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Short term forecasting of nitrogen dioxide (NO2) levels 
using a hybrid statistical and air mass history modelling 
approach 

Aoife Donnelly1, Owen Naughton2, Brian Broderick3, Bruce Misstear3 

1 School of Food Science and Environmental Health, Dublin Institute of Technology, Dublin, Ireland 

2 Civil Engineering, School of Engineering and Informatics, University of Ireland, Galway, 

3 Department of Civil, Structural and Environmental Engineering, Museum Building, Trinity College 

Dublin, College Green, Dublin 2, Ireland 

Abstract  
A novel hybrid model has been developed to support the provision of real time air quality forecasts. Statistical 

techniques have been applied in parallel with air mass history modelling to provide an efficient and accurate 

forecasting system with the ability to identify high NO2 events, which tend to be the episodes of most 

significance in Ireland. Air mass history modelling and k-means clustering are used to identify air mass types that 

lead to high NO2 levels in Ireland. Trajectory matching techniques allow data associated with these air masses 

to be partitioned during model development. Nonparametric regression (NPR) has been applied to describe 

nonlinear variations in concentration levels with wind speed, direction and season and produce a set of 

linearized factors which, together with other meteorological variables, are employed as inputs to a multiple 

linear regression. The model uses an innovative integrated approach to combine the NPR with the air mass 

history modelling results. On validation, a correlation coefficient of 0.75 was obtained and 91% of daily maximum 

(hourly averaged) NO2 predictions were within a factor of two of the measured value. High pollution events were 

well captured, as indicated by strong agreement between measured and modelled high percentile values. The 

model requires only simple input data, does not require an emission inventory and utilises very low 

computational resources. It represents an accurate and efficient means of producing real time air quality 

forecasts and, when used in combination with forecaster experience, is a useful tool for identifying periods of 

poor air quality 24 hours in advance. The hybrid approach outlined in this paper can easily be applied to produce 

high quality forecasts of both NO2 and additional pollutants at new locations/countries where historical 

monitoring data are available.   

Highlights  

 A novel hybrid model is presented for quick and efficient air quality forecasts 

 Combines parametric and non-parametric regression with air mass history modelling 

 24 hour forecasts of daily maximum NO2 are produced 

 Model validation produced an r value of 0.75 and a FAC2 value of 0.91.  

Keywords: Air quality forecasting, air mass history modelling, nonparametric regression, air pollution, NO2 



1. Introduction 
Across Europe NO2 has been one of the most problematic air pollutants whilst in Ireland, a trend of increasing 

NO2 has been identified at traffic-impacted sites in the major cities [1].  Air quality modelling and short term 

forecasting of NO2 could reduce the risk of exceeding EU limit values through adoption of air quality action plans 

and also provide important information to the public in advance of a poor air quality episodes. The diverse range 

of scientific and regulatory applications such as forecasting, public information provision, compliance 

assessment and air quality management in which air quality modelling is employed, is reflected in the multiplicity 

of modelling approaches used. An air quality model can be conceptual, empirical or process oriented, with each 

approach demanding varying levels of technical, scientific and computational resources. The more physical 

processes that are included in the model, the more comprehensively it will generally be able to describe reality. 

However, increasing the inputs and model processes leads to high demands on the quantity and quality of 

information needed to drive the models [2]. The complexity of atmospheric chemical and transport processes, 

as well inaccuracies in emission estimations, means that significant approximations and uncertainties exist 

within deterministic models. As a result it is often argued that chemical transport models (CTMs) are currently 

less accurate than well-developed, site-specific empirical air quality forecast models trained with local air quality 

and meteorological data [3, 4]. Furthermore, the use of large-scale deterministic models as, for example, 

operational air quality forecast systems is frequently beyond the reach of many national authorities. Instead, 

statistical modelling has been found by many countries to offer a viable and attractive alternative [5-7].  

