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a b s t r a c t

Object-based features like spectral, topographic, and textural are supportive to determine debris-covered
glacier classes. The original feature space includes relevant and irrelevant features. The inclusion of all
these features increases the complexity and renders the classifier’s performance. Therefore, feature space
optimization is requisite for the classification process. Previous studies have shown a rigorous exercise in
manually selecting the best combination of features to define the target class and proven to be a time-
consuming task. The present study proposed a hybrid feature selection technique to automate the selec-
tion of the best suitable features. This study aimed to reduce the classifier’s complexity and enhance the
performance of the classification model. Relief-F and Pearson Correlation filter-based feature selection
methods ranked features according to the relevance and filtered out irrelevant or less important features
based on the defined condition. Later, the hybrid model selected the common features to get an optimal
feature set. The proposed hybrid model was tested on Landsat 8 images of debris-covered glaciers in
Central Karakoram Range and validated with present glacier inventories. The results showed that the
classification accuracy of the proposed hybrid feature selection model with a Decision Tree classifier is
99.82%, which is better than the classification results obtained using other mapping techniques. In addi-
tion, the hybrid feature selection technique has sped up the process of classification by reducing the num-
ber of features by 77% without compromising the classification accuracy.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Ain Shams University
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-

nd/4.0/).

1. Introduction

Glaciers are moving mass of ice/snow with many other classes
like debris, rocks, and surface lakes. Each of these classes has
unique spectral behaviour and needs a specific combination of fea-
tures to extract or classify them. This high-dimensional data con-
tains hundreds of features comprising relevant and irrelevant
feature sets. The inclusion of raw feature vectors leads to complex
classification models, which results in poor performance in identi-
fying class labels [1].

Various object-based prominent methods for classifying debris-
covered glaciers have been introduced in the past few years [2–4].
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These methods have used a combination of optical and topographic
data for mapping lake, glacier ice, and debris-covered ice. However,
these methods are semi-automatic. The authors examined various
parameters like band ratios, spectral indices, topographic and spec-
tral information to determine the most suitable features for the
classification. Further, the threshold values to define glacier classes
have been acquired either from previously published work or
through the trial-and-error approach, which is a laborious task.
Though, these existing methods have produced good classification
accuracy but still require human efforts in selecting the best fea-
tures and appropriate threshold values [2–4]. Therefore, determin-
ing how to automate the mapping of the debris-covered glacier
with the effective use of available features needs profound
research.

In machine learning, the feature selection methods are broadly
categorized as filter, wrapper, and embedded. The filter methods
compute the relevance of features based on statistical measures
[5]. These methods are computationally less expensive and fast
but do not always guarantee optimal results [5,6]. Relief-F, informa-
tion gain, F-score, and correlation are the few widely used filter-
based feature selection methods. The wrapper methods create sev-
eral feature subsets and evaluate them using the predictive model.
Each subset is assigned a score according to their performance.
Based on these scores, an optimal feature subset is selected. Wrap-
permethods include simple greedy search algorithms and advanced
evolutionary algorithms for feature selection [7]. These methods
provide better results but are computationally more expensive,
slower, and have a higher risk of over-fitting. The hybrid models
combine filters and wrappers with taking advantage of both meth-
ods to overcome the drawbacks. The embedded methods select
the optimal features based on the learning model like the random
forest, classification and regression tree, and Lasso regression during
the training phase. Thesemethods are at low risk of over-fitting and
computational less expensive than wrapper methods [5].

Many researchers have devised feature selection techniques to
handle feature redundancy in biological [5,6,8], agricultural area
[9–10], and urban area [11,12]; however, these techniques are
yet to be established for glacier classification. The hybrid feature
selection mechanism based on the filter and the wrapper methods
has successfully improved the classification accuracy of biological
problems [5,6,8]. Many multi-objective feature selection
approaches have used particle swarm optimization [13,14], binary
differential evolution algorithm [15], and genetic algorithm [16] to
solve feature selection problems of standard datasets comprised of
biological data, urban land cover data, and many more. Most wrap-
per methods and evolutionary algorithms are computationally
infeasible for high-dimensional data [7]. The filter-based tech-
niques have effectively optimized the feature space and improved
the mapping accuracy of agricultural [10] and urban land cover
areas [12] in an object-oriented environment. Bommert et al. [7]
suggested that filter methods are computationally cheaper, faster,
and can integrate with any machine learning model.

