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Abstract: The production of high yields of soluble recombinant protein is one of the main 
objectives of protein biotechnology. Several factors, such as expression system, vector, host, media 
composition and induction conditions can influence recombinant protein yield. Identifying the 
most important factors for optimum protein expression may involve significant investment of time 
and considerable cost. To address this problem statistical models, such as Design of Experiments 
(DoE), have been used to optimise recombinant protein production. This review explores the 
application of DoE in the production of recombinant proteins, focusing on prokaryotic expression 
systems with a specific emphasis on media composition and culture conditions. The review 
examines the most commonly used DoE screening and optimisation methods, including factorial 
and screening designs. It provides examples of DoE informed media optimisation and culture 
condition optimisation. The review concludes with a consideration of the benefits of the 
application of DoE in recombinant protein production. 

Keywords: recombinant protein production; Design of Experiments; Screening Design; Response 
Surface Methodology; Process Optimization 

 

1. Introduction 

Advances in biotechnology, including the development of genetic engineering and cloning, 
have served as effective approaches for the expression of heterologous proteins for different 
applications [1]. Currently, recombinant proteins are widely used in the biological and biomedical 
industries, as well as in research, with their market share increasing rapidly [2,3]. The production of 
high yields of soluble and functional recombinant protein is the ultimate goal in protein 
biotechnology [4]. To achieve this objective, many key aspects such as the expression system, the 
expression vector, the host strain, the purification tag, the media composition, the induction 
conditions and the purification methods need to be carefully evaluated and optimised before 
embarking on large scale production of a recombinant protein of interest [5–7]. 

Although both eukaryotic and prokaryotic expression systems are used for overproduction of 
soluble recombinant protein, choosing the right system for your protein depends, amongst other 
things, on the growth rate and culturing of host cells, the level of the target gene expression and 
post translational processing of the synthesised protein [8,9]. The most commonly used prokaryotic 
systems are based on expression in bacteria, including E. coli and Bacillus species [10,11]. There is no 
single method which is universally successful for protein expression that will ensure the production 
of a desirable concentration of soluble and functional protein [13,14]. Combining factors in a 
trial-and-error process has been troublesome [15]. To overcome this problem, statistical approaches 
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have been utilised to evaluate the variables that have the largest influence on the yield of a 
recombinant protein of interest [16,17], product quality [18], purity [19,20] and solubility [21,22]. 
These statistical processes include the Design of Experiment (DoE) approach [23,24]. This approach 
advances the traditional one-factor-at-a-time (OFAT) method, which involves varying one factor 
while other factors are held constant. This single variable approach results in the need to run 
multiple experiments with a high risk of failing to identify the true optimum [25]. The DoE method 
provides a significantly reduced experimental matrix [26–28].  

There have been an increasing number of published studies on the application of statistically 
based optimization processes in the field of protein biotechnology [18,29]. This has been matched 
by a corresponding increase in the application of DoE methods, such as screening and optimisation 
designs, to enhance protein production. This review synthesizes and condenses past and recent 
literature on the DoE methodologies commonly employed to evaluate effect of media composition 
and culture condition on recombinant protein expression. This review will address the application 
of DoE to increase recombinant protein expression in prokaryotic systems, where high yields can be 
achieved but poor product quality remains a risk [30]. It also provides an overview of the important 
statistical analysis tools embedded in common DoE software. These tools facilitate the 
interpretation of experimental data, which ultimately allows the identification of optimal levels for 
maximum yield. Finally, the review provides concluding thoughts on the benefits of the common 
DoE methods typically used in recombinant protein production in order to direct future research 
efforts. 

2. Production of Recombinant Proteins in a Prokaryotic Expression System 

2.1. Factors that Inform the Choice of Expression System 

Protein purification from natural sources can require a large quantity of the source organism 
and may yield only small amount of target protein after several rounds of extraction and 
purification [4,31]. As such, recombinant expression of proteins has become an indispensable tool to 
produce proteins to satisfactory yields [32] and to meet the demands of industry and research 
[1,33]. With the aid of genetic engineering, a desired gene cloned into a suitable expression vector 
can be overexpressed as a recombinant protein of interest [34]. Recombinant proteins can be 
expressed in cell cultures of bacteria [35], yeasts [36], mammalian cells [37,38], plants [39]  and 
insects [40]. However, the prokaryotic systems remains the most attractive hosts due to their low 
cost, high productivity and rapid production rates [30]. Prokaryotic heterologous protein 
expression is mainly carried out in the bacteria E. coli, although increasingly the Bacillus species are 
being employed [41–43]. Drawbacks of prokaryotic expression systems include poor protein quality 
due to the inability of prokaryotic cells to carry out post-translational modifications such as 
glycosylation, the presence of toxic cell wall pyrogens, along with formation of inclusion bodies 
resulting in aggregated and insoluble heterologous protein [44]. Some widely used bacterial 
expression systems that are commercially available are listed in Table 1.  
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Table 1. Summary of the most widely used recombinant expression strains from E. coli and Bacillus 
species outlining their advantages and disadvantages. 