Statistical models are built on existing links between pollutant concentrations, meteorological parameters (e.g. 

wind speed and direction, temperature, air pressure, rainfall) (eg. [8]) and physical parameters (e.g. emissions, 

land use, road density). They tend to be more suitable for the description of complex site specific variations and 

generally have a higher accuracy than deterministic models [9]. Numerous studies have used statistical 

techniques to develop air quality forecasts. Techniques adopted include multiple linear regression ([10, 11]), 

ARIMA modelling [4, 12], neural networks [13-15], nonlinear regression [16, 17], Kalman filtering [18] and 

various combinations of these [4, 14].   Other integrated or hybrid approaches have also previously been adopted 

(e.g. [9, 19, 20]). However, most of these methods suffer from the disadvantage that they cannot capture the 

contribution of distant weather-dependent sources and regional air mass movement since the local forcing 

variables often do not account for regional scale weather variations and transboundary air pollution. Air mass 

history modelling has successfully been used in previous studies to address this limitation. High pollution events 

have been assessed by calculating a single back trajectory ending on the day on which concentrations were high 

([21]).  Vukmirovic et al. [22] used the ETA model to generate forward trajectories to identify the paths and 

evaluate removal mechanisms following bombings at industrial sites in northern Serbia and the Belgrade region 

during the Kosovo war. However, such methods give only a rough approximation of the actual air mass history, 

having uncertainties associated with the resolution and accuracy of the meteorological data [23, 24]. 

Anastassopoulos et al. [25] characterised HYSPLIT (HYbrid SingleParticle Lagrangian Integrated Trajectory) back 

trajectories by air mass path direction and regions traversed. In conjunction with measured NOx and SOx data, 

the regions which most frequently influenced air quality in Windsor, Ontario, Canada were identified. Riccio et 

al. [26] used a combination of k-means clustering and PCA (Principal Component Analysis) approaches of 

HYSPLIT-4 back trajectory classification to assess the influence of large-scale meteorological conditions on ozone 

and PM10 concentrations in Naples, Italy. They found that ozone and PM10 exhibited increased concentrations 

during anti-cyclonic, subsiding conditions due to stagnation and recirculation effects.  

In Ireland, a trajectory sector frequency analysis and subsequent vector addition was used to define the path of 

the air mass and identify the effects of regional air mass movement on air quality [27]. Recent work by the 

authors used k-means clustering techniques on air mass back trajectories to identify air mass movement 

corridors which lead to poor air quality [28]. Average NO2 levels were found to vary by 124% and 239% of the 

seasonal mean between clusters.  



The specific aim of this work was to produce a fast, non-resource intensive and reliable means of forecasting 

daily maximum hourly averaged NO2 concentrations. This paper describes a novel hybrid model which combines 

air mass history modelling results with a statistical forecasting model previously developed by the authors [17] 

to predict concentrations of the priority pollutant NO2 in Ireland 24 hours in advance. The statistical forecasting 

model previously developed by the authors, while producing good results with regards to mean concentration 

variations, was limited in its ability to capture high pollution events because it could not describe the effects on 

concentrations due to distance weather depend factors and regional air mass characteristics. The innovative air 

quality forecasting methodology described in this paper brings together and enhances two major areas of work 

in a novel manner to provide an elegant solution for capturing high NO2 events and routinely forecasting air 

quality levels. The low data and computational resource requirements needed to implement this model, 

together with the open-access nature of its components, make it well suited to providing fast and reliable real-

time air quality forecasts in regulatory environments where resources are limited.  

2. Methods  

2.1 Overview 
The air quality forecasting methodology described in this paper is a two-step process comprising a model 

development phase followed by an operational (or model validation) phase. Air mass history modelling is used 

during both phases to identify periods of high and low contributions from background regional and 

transboundary pollutant sources. It is employed first as a data partitioning tool during model development; 

multiple statistical models representing high and low regional background concentrations are developed using 

the partitioned data and regression techniques described in Donnelly et al. [17]. Trajectory forecasting during 

the hybrid model operation is then applied to select the appropriate high or low background model. 

Two monitoring sites are defined in the process: the background reference site and the local site. The 

background site is not influenced by any major local sources in the area and is considered to be representative 

of regional air pollution. The local site is the location for which the forecast is required, e.g. an urban area, and 

is influenced by both local and regional air pollution.  

During model development air mass history modelling is used to identify and quantify trajectories which lead to 

higher concentrations at a background site. For example in Ireland, air masses originating over the United 

Kingdom and mainland Europe contribute to higher background NO2 concentrations than do the relatively clean 

air masses from the Atlantic Ocean. Back-trajectories are calculated for each time step within the monitoring 

data time series from the background site. Trajectory cluster analysis is employed to group trajectories based 

on their three-dimensional similarities and identify the primary meteorological pathways influencing the site. 

