluted at a flow rate of 1 mLmin−1 with an isocratic solvent using Methanol (8:2 

v/v) in water. Four samples, without filtration, 50 KDa filtrate, 30 kDa filtrate and 10 KDa filtrate were 

loaded in HPLC. 

Controlling Protein Size by Filtration 
Samples were collected after an incubation period of 8 days at 25 oC, various filter sizes were 

used in order to separate the fungal proteins.  The proteins were separated with Amicon ultra centrifugal 



filters of 50, 30 and 10 kDa. Protein samples were transferred into centrifugal filters to remove unwanted 

proteins and debris according to size. Four samples, without filtration, 50 KDa filtrate, 30 kDa filtrate and 

10 KDa filtrate were loaded on sodium dodecyl sulphate (SDS) gel to identify the protein size.  

A 12% separating gel was prepared by mixing 1.65 mL of water, 2 mL of 30% acrylamide mix, 

1.25 mL of 1.5 M Tris at pH 8.8, 0.05 mL of 10% SDS, 0.05 mL of 10% ammonium persulfate and 0.008 mL 

of Tetramethylethylenediamine (TEMED); while a 4% stacking gel was made by mixing 1.4 mL of water, 

0.33 mL of 30% acrylamide mix, 0.25 mL of 0.5 M Tris at pH 6.8, 0.02 mL of 10% SDS, 0.02 mL of 10% 

ammonium persulfate and 0.008 mL of TEMED. The mixture was mixed carefully and transferred using a 

pipette in between the gel plates, and a well comb placed on top and left to solidify. Once the gels were 

formed, the comb was removed, plates were placed into the electrophoresis cell and filled up with 

running buffer. 

100 mL of samples obtained from the filtrates and supernatants were collected and labelled in an 

Eppendorf tube. 100 mL of sample buffer was added to each sample and boiled for 10 minutes to 

denature the proteins. The protein marker was also boiled then loaded into gel wells along with each 

sample. The gels were run at 180 V between 40 to 60 minutes and stained using Coomassie brilliant blue. 

Western Blot  
The samples were permeabilized with 0.1% Triton X-100 in PBS for 20 minutes at room 

temperature, equilibrated with 10 mM glycine in PBS for 10 minutes at room temperature, then blocked 

in 0.1% Triton X-100, 3% bovine serum albumin (BSA) and 0.2% goat serum in PBS for 1 hour at room 

temperature [23]. HSP40, PKA and Caspase 1 antibodies show immunoreactivity to HSP40, PKA and 

Caspase 1 -like proteins in A niger [15, 16, 19].  Primary antibodies against DNAJB1 (Abcam ab69402, 

rabbit polyclonal anti-Hsp40, 1:100), Anti-Caspase-1 antibody (ab207802) (1:500 dilution) and Anti-

(phospho T197) antibody (ab75991) (1:500 dilution) were added directly to the block and the samples 

were incubated overnight at 4 °C. The protein of fungi samples named 50 kDa filtrate were collected by 

filtration with filter 30 kDa and 50 kDa before western blot. All samples were rinsed twice quickly and 3 

times for 10 minutes with PBS, then placed back in block solution containing the appropriate secondary 

antibodies (Donkey anti-rabbit C, whole IgG) at a dilution of 1:250. The blot was visualized with an ECL 

kit (Amersham-Pharmacia Biotech). 

 



RESULTS 

Fungi Growth Rate After Starvation 

 

Figure 1: Growth Rate of A. niger over a period of 8 days starvation. (A) Fungi growth using log scale 

plotted over a period of 8 days. Five replicate plates were used for each time point, and the experiments 

were performed at least three times. Error bars show the standard deviation. (B) Left: A. niger cultured on 

SDA plate after 8 days storage in water; Right: A. niger cultured on SDA plate after 8 days in nutrient broth 

as control. 

Figure 1 (A) illustrates the exponential growth of Aspergillus when in nutrient broth compared to 

water which stays at a consistent level. As seen in Figure 1 (B), the fungi which incubated in water 

showed a decrease in growth in comparison the fungi samples obtained from the nutrient broth. 