 General Advantages  Disadvantages References 
Most common E. coli strains 

Rapid expression, high 
yield, ease of culture 
and gene modification, 
cost effective. 

Post translational 
modification not 
possible.  
Inclusion body 
formation 

[41,45,46] 

BL21,  
B21-Codonplus (RIL),  
BL21(DE3),  
BL21(DE3)pLys S/E,  
BL21 Star, C41(DE3), C43(DE3), 
Codon plus (RP),  
Lemon21(DE3), M15, Origami, 
Rosetta, SG13009, Shuffle Derivatives 
of K-12, AD494 and HMS174. 

Most common Bacillus species Preferred for 
homologous 
expression of some 
enzymes (e.g., 
proteases and 
amylases),  
Strong secretion, no 
involvement of 
intracellular inclusion 
bodies and ease of 
manipulation. 

Contains proteases, 
which may 
hydrolyse 
recombinant 
proteins. 

[42,47–50]    Bacillus brevis, Bacillus megaterium and 
Bacillus subtilis. 

While there are a variety of expression vectors commercially available, their choice is strongly 
based on the combination of replicons, promoters, selection markers, multiple cloning sites and 
fusion proteins [11]. A knowledgeable decision on the best expression plasmid [10,51–54], the most 
commonly used expression plasmids [22,55–58] and their key features such as promoters [59,60–63], 
affinity tags [64,65] and selection markers [7] have been extensively reviewed in the literature, 
primarily focusing on the E. coli prokaryotic expression system. Widely used Bacillus strains [66,67], 
vectors and promoters [68–70] have also been reported. 

2.2. Factors that Influence Media Composition and Culture Conditions in an Expression System 

A careful selection of expression system, expression vector and host does not always guarantee 
the production of a large amount of target protein in soluble and active form [7]. Media 
composition and induction conditions have a significant influence on recombinant protein 
expression levels[71–73] and solubility [45]. For example, media containing a defined concentration 
of salts, peptone and yeast influences the overall recombinant protein yield [47]; conversely, media 
with Supper Broth (SB), 2x Yeast Extract-Tryptone (2YT) and Terrific Broth (TB) do not have major 
effect on protein solubility [51]. Additionally, prosthetic groups in media are known to prevent the 
formation of inclusion bodies [74] where required by the protein [41,75]. The most common media 
composition used in prokaryotic expression systems, along with their advantages and 
disadvantages, have been reviewed elsewhere [76]. Culture conditions are another set of factors 
that must be carefully optimised to achieve high yields of heterologous protein [14]. Factors such as 
the cell density prior to induction, inducer concentration, induction temperature and induction 
duration are all known to influence yield [77–81]. 

2.3. Enhancing the Production of Recombinant Proteins in a Prokaryotic Expression System by DoE 

It can be difficult to make informed decisions regarding the optimal combination of expression 
system, conditions and media components due to the wide variety within these parameters that 
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influence the expression of recombinant protein. Oftentimes this results in an unsatisfactory and 
costly trial-and-error process being employed to enhance the overall production yield [64]. To 
address this problem more effective, statistically supported, approaches have been developed and 
have gained significant traction. In this approach, a controlled model is developed defining media 
components, induction and expression conditions based on the needs of the recombinant protein of 
interest [16]. DoE, employed in this way, has provided powerful and efficient tools to screen and 
optimise factors affecting recombinant protein in an efficient manner [82]. This is due to DoEs' 
ability to identify factors affecting recombinant protein production and optimise the process 
resulting in a high yield [83]. A typical DoE workflow is depicted in diagrammatic form (see Figure 
1). The desired output, or response, is to achieve a high yield of a protein of interest and involves 
several stages: 

Stage 1. The first stage of the process is to compile a list of factors that can influence protein expression. These 
are usually such factors as; induction temperature, induction duration, pH, media components (carbon 
source, nitrogen source, micronutrients).  