The objective here is to identify groups or clusters of air masses which contribute to high background NO2 

concentrations in the region of interest; thus the output is a set of trajectory clusters which are assigned into 

the “High” or “Low” background concentration group.  

It is assumed that air masses contributing to higher concentrations at the background reference site will produce 

comparable increases in concentrations at the local site. Monitoring time series at the background and local 

sites are then partitioned into high and low regional pollutant concentrations based on the cluster arriving at 

the background site at each time step. Statistical regression models are then developed representing different 

regional background conditions at both sites.  

The operational phase (the air quality forecast) is a two-step process involving a trajectory forecast coupled with 

a series of statistical regression models. A schematic diagram of the hybrid model is displayed in Figure 1. Firstly, 

a set of trajectory forecasts are computed using HYSPLIT to predict if the air mass arriving at the background site 

over the coming forecasting period belongs to a low- or high-pollutant concentration cluster. Separate statistical 



forecast models are then invoked specifically for low and high background conditions. The forecast model itself 

comprises three regression sub-models, all of which are based on the same multiple linear regression methods 

described in Donnelly et al. [17] but trained on different datasets derived during the preliminary data 

partitioning phase. The model development, calibration and validation are described in the following sections, 

and it is helpful to read this in the context of the model decision tree, which is illustrated in Figure 1. In this 

paper the model has been developed using a rural background site (Kilkitt) with results obtained on high cluster 

days added to basic predictions at a representative urban site (Rathmines). Combining the two models allows 

local and regional effects to be accounted for individually.  

 

Figure 1 Hybrid model operational decision tree 

2.2 Data  
The data used in the research have been collected by the Irish Environmental Protection Agency (EPA), the 

agency responsible for maintaining the air quality monitoring network in Ireland. Kilkitt is a remotely located 

monitoring site in an agricultural region. This site was chosen as the background site for air mass history 

modelling as there are no major local emission sources in the area and hence it is considered to be representative 

of regional air pollution. The Rathmines monitoring site is used in the validation of the modelling technique. It 

is classified as an urban background site and located in a residential and commercial area to the south of Dublin 

City Centre. This site is influenced by both local sources such as roads and domestic burning and distant 

transboundary sources. Data from 2011 and 2012 were used in model development.  
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NO2 is monitored and recorded at hourly resolution at each site using chemiluminesence samplers (as 

recommended for demonstration of compliance with EU limit values).  NO2 is measured indirectly by reduction 

to NO by means of a molybdenum converter. The instrument has a range of 0 to 20,000ppb and a lower 

detection limit of 0.4ppb with a precision of 0.5% of the reading. Average concentrations at all sites are well 

within an appropriate range for the instrument used. 

2.3 Back-Trajectory Analysis  
The HYSPLIT model was developed by the U.S. National Oceanic and Atmospheric Administration (NOAA)’s Air 

Resources Laboratory (ARL) and combines the Eulerian and Lagrangian approaches to track air mass movement 

[29]. Whereas the model is capable of calculating concentrations of pollutants, it is applied in this study to 

calculate back trajectories. With the HYSPLIT model, air mass paths from one region to another can be calculated 

and it can therefore be demonstrated whether or not the vector necessary for air pollutant transport is present 

[25]. When the model is run in back trajectory mode, the movement of a parcel of air can be calculated 

backwards in time from the receptor where concentrations were measured, allowing the origin of the pollution 

to be identified.  

Forty-eight hour trajectories were calculated for two full calendar years (2011 and 2012) with hourly end-points 

located at the background monitoring station. These trajectories were divided into seasonal groups. The choice 

of trajectory duration is important because too short a duration may miss the actual source of the emissions and 

important path crossings while too long a run induces a large amount of uncertainty into the analysis and may 

produce misleading results. Previous work by the authors showed that clustering of 48-hour trajectories could 

usefully partition data into high and low pollution conditions [28] and this trajectory duration was adopted here. 

As an island with no nearby land mass to the west and south west, and significant nearby land mass to the east 

and south, the appropriate trajectory duration may differ in Ireland than in land-locked countries. A simple 

analysis of air masses and clusters should reveal the appropriate trajectory duration for a given country.  