For glacier mapping, supervised machine learning classifiers
have been introduced in the pixel-based environment to automate
the extraction of debris-covered areas [17–19]. Thanki et al. [20]
used a k-NN classifier for object-based mapping of glacier surfaces;
however, this study mainly focused on mapping snow, debris-
covered ice, lakes, vegetation, and rocks. Therefore, the existing
object-based studies still lack the automatic mapping of debris-
covered glaciers [21]. To date, object-based methods have not wit-
nessed the use of feature selection techniques in extracting differ-
ent land-cover classes of the debris-covered glacier. The feature
space optimization before classification is highly significant for
the effective use of high dimensional feature space comprising
spectral, topographic, and textural information [1]. Therefore, con-
sidering the importance of feature space optimization and a need

for an efficient automatic object-based mapping technique for
debris-covered glaciers, the present study proposed the following
objectives: (1) To introduce a hybrid feature selection technique
that will reduce the classifier complexity and improve the predic-
tion accuracy by automatically selecting the optimal feature set
and eliminating the irrelevant/redundant features; and (2) To
include a supervised machine learning-based classifier for auto-
matic threshold parameters selection that will reduce the iterative
attempts by the trial-and-error method in selecting appropriate
threshold value for assigning objects to different classes.

Karakoram Range referred as a home to giant glaciers located at
the western end of the Himalayas, has increasingly attracted
researchers’ attention because of its glaciological distinctiveness.
Glacier mapping in Karakoram Range is challenging due to the
debris-covered area. The previous studies in the Karakoram range
mainly relied on the manual mapping of the debris-covered areas
[22,23]. Therefore, the present research used the debris-covered
glaciers over the Karakoram Range as a case study area to imple-
ment the proposed automatic object-based classification approach.

2. Related literature

The feature space optimization algorithms have gained popular-
ity as they claimed to improve the classifier’s performance and
reduce the processing time by selecting a significant set of features
[5,8]. This section reviewed different feature selection techniques
used in object-based classification studies.

The Relief-F filter-based technique is considered one of the
widely acceptable algorithms for multi-class problems [9]. Jia et al.
[1] proposed an improved relief algorithm to optimize feature space
for object-based classification of agricultural areas. This algorithm
has reduced the original feature space by 67% and reported a signif-
icant increase of 6% in overall classification accuracy using opti-
mized feature sets in comparison to classification using all features.

Ma et al. [10] evaluated different feature selection methods like
filter, wrapper, and embedded to optimize the feature space for
object-based classification of agricultural areas. Overall, the
correlation-based feature selection method turned out to be the
best feature subset evaluation method. Moreover, the feature sub-
sets derived from wrapper methods have shown a negative impact
on the performance of object-based classification. Whereas, results
of the feature importance evaluation methods have positively
affected the classifier’s performance. This study demonstrated that
the inclusion of feature importance evaluation methods prior to
the classification step improves the classifier’s performance.

Shi et al. [11] used a combination of Genetic Algorithm and
Tabu Search (GATS) to select the optimal feature subset for classi-
fying urban and suburban areas. The GATS method yielded the
highest overall accuracy as compared to traditional GA, Relief-F,
and multi-start Tabu search. However, the computational speed
of GATS was the slowest among all.

Stromann et al. [12] analyzed the potential of three different
dimensionality reduction methods like linear discriminant analysis
(LDA), mutual information-Based (MI), and Fisher-criterion-based
(F-score) in extracting optimal features for object-based classifica-
tion of urban land cover classes. However, optimized feature sets
obtained from filter-based feature selection techniques have
improved the classification accuracy compared to the accuracy
computed using an untreated feature set.

The above-mentioned studies acknowledge the benefit of prior
feature space optimization in object-based classification and claim
to improve classification accuracy. Also, the literature advised that
the filter methods are valuable for object-based classification.
Therefore, in the present study, filter-based feature selection
methods: Relief-F and Pearson Correlation, were implemented
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and tested individually. However, these models failed in selecting
appropriate feature sets to define land cover classes. Later,
these models were combined to form a hybrid model and found
satisfactory for the object-based classification of debris-covered
glaciers.

3. Study area and dataset

Karakoram Range is a mountain range spanning over India and
China borders, which covers a 500 km glacierized area in length.
These mountains are the natural reservoir of frozen fresh water
in the form of glaciers, ice sheets, and snow. The study area is a
subregion on the Southern slope of the Central Karakoram with a
geographic location between 760100E-770150E and 350100N-
350500N (Fig. 1a). This area is heavily glaciated and contains the
world’s longest mountain glaciers outside the polar region like
Siachen, Baltoro, and other small nearby glaciers like Kaberi,
Chogolisa, and Sherpikang. Siachen glacier is stretching from
north-northwest to south-southeast for 74 km. On the other hand,
the Baltoro glacier extends over more than 60 km.

The Landsat 8 Operational Land Image and Thermal Infrared
Sensor (OLI/TIRS) images of path/row: 148/35, acquired on 21
October 2020, having 30 m spatial resolution of the study area,
was used to analyze the proposed technique as shown in Fig. 1(-
b-d). The whole study area divides into three regions: Region 1 cor-
responds to Siachen Glacier, Region 2 includes Kaberi, Chogolisa,
and Sherpikang glaciers, and Region 3 covers Baltoro glacier. The
satellite image was selected from the end of the glacier ablation
period with 1.13% cloud cover to minimize the impact of seasonal
snow cover for delineating glacier areas. These images were freely
available from the EarthExplorer website developed by the United
States Geological Survey (USGS).