Day(s) Water Control 

0 100 98 105 100 89 120 

1 100 99 103 200 250 219 

2 98 97 98 450 420 475 

3 99 98 99 760 750 735 

4 97 99 97 2000 1890 2130 

5 96 97 97 5050 5300 4890 

6 97 96 96 1100 1235 9919 

7 96 94 94 4030 3876 45321 

8 94 96 95 18005 18750 17938 

Table 1: Triplicate run of growth rate of A. niger in water compared to growth medium, growth rate in 

water showed a steady decrease over the 8 days especially from day 4 as opposed to exponential growth 

observed using media. 



Morphology Changing under Light Microscopy 
To observe the fungi under stress, A. niger was cultured on SDA plates then transferred into 

sterile distilled water for a maximum of 8 days. During the first two days several conidiophores were 

easily visible. There was one conidiophore observed with disintegrating hyphae at day 4. By day 8, 

hyphae diameter has decreased to 10 µm and have been disintegrating (see Figure 2).  

 

Figure 2: A. niger images observing conidiophores within a period of 8 days. A. niger structure is shown to 

disintegrate from lack of nutrient. (A) A. niger taken after 1 day; (B) A. niger observed after day 2; (C) A. 

niger observed on day 4; (D) A. niger observed on day 8. All images taken under light microscopy, using 

400x microscope objective. 

 



ROS Accumulation 

 

Figure 3: Starvation elevated ROS accumulation. The fluorescence density was examined to evaluate the 

ROS accumulation under the influence of 0-day, 2-day, 4-day and 8-day starvation, presented in the figure 

accordingly from left to right. The fluorescence emitted by the starving fungi of day 2 was 3.0-fold higher 

than the normal ones (p<0.001). 

 

 

 

 

 



TUNEL Staining 

 

Figure 4: TUNEL assay to detect DNA fragmentation evaluating the influence of 0-day, 2-day, 4-day and 8-

day starvation. Four rows from top to bottom represent day 0, day 2, day 4 and day 8, respectively. For 

each row, from left to right, first column presents bright field microscopy image, second column presents 

fluorescent microscopy image under excitations of 359 nm and emission of 461 nm for Hoechst, third 

column presents fluorescent microscopy image under excitations of 563 nm and emissions of 582 nm for 

TUNEL stain. Nuclei were visualized by Hoechst staining in blue, while TUNEL stain in red (Bars: 50m). 

The strain demonstrated elevated ROS accumulation in starved cells (Figure 3), which could have 

reflected mitochondrial dysfunction. The absence of nutrition was shown to impact mitochondrial 



dysfunction. Fluorescent microscopy of the mitochondrial stains, MitoTracker Green, revealed the 

fluorescence emitted by the normal fungi was higher than the starving ones (Figure 5). The reduction in 

nutrition in the fungi was therefore attributed to a reduction in mitochondrial mass. TUNEL assay showed 

DNA fragmentation starting at day 2 after starvation (Figure 4). 

MitoTracker Staining 

 

Figure 5: MitoTracker to evaluate the mitochondria activity under the influence of 0-day, 2-day, 4-day and 

8-day starvation. Four rows from top to bottom represent day 0, day 2, day 4 and day 8, respectively. For 

each row, from left to right, first column presents bright field microscopy image, second column presents 

fluorescence microscope image under filters excitations of 572/25 nm and emissions of 626/62 nm for 

Propidium iodide, third column presents fluorescence microscope image under filters of excitations of 



470/20 and emissions of 525/50 for MitoTracker. Fungi structure were visualized by Propidium iodide 

staining in red, and MitoTracker stain in green (Bars: 50 m). 

HPLC Analysis of Different Size of Protein from Starving Aspergillus Niger  

 

Figure 6: HPLC spectra of A. niger using contaminated water matrix at day 8 with (A) Non filtrated 

sample, (B) 50 kDa filtrate, (C) 30 kDa filtrate and (D) 10 kDa filtrate sample. Analytes were detected at 

the wavelength of λmax = 210 nm. 

Each sample was run against a plain sample (A) which had not undergone any filtration which 

acted as a standard. A. niger was shown to produce an extra peak at 3.445 minutes in the 50 kDa filtrate. 

This peak at 3.445 minutes was shown in the unfiltered sample, but it was not shown in the 30 kDa 

filtrate and 10 kDa filtrate. This peak identified the bigger proteins in the sample which was eluted before 

4 minutes (Figure 6). A. niger exhibited active responses to starvation such as secretion of some proteins  

size between 30 to 50 kDa. 