2.4 Trajectory Analysis: k-means clustering 
Trajectory cluster analysis was employed to group trajectories based on their three-dimensional similarities and 

to identify the primary meteorological pathways influencing the background site. This technique groups similar 

trajectories together, with the aim of minimising differences within clusters and of maximizing the differences 

between clusters. It allows for the inclusion of re-circulated trajectories and trajectories with rapidly varying 

directionality. The hierarchical cluster method adopted in this paper initially assumes that the number of clusters 

is equal to the total number of trajectories (N) and thus the spatial variance (SV) (the sum of the squared 

distances between end points of the clusters component trajectories and the mean of that cluster) is zero. In 

the first iteration, each combination of trajectory pairs is tested to compute the cluster SV. The total spatial 

variance (TSV) is then calculated by summing all of the clusters SV’s. The two trajectories with the lowest SV are 

combined into a single cluster, thus reducing the total number of clusters after the first iteration to N-1. Once 

paired, clusters remain together in subsequent iterations. In the second iteration, the clusters are either 

individual trajectories or the cluster of the initial pairing of trajectories. Again, every combination is assessed 

and the two clusters combined are those that result in the lowest increase in TSV. The iterations continue in this 

manner until the last two clusters are combined resulting in all N trajectories in one cluster. In the first number 

of iterations the TSV increases greatly as the number of clusters combined increases. Thereafter, it tends to 

increase gradually up to a point beyond which it increases sharply, indicating that the clusters being combined 

are not very similar. A plot of TSV against the number of clusters will clearly indicate this change and suggest 

where clustering should be stopped as shown in Figure 2.  



 

Figure 2 TSV plot showing the appropriate number of clusters for the Jan-Mar period as 6 

The trajectories were first separated into four distinct seasons to account for known variability in both synoptic 

scale variations and air pollution levels between the winter (January – March), spring (April-June), summer (July 

– September) and autumn (October – December) periods. Clustering was carried out on each data set 

individually and the optimum number of clusters was chosen in each case by visual inspection of the TSV plots.  

2.5 Data partitioning and model development 
After clustering, the variability in hourly NO2 between clusters was determined and an analysis of variance 

(ANOVA) technique was applied to assess which cluster types led to increased concentrations. Using these 

results, date/hours from the 2011-2012 time period were partitioned into “high” and “low” groups at both the 

background and local sites. Two unique local forecast models were then developed for each background 

condition using the techniques outlined in section 2.6: 

Low Cluster Model: This model for “low” conditions was trained using non-partitioned raw measured data from 

urban site (Rathmines). It provides forecasts at the urban site under “low” background conditions.  

High Cluster Model: This comprises two interrelated regression equations to forecast the background and local 

contributions to air quality. The first, the “high” background model, is trained using partitioned “high” data from 

the background site. The second, the “high” local model, is trained using partitioned “high” data from the local 

site minus the corresponding background concentration. The forecast concentration at the urban site on “high” 

days is thus the concentration computed by the “high” background model plus the concentration computed by 

the “high” local model.   

2.6 Parametric and non-parametric regression 
A previous publication describes in detail the statistical modelling approach [17] so only a summary of the key 

points will be presented here. 

The general form of the model is: 

𝐶 = 𝑏0 + ∑ 𝑏𝑖

𝑛

𝑖=1

𝑥𝑖 + ∑ 𝑑𝑖

𝑚

𝑖=1

𝑦𝑖 + 𝜀 

where 𝐶 is the response variable (Daily maximum hourly NO2 concentration), 𝑏0 is the regression constant, 𝑥𝑖 

are meteorological predictor variables with coefficients 𝑏𝑖, and 𝑦𝑖 are predictor variables output from the non-

parametric and time series models with coefficients 𝑑𝑖. The parameter 𝜀 is the stochastic error associated with 

the regression. 



A least squares technique was employed to determine the coefficients for each of the predictor variables, as 

shown in Table 1.  

Table 1 Description of model coefficients 

Variable 

Category 
Predictor Variable Description 

Model 

(Yi) 

𝑊𝑆𝑊𝐷𝑓 Wind speed, wind direction factor   

𝑆𝑓 Non-parametric seasonal factor   

𝐷𝑓 Non-parametric diurnal factor 

   

Meteorological 

(Xi) 

𝑆𝑎𝑡 Dummy variable: 1 if Saturday, 0 otherwise 

𝑆𝑢𝑛 Dummy variable: 1 if Sunday, 0 otherwise 

  