3.1. Extracted features

Landsat 8 satellite has a total of eleven bands, including nine
spectral bands (Coastal/Aerosol, Blue, Green, Red, Near-Infrared
(NIR), Shortwave Infrared (SWIR1 and SWIR2), Panchromatic, Cir-
rus) and two thermal infrared bands (TIRS1 and TIRS2) and labelled
in turn from 1 to 11. The Landsat 8 image was atmospherically cor-

Fig. 1. (a) Location of the study area: Central Karakoram Range and (b-d) Landsat 8 image path/row:148/35 highlighting study areas. Image courtesy: Google Earth and USGS
EarthExplorer.
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rected using the Dark Object Subtraction method [24]. The spectral
features include Mean and Standard Deviation for all eleven bands.
The spectral index feature named Normalized Difference Snow
Index (NDSI) [2] was extracted using Eq. (1) within eCognition
Developer software.

NDSI ¼ TMGreen � TMSWIR1

TMGreen þ TMSWIR1
ð1Þ

where TMGreen and TMSWIR1 are surface reflectance in Green and
SWIR1 bands, respectively.

Textural features like Homogeneity, Contrast, Standard Devia-
tion, Mean, Second Moment, and Correlation described by Haralick
et al. [25] were extracted using eCognition Developer Software.
These features were calculated using the Gray-Level Difference
Vector (GLDV) and Gray-Level Co-Occurrence Matrix (GLCM).

Temperature and Topographic features are important parame-
ters used in mapping debris-covered glaciers [17,19,26]. Therefore,
the Land Surface Temperature (LST) was calculated from band10 of
Landsat 8 as defined by Eq. (2) using ArcGIS Software (Fig. 2a).

LST ¼ TBTOA=1þw � TBTOA=pð Þ � ln LSEð Þ ð2Þ
where TBTOA is the top of atmosphere brightness temperature (�C)
derived from TOA spectral radiance, w is the wavelength of emitted

radiance (lm), p is a parameter derived from Planck’s law, and LSE
is the land surface emissivity computed from the proportion of
vegetation.

Shuttle Radar Topography Mission 1-Arc Second Global Digital
Elevation Model (SRTM-DEM), released by NASA and NGGA in
cooperation with the German and Italian space agencies, had a
30 m resolution and was retrieved from EarthExplorer website
for extracting slope information. Prior to analysis, the DEM data
were projected to the same coordinate system as that of Landsat
8 image, i.e., World Geodetic System 1984 (WGS 84) with Univer-
sal Transverse Mercator (UTM) Zone 43 North. Then, the topo-
graphic feature slope was extracted from the SRTM DEM image
using eCognition Developer Software (Fig. 2b).

3.2. Validation features

The ground truth data was not feasible due to the inaccessible
terrain of glaciers. Therefore, two datasets: the Glacier inventory
of the Pamir and Karakoram [27] and the Global Land Ice Measure-
ments Space Initiative (GLIMS) glacier database [28], were applied
to validate the glacier boundary detected by the proposed hybrid
feature selection technique for object-based glacier mapping.
Table 1 gives the detail of the dataset used in the study.

Fig. 2. (a) Land Surface Temperature (b) Slope maps for different land cover types of Central Karakoram glaciers.
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4. Analysis of features

Literature suggests spectral, thermal, and topographic data sup-
ports the mapping of debris-covered glaciers [19,29]. However,
other features (textural and standard deviation) are used as auxil-
iary parameters and included in the initial feature space to prove
their lower relevance by the proposed algorithm. Ice/snow cover
has high reflectance in the visible bands and low reflectance in
SWIR bands. Therefore, the spectral difference information from
VIS-SWIR bands supports the mapping of snow/ice surfaces. The
study region includes debris-covered glaciers, where debris has
similar spectral characteristics to surrounding bare land in the Vis-
ible to Infrared band.

The LST map (Fig. 2a) demonstrates that supraglacial debris
areas of Siachen, Baltoro, and Kaberi glaciers represented in green
color have relatively lower surface temperatures than surrounding
rocks. It is due to the freezing effect of beneath ice on supraglacial
debris cover. Therefore, this temperature difference information is
significant to separate them [29]. The Ice/snow cover mapped by
the VIS-SWIR band ratio includes ice covered with debris. So, the
spectral information in the NIR band can help separate ice mixed
debris (IMD) area from clean ice/snow [17]. The selected study area
is shadow-covered glaciers. The rocks in the shaded area have a
lower temperature than non-shaded areas. Therefore, with the
support of topographic slope feature debris area can be distin-
guished from the surrounding rocks in the shaded area. The black
color in the slope map (Fig. 2b) represents the debris areas having a
lower slope than the surrounding area highlighted in grey.