Identify protein size by SDA page 

 

Figure 7: SDS gel composed of 12% separating gel and 4% stacking gel. (Panel A) Protein Marker 116 kDa 

to 14 kDa. (Panel B) Protein bands presented from (ii) Protein Marker, (iii) 10 kDa filtrate, (iv) A. niger 

sample obtained from 50 kDa filtrate, (v) A. niger sample without filtration, (vi) A. niger sample obtained 

from 30 kDa filtrate, respectively. 

Samples were collected after an incubation period of 8 days at 25 oC. various filter sizes were 

used in order to separate the fungal proteins. Protein samples were transferred into centrifugal filters to 

remove unwanted proteins and debris according to size. Well IV contained from 50 kDa filtrate, which 

resulted in a distinctive band around 40 kDa. Well V was loaded without filter, which showed several light 

bands ranging from 60 to 25 kDa. Well VI was loaded with the filtration of the 30 kDa filter which showed 

a clear band at 30 kDa (Figure 7). The proteins of size around 40 kDa were collected from 50 kDa filtrate 

and 30 kDa supernatant for western blot. 

 



Protein Expression on Different Protein Size and Starving Days 

 

Figure 8: Protein expression of HSP40, PKA, Caspase 1 and β-actin on A. niger samples. (Panel A) Western 

blot expression of HSP40 protein and A. niger samples, which had undergone protein separation with 

HSP40 protein in lane 1, water in lane 2, A. niger 10 kDa filtrate in lane 3, A. niger 30 kDa filtrate in lane 4 

and A. niger 50 kDa filtrate in lane 5. (Panel B) Western blot analysis of filtration samples were loaded in 

the following starving A. niger over a period of 8 days: from left to right: C HSP40/Caspase1/PKA1 

positive; D0 represents A. niger sample with incubation of 0 day; D2 represents A. niger sample with 

incubation of over 2 days; D4 represents A. niger sample with incubation of over 4 days; D8 represents A. 

niger sample with incubation of over 8 days using β-actin antibody as control. 

As seen in Figure 8 the HSP40 sample loaded in lane 1 and A. niger 50 kDa filtrate and 30 kDa 

supernatant  was clearly visible, while there were no bands present for the 10 kDa and 30 kDa filtrate in 

lanes 2 and 3. Once confirmed the protein of interest was observed and present in the 50 kDa filtrate.  The 

western blots of B panel were performed in order to study the increase in expression over the 8 days of 

the study. The sample was loaded onto lane 1 like the previous gel. As seen from lane 2 (Day 2), the 

protein expressions of HSP40, PKA and Caspase 1 were a steady increase shown with intensity and band 



thickness across day 4 to day 8, and the longer the incubation period, the more increase in protein. As 

shown in Figure 8 the samples were properly dispersed in the wells, and there was a noticeable increase 

shown by the thickness of the bands on days 4 and 8 in comparison to day 2. 

DISCUSSION 
Managing changes in water balance is a fundamental challenge for fungi in most environments. 

For survival of yeasts and fungi, starvation has been shown to depend on the nature of the missing 

nutrients. Generally, starvation in natural nutrients such as carbon, phosphate and nitrogen results in low 

death rates in comparison to starvation from amino acids or other metabolites. Here we study the effect 

of stress and starvation in A. niger regarding to growth and appearance under light microscopy over a 

period of 8 days. By comparing the growth rate of A. niger in water to growth in medium, growth rate in 

water exhibits a steady decrease over the 8 days especially from day 4 as opposed to exponential growth 

observed using media (Figure 1, Table 1). Visual representation views the change in structure and growth 

under light microscopy. There are visible conidiophores during the first two days.  There is one 

conidiophore observed with disintegrating hyphae at day 4. By day 8, hyphae exhibit decreased to 10 µm 

in diameter and have been disintegrating (Figure 2). 

ROS acts as signalling molecules and cellular toxicants. Mitochondrial dysfunction or the 

impairment of oxidative phosphorylation results in ROS accumulation [24]. A shift in the balance between 

oxidants/antioxidants in the direction of oxidation contributes to the induction of apoptosis [25, 26]. 