𝑇𝑒𝑚𝑝 Hourly Temperature 

𝑆𝑢𝑛𝐻𝑟 Sunshine Hours 

𝑅𝑒𝑙𝐻𝑢𝑚 Relative Humidity 

𝐴𝑡𝑚𝑃𝑟𝑒𝑠 Atmospheric Pressure 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐶𝑙 Stability Class 

  

𝑁𝑂2ℎ−24 Daily average NO2 concentration at 24/48 hour lag 

𝑁𝑂2ℎ−48  

𝑁𝑂2𝑚𝑎𝑥−24 

𝑁𝑂2𝑚𝑎𝑥−48 

Daily maximum NO2 concentration at 24/48 hour 

lag 

  

𝑂3𝑑−24 Daily average O3 concentration at 24/48 hour lag 

𝑂3𝑑−48  

𝑂3𝑚𝑖𝑛−24 Daily minimum O3 concentration at 24/48 hour lag 

𝑂3𝑚𝑖𝑛−48  

The predictor variables 𝑊𝑆𝑊𝐷𝑓, Sf and 𝐷𝑓 were developed using non-parametric kernel regression (as described 

in   [17, 30, 31, 32 and 34].  

A stepwise process was used to isolate the significant explanatory variables during model development. 

Predictor variables were examined for co-linearity as multicolinearity increases the standard errors of the 

coefficients, meaning that coefficients for some independent variables may be erroneously found to be 

significant. The variance inflation factor (VIF) was used to assess how much the variance of an estimated 

regression coefficient increases if predictors are correlated; it is equal to 1 if no factors are correlated [33]. 

Variables with high VIF were removed from the model in a stepwise manner ensuring that each variable removed 

is redundant in the explanation of NO2 concentration and assessing the correlation coefficient (r) value at each 

pass Definition of the final model also relied on knowledge of the directions of influence for particular 

parameters and graphical techniques.  

Various statistical performance methods have differing strengths and weaknesses and therefore in this study, 

as discussed in [34] and following a similar model development and validation procedure as presented in [17] a 

number of methods have been applied to assess model performance: 

𝑟 (Correlation coefficient), 𝐼𝐴 (Index of Agreement ), the fraction of predictions within a factor of two of 



observations (FAC2), the fractional bias (𝐹𝐵) and the standard error (s). In addition to these statistical metrics, 

the accuracy of the proposed prognostic model to predict the "exceedances" days has been assessed by 

means of the hit rate (H) or the probability of detection (this indicates the percentage of actual exceedances 

that are correctly forecast) [35]. Since the concentrations in the area assessed all fall below the EU hourly limit 

value, a more stringent value of the annual mean limit value of 40µg/m3 has been used for this test. In order to 

assess the likelihood of false alarms the False Positive Rate (FPR) has also been applied (using the same 

theoretical exceedance rate.  

 

3. Results 

3.1 Model development 

3.1.1 Air mass clustering 

The HYSPLIT model was run for two full calendar years (2011 and 2012) with the end point at Kilkitt. Results of 

the cluster analysis are shown in Figure 3. Six clusters were defined from January to March (Figure 3(A)). These 

include a slow moving east/south easterly cluster and a moderate moving easterly cluster. These two clusters 

are associated with the highest NO2 concentrations, (averaging 196% and 168% of the mean for this time period). 

From April to June only one easterly cluster is defined and NO2 concentrations for these air masses average 

161% of the mean for the time period (Figure 3(B)). A similar result is observed between July and September 

where concentrations for the easterly cluster average 191% of the mean for the period (Figure 3(C)). The easterly 

cluster results in average concentrations of 196% between October and December (Figure 3(D)). During this time 

period Ireland is also frequently affected by slow moving northerly air masses representative of cold winter 

weather conditions. The defined cluster is of much shorter length in this season than in other seasons and its 

slow moving nature and its land track over parts of the UK result in average NO2 concentrations of 153% of the 

mean for the time period.  

Average concentrations for each cluster are displayed in Table 2. Shaded clusters illustrated in the table 

represent the clusters which were identified by the ANOVA test as significantly different and used to partition 

the data into “high” and “low” sets.  



 

Figure 3 Cluster results from Kilkitt for 2012 and 2013 data Jan-Mar (A), Apr-Jun (B), Jul-Sep (C) and Oct-Dec (D)  

Table 2 NO2 concentrations for air mass clusters arriving at Kilkitt  

Jan-Mar Apr-Jun Jul-Sep Oct-Dec 

No

. 