5. Proposed hybrid feature selection model: RF-Corr

Fig. 3 shows the procedure of the proposed hybrid feature selec-
tion model. The filter method used statistical measures to select
feature subsets. Algorithm 1 describes the proposed hybrid feature
selection technique, which includes three steps: initial screening,
selection of common features, and refining. For Relief-F, initialized
weight vector W to zero. Random ‘m’ training instances (Ri) out of
total instances ‘n’ were selected. Distance information was com-
puted by ‘Manhattan’ function to find the k nearest neighbours.
The value of k = 3 was chosen that corresponds to maximum accu-
racy. The average feature weight W[A] of 3 nearest neighbours’
instances (3 nearest Hits ‘H’ and Misses ‘M’), was calculated as
given in Eq. (3) [1]. Feature with the highest positive weight ranked
at the top, and the rest arranged in descending order. Eq. (4)
defines the difference function that measures the difference value
of attribute A at two instances Ri and Hj or Mj. The minimum and
maximum values of attribute A were selected over the entire
selected instances.

Pearson correlation used correlation statistics to measure the
degree of a linear relationship between the features and the tar-
gets. Features having low linear relations with other features and
higher with class labels tend to be selected. The correlation was
determined using Eq. (5). For optimal feature subset selection

[30], the highest ranked features were initially included and com-
puted the accuracy. The next ranked features were added singly
and evaluated the performance. Few features when considered
separately, may not be highly relevant but may perform well when
combined with other features. Considering this, both models have
selected the subset of features corresponding to maximum accu-
racy and less redundant. Features that have degraded the classi-
fier’s performance, were discarded and considered to be
irrelevant. Next, the hybrid model inherits the properties of both
models by selecting common features to maximize model effi-
ciency further. The final relevant set of features as per the desired
target was derived using Twoing split criteria as given in Eq. (6),
which is offered by the Decision Tree (DT) classifier [31]. Rest,
the default values of the parameters were used in building the tree.
Twoing criteria check the probability of instances of a particular
class appearing on the child node’s left or right side. DT algorithm
recursively partitions the training instances into subsets until all
the subsets are assigned to a single class. The root node was
selected based on the highest Twoing value of the feature.

Algorithm 1: Hybrid feature selection technique

Input: A vector of feature space X (n, a) values
and class labels comprising:

a  number of features/attributes
n  number of instances
Output: A relevant set of features for classification
Initial Screening of Features
Relief-F algorithm:
A  attribute/feature
m  random training instances where m < n
P ()  probability
C  corresponding class
for A ¼ 1 to a do
Calculate weight vector
W A½ � ¼W A½ �

�
Xk

j¼1diff A;Ri;Hj
� �

= m� kð Þð Þ þ
X

C–class Rið Þ
½ P Cð Þ
1� P class Rið Þð Þ

Xk

j¼1diff ðA;Ri;MjðCÞÞ�=ð m� kð ÞÞ

(3)
Where difference function

diff A;Ri;Hj
� � ¼ jvalue A;Rið Þ�value A;Hjð Þj

max Að Þ�minðAÞ (4)

end
return weight vector holding weight scores of all the features

used to check their relevance
S_Features = X (:, rank(1:a));
Select top ranked features set that correspond to the

maximum accuracy of the model
Pearson Correlation algorithm:
x  instances
y  class labels
Initialize correlation vector C orr ¼ 0
for A ¼ 1 to a do
Calculate correlation

Corrxy ¼ n
P

xAyA�
P

xA
P

yAffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

x2A�ð
P

xAÞ
2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n
P

y2A�ð
P

yAÞ
2

q (5)

(continued on next page)

Table 1
Detail of the datasets used in the study.

Datasets Date Resolution
(m)

Landsat 8 (OLI & TIRS) 21 October
2020

30

SRTM 1-Arc Second GDEM 11
February
2000

30

Glacier inventory of the Pamir and Karakoram
(GI_P_K)

2018 –

Global Land Ice Measurements Space Initiative
(GLIMS) glacier database

2014 –
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6. Classification results

The proposed feature selection algorithm was designed and
implemented on MATLAB on a computer with the Windows 10
operating system and an intel core i5 processor.

6.1. Classification samples

The foremost step of object-based image classification was seg-
mentation. The multiresolution image segmentation technique
was employed to create homogeneous objects using eCognition
developer software [32]. Total 74 object-based features were
extracted along with these homogeneous segments, as summa-
rized in Table 2. The initial feature space has been developed based
on feature analysis from the available literature.