After stress, high levels of p40 lead to a shift in oxidant/antioxidant balance, which can result in apoptotic 

cell death. Therefore, the starvation results in ROS-mediated cell death. This concept is supported by the 

observed increasing ROS accumulation in starved cells (Figure 3). Mitochondria are crucial to 

metabolism, cell-cycle progression, signalling, and apoptosis. The increasing ROS accumulation could 

have reflected mitochondrial dysfunction. The absence of nutrition has been shown to impact 

mitochondrial dysfunction. Fluorescent microscopy of the mitochondrial stains, Mitotracker Green, 

reveals the fluorescence emitted by the normal fungi was higher than the starving ones (Figure 5). The 

reduction in nutrition in the fungi is therefore attributed to a reduction in mitochondrial mass. TUNEL 

assay shows that DNA fragmentation started at day 2 after starvation (Figure 4). The mitochondria leads 

to inefficient respiration and energy metabolism plus the increased generation of free radicals that are 

able to create life-threatening DNA lesions [27]. 



 

Figure 9: Schematic representation of separation of A. niger proteins using Amicon centrifugal filters. 

Protein samples can be transferred into centrifugal filters to remove unwanted proteins and 

debris according to size. Filtration with 50 kDa and 30 kDa can remove big molecular  and small protein 

to separate protein at size range from 30 to 50 kDa (Figure 9). The proteins size from 30 kDa to 50 kDa 

act different as other size protein under HPLC (Figure 7). SDS page confirms that A. niger actively 

responses to starvation such as secretion of some 40 kDa proteins to manage changes in water balance 

from lack of nutrient (Figure 7 ).   

In human cell, Caspase-1 plays a prominent role in inflammatory responses and the regulation of 

apoptosis of various tumour cells [10, 11]. The caspase-like proteins have been found in C. elegans, 

Drosophila, zebrafish and mammals to involve apoptosis [16]. A caspase-independent pathway also exists 

in fungi, which (similar to situation in human) involves mitochondrion-associated  cell death. In the 

filamentous fungus Aspergillus fumigatus, apoptotic-like cell death occurring after exhaustion of the 

carbon source and entry into the stationary phase of growth is associated with intracellular activity 

against caspase-1 and -8 substrates and is blocked by the pan-caspase inhibitor [15]. Increased PKA led to 

inflammation-independent activation of caspase-1. Starvation increases fungi stress. Stress terms are 

linked to fungal stress response protein HSP40 [27, 28]. Starvation can induce up-regulation expression 

of cell cycle-associated proteins such as PKA, Caspase 1 and HSP40.   



 Starvation could cause cell number reduction (Figure.2) and hype disintegrating and further 

decrease in mitochondria function, DNA damage.  These results suggest that upregulation of apoptosis-

associated protein may contribute to fungi apoptosis. In conclusion, starvation can active PKA, Caspase 1 

and HSP40 protein to inhibit A. niger growth by inducing cell apoptosis. 

 

CONCLUSION 
Fungi species is the major influencing factor in the starvation, due to lack of nutrition.  In current 

study, it has been found starvation can inhibit A. niger survival rate and can cause conidiophores 

disintegrate in a time-dependent manner. The increasing ROS accumulation and reduction in 

mitochondrial mass increase generation of free radicals that are able to create life-threatening DNA 

lesions. 

The protein sized were successfully separated with 10, 30, 50 kDa filters. The responsible of 

different size of protein were analysed by HPLC. The accurate size of active protein was identified by SDS 

page. Three kinds of protein, such as,  PKA, Caspase 1 and HSP40 with size rang at 40 kDa were examined 

under Western Blot to investigate the protein expression after starvation. 

Protein size from 30 to 50 KDa appears more sensitive due to starvation. A. niger exhibits active 

responses to starvation such as secretion of some 40 kDa proteins to manage changes in water balance. 

Starvation increases fungal stress response protein HSP40. Increased PKA can active caspase-1. 

Starvation can induce up-regulation expression of cell cycle-associated proteins such as PKA, Caspase 1 

and HSP40.  Starvation can active PKA, Caspase 1 and HSP40 protein to inhibit A. niger growth by 

inducing cell apoptosis. 
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