Average 

NO2 

(µg/m3) 

% of 

mean 

No. Average 

NO2 

(µg/m3) 

% of 

mean 

No

. 

Average 

NO2 

(µg/m3) 

% of 

mean 

No

. 

Average 

NO2 

(µg/m3) 

% of 

mean 

5 4.29 1.96 2 3.38 1.61 4 2.65 1.96 2 2.85 1.91 

6 3.68 1.68 3 2.07 0.99 1 1.23 0.91 5 2.29 1.53 

4 2.46 1.12 5 1.37 0.65 3 1.09 0.81 4 0.88 0.59 

2 1.58 0.72 1 1.11 0.53 5 0.93 0.69 1 0.78 0.52 

1 0.34 0.15 4 0.79 0.38 2 0.92 0.68 3 0.68 0.45 

3 0.09 0.04 - - - - - - - - - 

 

 

A B 

C D 



3.1.2 Model fitting using partitioned data 

Using the partitioned “high” data, the background model was fitted using a least squares regression. Exploratory 

analysis indicated that the predictor variables which should be considered for this regression analysis were as 

follows: two dummy variables indicating if it was a Saturday or a Sunday, 24-hour average temperature, 𝑊𝑆𝑊𝐷𝑓 

and the 24-hour lagged NO2 concentration. (Note that this will allow 24-hour forecasts to be made. In the event 

that 48 hour forecasts are to be made the 48-hour lagged NO2 concentration would be used. The authors have 

also tested the model performance over this time period but these results are not included here for the purpose 

of brevity.) An analysis of residuals (actual value minus predicted value) was carried out at each pass of the 

regression to determine compliance of the model with the assumptions of an ordinary least squares regression. 

The objective in model fitting was to maximise the correlation coefficient (r value) while minimising assumption-

based errors. Residuals were found to depart from a Gaussian probability distribution and therefore a square 

root transformation was applied to the dependent variable and to the lagged variable. During summer months 

there was less of a distinction between weekday and weekend concentrations at the background site which was 

indicated by high VIF and r-values for the dummy variables. To minimise autocorrelation of the errors and 

improve parameter estimation, these parameters were not used in the Jul-Sep model and only the Sunday 

dummy variable was used in the Apr-Jun model. The complete dataset of modelled NO2 was plotted against 

observed NO2 as shown in Figure 4 (A). A straight line fitted to the data indicates the intercept is very close to 0 

and the slope of the line is close to 1, suggesting that the bias in the model is very low. An r value of 0.74 was 

obtained.  

Again using the partitioned “high” data, the model was fitted to the Rathmines data (background subtracted). 

Exploratory analysis indicated that the variables which should be considered for the local model were relative 

humidity, air pressure, sunshine duration, 𝑊𝑆𝑊𝐷𝑓, 𝑆𝑓, 𝐷𝑓, and 𝑁𝑂2−24. Residual analysis indicated departure 

from normality and a square root transformation was applied to the dependent variable and 𝑁𝑂2−24. The 

complete dataset of modelled NO2 was plotted against observed NO2 as shown in Figure 4 (B). The non-zero 

intercept and slope was less than one indicating some small systematic bias in the model for NO2 concentrations 

above 50ppb. Following Hubbard and Cobourn [36], to eliminate this bias a second stage correction was applied 

to the model using a polynomial curve fit such that: 

𝐶̂𝑎𝑑𝑗 = 𝑎0 + 𝑎1𝐶̂ + 𝑎1𝐶̂2 

where 𝐶̂𝑎𝑑𝑗 is the new adjusted forecast, 𝐶̂ is the unadjusted forecast and the 𝑎 terms are regression coefficients. 

Figure 4 (B) shows the adjusted scatter plots. The latter model contains no bias and the plot illustrates an 

intercept of zero and a line with slope equal to 1. An r value of 0.764 was obtained (p-value <0.05).  

Finally, a model was developed using the non-partitioned raw data from Rathmines (total concentrations for 

“low” conditions) and measured versus modelled values are plotted in Figure 5.  