These objects/instances were assigned to five different land
cover classes named Ice/snow, Supraglacial debris, Ice mixed deb-
ris (IMD), Terrain shadow, and Bare rock and sand based on visual
inspection of Landsat 8 image, with the aid of high-resolution
images of Google Earth to train the classifier (Fig. 4).

Later, all these features information of image objects were
exported from eCognition developer software for further process-
ing. The 5-fold cross-validation randomly split the dataset into a
training/testing group (Table 2). Subsequently, 80% of the ran-
domly selected instances form training samples, and the remaining
20% form testing samples to evaluate the classification results.

6.2. Experimental results

For Landsat 8 (OLI/TIRS), the total number of features was 74. In
the initial screening of features, the Relief-F and Pearson Correla-
tion models have selected the top-ranked features and filtered
out the irrelevant ones having lower weight and correlation with
respect to class labels. Table 3 represents the results of optimized
feature space obtained by the individual and hybrid models. The
number of features is reduced from 74 to 17 for Relief-F and 22
for Pearson Correlation. Later, the common features were selected
using a hybrid RF-Corr model that has reduced the number of fea-
tures by 77% (74 ? 17).

Relief-F and Pearson Correlation models have ranked spectral
index, mean and standard deviation features of individual spectral
bands, LST, and slope featureshigher than textural features. Textural
features are mainly required to examine surface characteristics
(smoothness/coarseness, roughness), which is beyond the scope of
the current study; hence, given least importance with respect to
defined classes. Later, a subset of features that corresponds to max-
imum accuracy was selected. The optimized feature sets obtained
from individual models named Relief-F, and Pearson Correlation
was fed to DT classifier for final tunning by Twoing criteria [33].
Out of 17 and 22 features, DT has selectedNDSI for ice/snow, Bright-
ness for Terrain shadow, Slope followed by Mean TIRS to separate
supraglacial debris-covered area, and Mean NIR for MID over the
other spectral features. However, the TIRS feature resulted in a few
misclassifications while mapping debris area, as represented in
Fig. 5.

Next, the hybrid model selected the common features from the
optimized feature sets of Relief-F and Pearson Correlation. The
hybrid model selected the same features as that by the Relief-F
model. However, DT has performed well with this optimized fea-
ture set by selecting all the desirable features (NDSI, Brightness,
Slope, LST, and Mean (5)) required for mapping debris-covered
glaciers. The classified map (Fig. 5) shows that the LST feature
has effectively mapped the debris area boundary in contrast to
the TIRS feature. Moreover, the existing studies have also consid-
ered the LST as the essential feature for the classification of
supraglacial debris [17,19]. The final feature set for all the three
regions obtained by the DT classifier using the hybrid feature
selection model was in accordance with the existing debris-
covered glacier mapping studies; hence, making the proposed
technique more reliable. Table 4 summarizes the final feature
set with automatically generated threshold ranges used for classi-
fying different land cover classes: Ice/snow, Supraglacial debris,
IMD, Terrain shadow, and Bare rock. A threshold value of 0.4
for NDSI, generally used in literature, as effective in mapping
clean ice. Lu et al. [19] have used the 0.4 threshold value of NDSI
to map snow/ice cover, resulting in incorrect classification of
some areas. Later, they have manually reclassified the incorrectly
classified areas (shadowed ice pixels) to snow/ice class. The
acceptable threshold value of NDSI for mapping snow has been
found in the range of 0.25 to 0.45 [19,34]. Moreover, the present
study also confirmed the threshold value of NDSI between 0.25
and 0.28, as ideal for mapping ice/snow cover over Central
Karakoram Range. The threshold values vary with variations in
glacier topography.

Initially, the mapped ice/snow cover includes IMD. In the next
step, Slope and Mean NIR features have separated IMD area from
snow/ice cover. The LST value in the range of 14.01–15.78 �C,
was found suitable for mapping supraglacial debris [17]. Fig. 6 rep-
resents the final glacier classified maps obtained using the pro-
posed hybrid feature selection technique. The classified map
states that the selected features and threshold values are appropri-
ate for mapping debris-covered glaciers in the Central Karakoram
range.

end
Rank the features based on the correlation coefficient
S_Features = X (:, rank(1:a));
Select top ranked features set that correspond to the

maximum accuracy of the model
Hybrid Model: RF-Corr
Input: FS = {f1, f2, . . .. . ., fs}  set of features from Relief-F
FN = {f1, f2, . . .. . ., fn} set of features from Pearson Correlation
Output: Selection of Common Features, FS\N = FS \ FN
Final feature subset selection: Twoing Split Criteria

(In-built function in DT-classifier)
Input: T  Training instances
F  Features set
Split criteria  Attribute selection method
Output: dtree (T, F)
If stopping_cond is true then
Create a node N
If instances are of same class, C then
return N as a leaf node

else
create a root node
root.test_cond = find_best_split
x  predictor variable
s  chosen split at node t
i  class
L(i), R(i)  fraction of members of class i in the left child

and right child respectively

dðx; s; tÞtwoing ¼ P Lð ÞPðRÞ=4ðPijL ið Þ � R ið ÞjÞ2(6)
Assume, V = {v|v possible outcome of root.test_cond}
for each v є V do
child = dtree (T, F)
Add child as descendent of root
end for
end if
return root

Algorithm (cotinues)
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7. Accuracy assessment

The effectiveness of the proposed hybrid feature selection (FS)
technique was evaluated by calculating prediction accuracy using
5-fold cross-validation and the accuracy results were compared
with the individual model’s performance in Table 5. In comparison

to Relief-F and Pearson Correlation models, the proposed hybrid
model has slightly improved the classification accuracy by 0.04%
in the case of the Siachen glacier and 0.17% in the case of other
glaciers. Moreover, the DT classifier failed to choose a suitable
combination of features from the optimized feature set generated
by individual models [5]. Hence, does not recommend for future

Fig. 3. Flowchart of the hybrid feature selection mechanism for automatic object-based glacier mapping.

Table 2
Description of the data.

Datasets Attributes/Features Instances/Objects Class Training/Testing group

Region 1 Spectral - Brightness, Maximum difference, NDSI, Mean layer (1/2/3/4/5/6/7/8/9/10/11),
Standard Deviation (1/2/3/4/5/6/7/8/9/10/11)
Temperature - LST
Topographic - Slope
Texture - Texture by Haralick
GLCM & GLDV for Homogeneity, Contrast, Standard Deviation, Mean, Moment, Correlation

2502 5 2002/500
Region 2 2871 5 2297/574
Region 3 2325 5 1860/465
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analysis. However, a combination of the hybrid model and DT clas-
sifier has performed satisfactorily for all three glacier regions.

The Confusion Matrix of the DT classifier using the proposed
hybrid technique and overall Kappa statistics for ‘Region 1’, is rep-
resented to provide more detail about classification results
(Table 6). For Region 1, the Kappa coefficient value was 0.993,
which was within the acceptable range [17].

The areas of different land cover types, mapped by the proposed
classification technique, were estimated within eCognition Devel-
oper software (Table 7). The whole study region was dominated
by glacierized area (including ice/snow, supraglacial debris, and
ice mixed debris) that covers 50.53% of the total area.

8. Discussion

8.1. Uncertainties of glacier data

There were many uncertainties during the process of mapping
debris-covered glaciers by the proposed automatic technique. First,
the present study used a Landsat 8 image having a spatial resolu-
tion of 30 m to map debris-covered glaciers, where it was hard
to identify the small features. However, the higher-resolution
Sentinel series satellite images can help in identifying the small
features. Second, uncertainty was because of the training samples
of the study area, selected based on the visual inspection of the

Landsat 8 image with the aid of high-resolution images of Google
Earth. However, the high-resolution images from Google Earth in
the present study area were usually acquired in the winter, making
it hard to identify debris-covered areas due to heavy snow cover.
Therefore, a comprehensive field survey could help recognize the
pixels as debris-covered areas or other land cover types of the gla-
cier. Hence, an in-situ understanding of glacier surface area will be
helpful for the precise mapping of glaciers.

Furthermore, DEM accuracy was a crucial factor in mapping
debris-covered glaciers, which affected the topographic features
of glaciers. The SRTM DEM data was acquired on 11 February
2000 and available online on 23 September 2014. The difference
in the release date of the SRTM DEM image and the acquisition
date of the Landsat 8 image might cause uncertainties in mapping
debris areas. Although, this period recorded no visible elevation
changes in the Southern slope of the Central Karakoram Range.

Fig. 4. Highlight five different land cover classes on the false-color composite
(Bands: 6/5/4) of Landsat 8 image.

Table 3
Screening of features by different feature selection models and Twoing criteria for all the three study regions.

Feature selection algorithm Optimized feature space Final feature set selected by Twoing split
criteria within Decision Tree

Relief-F (17) Spectral – NDSI, Brightness, Maximum Difference,
Mean Layer (1/2/3/4/5/6/7/8/10/11), Standard Deviation (6/7)
Temperature – LST
Topographic – Slope

NDSI, Brightness, Slope, Mean (11/5)

Pearson Correlation (22) Spectral – NDSI, Brightness, Maximum Difference,
Mean Layer (1/2/3/4/5/6/7/8/10/11), Standard Deviation (1/2/3/4/6/7/8)
Temperature – LST
Topographic – Slope

NDSI, Brightness, Slope, Mean (11/5)

Hybrid RF-Corr (17) Spectral – NDSI, Brightness, Maximum Difference,
Mean Layer (1/2/3/4/5/6/7/8/10/11), Standard Deviation (6/7)
Temperature – LST
Topographic – Slope

NDSI, Brightness, Slope, LST, Mean (5)

Fig. 5. Supraglacial debris area mapped by TIRS and LST features.