 

Figure 4 Model development at background site (A) and local source adjusted site (B) for partitioned “high” data 

 

Figure 5 Model development for non-partitioned raw data at Rathmines for “low” conditions 

3.2 Model validation 
For validation purposes, the hybrid modelling system was run operationally for 2014 at Rathmines using the 

decision tree outlined in Figure 1 (note that these data were not used during model development) to produce a 

year of 24 hour forecasts of daily maximum hourly NO2 concentrations. In addition, forecasts were produced for 

the same time period using the statistical model alone, i.e. air mass history modelling and data partitioning were 

not invoked. A plot of the two sets of predictions against observed values is shown in Figure 6. There is a clear 

improvement in predictions using the hybrid system. In particular, the model performs better in the prediction 

of high pollution events.   

Model performance statistics for the validation of the hybrid model are shown in Table 3. Based on the validation 

data the model has a coefficient of determination (R2) of 0.52 and an r value of 0.752 is obtained. This value is 

similar to that observed during model fitting indicating a similar explanation of variation by the model in 

extrapolated data. The FAC2 value shows that 91% of the predictions fall within a factor of two of the observed 

values and an IA value of 0.81 is achieved which was similar to that obtained by the basic model [17]. A standard 

error (s) for the regression model of 7.3 µg/m3 was obtained.  

A hit rate of 0.63 is achieved using the stringent EU annual mean limit value of 40µg/m3 as the theoretical 

exceedence rate. While the standard model performed well in predicted overall concentration variations, it did 

not capture very high pollution events and was unable to predict any of these “exceedence” days. Therefore, 

this new hybrid model presents a significant improvement in this regard. This improvement has been achieved 
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by incorporating air mass history as a predictor term. This improvement in the prediction of high pollution events 

also leads to the false positive rate increasing slightly. The hybrid model showed a false positive rate (FPR) of 

0.16 in this validation data which is an increase on the standard model which had a false positive rate of just 

0.02. The magnitude of these false positives is small however, with an average over exceedance of 12 µg/m3 on 

false positive days. As a result there is some positive bias in the hybrid model overall but since it is only invoked 

on high cluster days this is not considered problematic. This slight bias is reflected in the overall mean predictions 

as shown in Table 4. While the hybrid model over predicts the overall mean (119%) its performance far exceeds 

the basic model in the prediction of the high percentile values in each season and the annual maximum 

concentration. The hybrid model predicts the 95th and 98th percentile of measured daily maximum 

concentrations with an impressive degree of accuracy (102.5% and 101.1% of actual respectively). This 

prediction of the peak values by the model is important and while there is sometimes a slight positive bias in 

results the model statistics have shown that over-predictions are small and no significant false alarms were 

produced.  

 

Figure 6 Observed versus modelled daily maximum hourly NO2 concentrations (24 hour maximums) at Rathmines  

Table 3 Model validation statistics 

IA r FAC2 S FB NMSE H FPR 

0.81 0.752 (p-value<0.05) 0.91 7.30 0.17 0.11 0.63 0.16 

Table 4 Model performance for the basic model and hybrid model 

 Measured Basic model Hybrid model 

Mean (µg/m3) 25.70 26.44 30.62 

Percentage of mean 100 103 119 

Maximum (µg/m3) 53.43 42.72 56.33 

Percentage of maximum 100 80 105 

95th Percentile (µg/m3) 45.60 37.21 46.75 

% of measured 100 81.6 102.5 

98th Percentile (µg/m3) 49.19 39.35 49.75 
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4 Discussion 
Real time air quality forecasting has become an area of much interest in recent years and various deterministic 

and statistical techniques have been used to produce functional forecasts. While deterministic models can 

account for air parcel history, they are computationally intensive, require detailed emissions inventories over 

the modelled domain and have a high operational cost [4] which can make them unsuitable for real time air 

quality forecasting in many situations. Furthermore, many applications of real time air quality forecasting only 

require predictions at certain locations and in such instances, the processing required by deterministic models 

to provide detailed spatial variations may be a beyond the practicalities of available resources. As noted by Zhang 

et al. [4] statistical models often have a better capability for describing complex site specific variations in 

concentrations than deterministic models, often with a higher accuracy than deterministic models.  

The hybrid model presented in this paper represents a novel way to forecast air quality routinely and accurately 

with minimal resource requirements. Previous work by the authors involved the development of a statistical 

forecast model and produced good predictions of average daily maximum NO2 at urban, suburban and rural 

sites. By its nature, that model had a smoothing effect since it used median values to compute the seasonal 

indices and non-parametric regression to describe variation with wind speed and direction. Since local 

meteorological parameters were used as forcing variables it could not fully account for unusually high or low 

events caused by external factors such as long range transport of pollution or regional air mass movements. The 

hybrid model described in this paper incorporates the advantages of the statistical model outlined in Donnelly 

et al. [17] which include its low bias, its ability to forecast cyclical and anthropogenic effects without the need 

for an emissions inventory, its speed of computation and ease of operation and combines it with the (open-

source) deterministic HYSPLIT model. This allows regional effects to be included in the forecasts without the 

need for a complex deterministic (and computationally-demanding) air quality model to be used. The model 

performance metrics presented in section 3 show that this new hybrid model offers a significant improvement 

over the standard non parametric statistical model developed by the authors [17]. This was particularly relevant 

in the high percentile levels and also in the model hit rate in predicting exceedences.  

A key underlying assumption in this hybrid approach is that the transboundary contribution to air quality at the 

background site is representative of that at the forecasting site. The geographic location, prevailing climatic 

conditions and relatively low urbanisation characteristic of Ireland make this a reasonable assumption to make 

in the case presented here. However, when applying the method in areas influenced by heavy urbanisation, 

industrialisation or more complex regional air mass transport, care should be taken in the selection of the 

appropriate background site to ensure representativeness. Multiple background sites may thus be required 

when applying the model across a national monitoring network, with parallel trajectory forecasts necessary to 

enable model selection and forecasting. Due to the low computational resources of the statistical model and the 

ease with which trajectory forecasts can be produced this does not represent a substantial increase in resource 

requirements and so this approach remains a viable option for producing fast and reliable real-time air quality 

forecasts. 

A typical approach to modelling is often to try a number of different models and select that which gives the most 

accurate result. However, the risk in doing so is that the final selected model may not be the most applicable 

under future conditions. The hybrid model combines different methods to reduce this model selection error and 

account for the fact that relationships between variables are rarely purely linear or nonlinear.  As a result the 

impact of the error due to any single assumption is decreased. Furthermore, as with all forecasting models, 

periodic retraining is required throughout its operational cycle to ensure national and international trends in 

emissions are accurately represented within the forecasting process. The hybrid model retains the ability of the 

statistical techniques to describe complex site specific variations while including the effects of regional weather 



patterns through the use of air mass history analysis. Simplicity of the required input data is retained. No 

emissions data are required, since the model infers the influence of emissions from historical variations in 

concentration values. The authors’ recommend that based on the results presented in this paper this model 

should be employed in cases where fast, efficient and accurate forecasts of daily maximum concentrations are 

required, particularly in cases where computational resources are limited. In other cases the model could also 

be used as a screening method to flag a requirement to run a more intensive deterministic modelling system in 

the event that more detail on forecast concentrations was required. The method has been shown to provide a 

useful means of forecasting high pollution events without bringing a permanent positive bias into the model 

results.  

5 Conclusion 
A model that combines air mass history modelling and parametric and non-parametric statistical modelling 

techniques to provide real-time daily maximum forecasts of NO2 has been presented. The model uses a stepwise 

decision making process to produce 24 hour forecasts of daily maximum NO2 concentrations at background and 

urban locations. A regional component is included in the model to better capture high pollution events through 

the use of the HYSPLIT model to assess air mass history.  The model produces excellent prediction of the 95th 

and 98th percentile of daily maximum NO2 concentrations out to 24 hours. On validation a correlation coefficient 

of 0.75 was obtained and 91% of values were within a factor of two of the measured value.Applied individually 

each technique is not sufficient to provide useful daily forecasts of peak concentration events but the novel 

combination of air mass history modelling and parametric and non-parametric techniques allows a large degree 

of temporal variation in concentration levels to be explained and forecast. The approach is therefore concerned 

with both natural and anthropogenic emissions, their transport through the environment and resulting pollutant 

concentrations. High pollution days are typically the most challenging to forecast and yet remain the most 

important to identify and this paper present a simple solution to predicting this high events where the risk of 

over prediction is also minimised. The simplicity of the input data together with very low computational resource 

requirements and minimisation fo assumption based errors make this model ideally suited to providing fast and 

reliable real time air quality forecasts at locations where monitoring data are available. This paper demonstrates 

model development for the purpose of forecasting NO2 but the method is applicable to other priority pollutants 

including PM10/2.5 and ozone. The model has been tested at a suburban monitoring site in Dublin, Ireland but the 

techniques are internationally applicable.  
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