Table 4
Selected feature set with threshold values used to define land cover classes.

Land cover Features with threshold condition range

Ice/snow NDSI � (0.25 – 0.28)
Supraglacial debris Slope < (6.480 – 10.670) and LST < (14.01 �C– 15.78 �C)
Ice mixed debris

(IMD)
Slope < (8.990 – 10.670) and NIR < (17979–19543)

Terrain shadow Slope � (15.030 – 15.410) and Brightness < (8999.19 –
10987.8)

Bare rock and sand NDSI < (0.25 – 0.28) and Brightness � (8999.19 –
10987.8)
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However, it is essential to match the time frame with the dataset.
Moreover, the thermal infrared band of Landsat 8 mapped the gla-
ciers based on the assumption that the debris areas have a lower
temperature than the surrounding rock surface [19], which is not
applicable for highly thick-debris covered glaciers [35]. The ground
truth data could help in the understanding of these glacier types.

8.2. Comparison with existing glacier mapping techniques

Previously, studies related to glacier mass change have been
reported in the Central Karakoram range [22,23]. They have utilized
the thresholding band ratio technique for mapping glacier ice
region. These existing techniques are semi-automatic that needs a

Fig. 6. Classification results of Landsat 8 images for (a) Region 1 (b) Region 2 (c) Region 3 using the proposed glacier mapping technique.

Table 5
K-Fold cross-validation based accuracy assessment (%) of different feature selection models.

Datasets Relief-F Pearson Correlation Hybrid RF-Corr

Region 1 99.76 99.76 99.80
Region 2 99.65 99.65 99.82
Region 3 99.65 99.65 99.82

Table 6
Confusion matrix of proposed glacier classification technique for testing samples of region 1.

Land cover class Ice/snow Supraglacial debris Ice mixed debris Terrain shadow Bare rock and sand Total

Ice/snow 237 0 0 0 0 237
Supraglacial debris 0 14 0 0 0 14
Ice mixed debris 1 0 33 0 0 34
Terrain shadow 0 0 0 76 0 76
Bare rock and sand 0 0 0 0 139 139
Total 238 14 33 76 139
Overall Kappa coefficient: 0.993
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manual selection of thresholds. Moreover, the debris-covered area
of Siachen and Baltoro glaciers was delineatedmanually using spec-
tral bands of Landsat image [22,23]. Themanual approach demands
a high workload and their mapping accuracy counts on the expert’s
skill in identifying glacier outlines. The GLIMS database has used a
semi-automatic object-based technique for extracting the glacier
boundaries in the Central Karakoram range [28].

Haireti et al. [29] and Lv et al. [36] utilized semi-automatic
pixel-based technique to delineate glaciers in the Eastern Karako-
ram range. These studies indicate the human dependency in select-
ing appropriate features and thresholding band ratios that make
the classification a time-consuming process. Moreover, the current
object-based glacier mapping studies still need manual assistance
in mapping debris-covered glacier surfaces [2–4]. However, the
proposed machine-learning-based classification technique has
expedited the mapping of debris-covered glaciers due to its auto-
matic selection of relevant features and estimation of appropriate
threshold values; hence, making it reliable for mapping the large
glacial regions.

Table 8 compares the performance of the proposed classifica-
tion technique with the existing supervised object-based glacier
mapping techniques to prove its usefulness. The k-Nearest Neigh-
bor (k-NN) algorithm [20] was tested on the present study region
for mapping debris-covered areas and found nearly 91% accurate.
Next, the inclusion of the proposed hybrid FS technique prior to
the k-NN classifier has sped the classification process by 2.8 sec
with marginal improvement in performance accuracy. Another
supervised classifier, Decision Tree having the inbuilt capability
of estimating feature importance, was implemented and examined
[37]. Though DT provides feature selection, its performance
accuracy is less as compared to the proposed technique. The inclu-
sion of the feature selection model before the classification process
has accelerated the classification process by reducing the features
by 77% (Table 8). The classifier takes less time to process the
reduced feature space in comparison to the original feature space.

Other accuracy assessment statistical parameters associated
with confusion matrices obtained using proposed and existing

techniques for all three study regions were summarized in Table 9.
The overall Kappa coefficient value of the proposed technique is
greater than 0.8, which signifies the good quality of classification
results for all land cover types. The overall Error rate reported in
mapping land cover areas using the proposed technique was less
as compared to the existing approach. In summary, the proposed
classification technique has outperformed the existing classifica-
tion techniques.

8.3. Comparison with glacier inventories

The classification results obtained by the DT classifier using the
proposed hybrid feature selection technique were compared with
two existing glacier inventories: the glacier inventory of the Pamir
and Karakoram (GI_P_K) [27] and the Global Land Ice Measure-
ments Space Initiative (GLIMS) [28] glacier database. GI_P_K is
the homogenous inventory of Pamir and Karakoram mountains
formed by analyzing 28 Landsat 4–5 Thematic Mapper (TM) and
Landsat 7 Enhanced Thematic Mapper (ETM+) images acquired
from 1998 to 2002. GI_P_K applied well-established methods of
mapping glaciers and utilized the coherence maps obtained from
Advanced Land Observing Satellite 1 (ALOS-1) Phased Array type
L-band Synthetic Aperture Radar 1 (PALSAR-1) to support the gla-
ciers mapping. GLIMS provides glacier boundaries covering debris-
covered regions across the globe. Landsat ETM+ and Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
scenes were utilized to prepare the GLIMS database and main-
tained at National Snow and Ice Data Center (NSIDC). The Interna-
tional Centre for Integrated Mountain Development (ICIMOD), a
Regional Center of GLIMS, has analyzed the Landsat images of
the Himalaya Mountains using a semi-automatic object-based
technique. The GI_P_K and ICIMOD inventories have used Landsat
ETM+ scenes from 2001 and 2006, respectively, for the selected
study area.

Fig. 7 shows the results of the proposed classification technique
overlaid on two glacier inventories. The composite map represents
some differences in glacier outlines that are likely to be caused due

Table 7
Area (Km2) for different land cover classes mapped by the proposed technique.

Datasets Ice/snow with IMD Supraglacial debris Terrain shadow Bare rock and sand Total

Region 1 295.43 70.94 187.03 183.37 735.30
Region 2 558.45 69.46 330.11 538.46 1496.48
Region 3 453.27 128.48 206.44 160.81 949

Table 8
Comparison of the proposed technique with existing supervised object-based approach [20] based on K-fold cross-validation accuracy assessment (%) and computational time
(seconds).

Datasets K-fold cross-validation accuracy assessment (%) Computational time (seconds)

k-NN Hybrid FS & k-NN DT Proposed technique
(Hybrid FS & DT)

k-NN Hybrid FS & k-NN DT Proposed technique
(Hybrid FS & DT)

Region 1 91.40 91.40 99.72 99.80 3.05 0.19 3.58 0.38
Region 2 91.60 91.63 99.47 99.82 3.15 0.25 4.07 0.67
Region 3 90.66 90.96 99.69 99.82 3.08 0.21 3.52 0.32

Table 9
Overall accuracy assessment statistical parameters based on confusion matrices for proposed technique and existing supervised object-based approach [20].

Datasets Error rate (%) Kappa coefficient

k-NN Proposed technique k-NN Proposed technique

Region 1 8 0.2 0.75 0.993
Region 2 7.3 0.8 0.771 0.972
Region 3 8.82 0.4 0.724 0.986
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to differences in the acquisition time of images used in the study.
The boundary of the glacier ice region obtained by the proposed
technique nearly fitted with the glacier boundary of both the
inventories. Small parts show minor differences in the outline of
the ice boundary could be due to seasonal snow. The edges of
the debris-covered region mapped by the proposed technique were
slightly different compared to inventories. Overall, the glacier area
outline shows a high degree of agreement with the previous data-
sets making it robust for mapping debris-covered glaciers.

9. Conclusion

In object-based debris-covered glacier classification, feature
space optimization is a prerequisite step to be performed before
the classification process. However, the inclusion of irrelevant fea-
tures increases classifier complexity and degrades the mapping

accuracy. The present research has introduced a hybrid feature
selection technique comprising three steps: initial screening, selec-
tion of common features, and refining. The combination of Relief-F
and Pearson Correlation filter-based techniques has optimized the
feature space. DT classifier has further refined the optimized fea-
ture space by using Twoing split criteria. The proposed machine-
learning-based automatic classification technique was tested in
Central Karakoram Region and has shown high robustness in all
the glaciers. The combination of feature selection technique and
DT algorithm proves to be advantageous in eliminating the irrele-
vant/redundant features, reducing classifier complexities, reducing
the computational time and enhancing the classification accuracy.
This automatic approach of object-based mapping debris-covered
glaciers will benefit glaciologists and researchers working on the
scientific study of glaciers and provide technical assistance in
developing future glacier inventory since it has greatly reduced

Fig. 7. (a-f) Comparison of classification results of proposed glacier mapping technique with two datasets: Glacier inventory of the Pamir and Karakoram (GI_P_K) and Global
Land Ice Measurements Space Initiative (GLIMS) glacier database for different glaciers.
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human efforts. In the future, the proposed technique can success-
fully be utilized for mapping glaciers in some other areas using
high-resolution Sentinel-2 satellite data.
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