Stage 2. The second stage of DoE aims to reduce the number of factors to a smaller subset, these being the 
most important factors (i.e. those with the greatest impact on expression). This process is known as screening. 
Having a smaller set of significant factors greatly simplifies the statistical process. Sometimes, if the number 
of factors is small (between 2 and 4) there is no need to carry out the screening stage. When looking at a factor 
that influences protein expression the concept of levels is important: temperature, for example, may be 
examined between 20oC and 40oC. These two temperatures represent the lowest and highest “level” of this 
parameter that will influence expression. For the purposes of modelling these two levels are inputted into the 
model for this factor. Similarly, the upper and lower levels are inputted for all other relevant parameters. It is 
important to note that the levels are inputted into the DoE package as +1 (highest value of a parameter) and -1 
(lowest value of a parameter). This “coding” is carried out to avoid the use of multiple different measurement 
units for parameters such as pH, temperature. The software will then suggest a minimal set of experiments to 
explore the significance of each factor. The design of the experimental matrix can be selected from a range of 
choices such as Full Factorial Design, Plackett Burman Design or indeed a custom design. The suggested 
experiments are carried out and the results are used to inform the next stage of the process – optimisation. 

Stage 3 The final stage of the process is optimisation and is typically carried out with a set of three to four 
factors. An experimental RSM (Response Surface Methodology) design strategy is selected and experiments 
are run as for the screening stage. The optimisation process expresses the response surface as a polynomial 
and uses the input data to estimate its coefficients. The derivative of this polynomial is used to obtain 
inflection points corresponding to maxima or minima in the model.  
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Figure 1. A typical DoE workflow in protein production. Case study A illustrates the optimization 
of recombinant lipase KV1 expression in E. coli [84] where a screening process was not required 
since the number of factors affecting this enzyme is not large (four factors). The four factors (A, B, C, 
D), therefore, underwent optimisation by Central Composite Design (CCD) under Response Surface 
Methodology (RSM) which resulted in a yield increase of 3.1-fold. Case study B describes the 
optimisation process for high yield production of recombinant human interferon-γ [85]. In this case, 
the number of factors involved is large (nine factors) and they were subjected to a screening process 
before optimisation. Four factors (X1, X2, X3, X7) out of nine were identified by Plackett-Burman 
Design (PBD) based screening to be most influential and subsequently used for further optimisation. 
A Box-Benkhn Design (BBD) also under RSM was selected to optimize the screened factors and 
increased the production of human interferon-γ up to 5.1 fold. Further details of these two case 
studies can be found in the references provided and similar cases are found in Tables 4 and 7. 

3. Design of Experiments (DoE) to Optimise Recombinant Protein Production 

3.1. DoE; a Brief Overview 

DoE is a statistical technique used to plan experiments and analyse data obtained using a 
controlled set of tests designed to model and explore the relationship between factors and the 
observed responses [14]. This technique allows the researcher to use the minimum number of 
experiments, in which the experimental parameters can be varied simultaneously, to obtain 
sufficient information to make evidence based decisions [86]. It uses a mathematical model to 
analyse the process data, such as protein expression [87]. The model allows the researcher to 
understand the influence of the experimental parameters (inputs) on the response (outputs) and to 
identify the optimum for the process [88]. Furthermore, DoE software uses advanced graphs, such 
as three-dimensional surface and contour plots, to visualise and understand the relationship 
between factors and responses [55,89]. In recombinant protein production, a DoE approach can 
significantly improve the efficiency in screening for most influential experimental parameters (e.g., 
media composition, culture condition etc.) and determine optimal experimental conditions, 
resulting in maximal yields while reducing costs and process time [90]. 

The mathematical models employed in DoE define the process under study [91]. During the 
screening process, statistical screening tools embedded in the DoE software interrogate the nature 
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of the experiment and the measured effects on the response. Screening designs such as Plackett 
Burman Design are based on a first order model [92] as shown in Equation (1). 

Y = β0 + ΣβiXi (1) 

Where Y is the response, β0 is the model intercept, βi is the linear coefficient and Xi is the level of 
the independent variables. A statistically significant level of 5% (p-value = 0.05) is commonly used 
to identify the most influential factors. The significance level (or p-value) of each variable is based 
on its effect on the response and is calculated by using Student’s T-test [85] in Equation (1). 

t!" =
E(!!)
S. E.  (2) 

Where E(Xi) is the effect of variable Xi and S.E., the standard error which is the square root of the 
effect variance. Factors with p-value < 0.05 are statistically significant while factors with p-value > 
0.05 are not statistically significant (see Table 5 for more details). Statistically significant factors are 
subjected to further optimisation. Response Surface Methodology is used for this optimization 
stage. A second-order polynomial equation, in which independent variables are coded using 
Equation (3), is used to develop the model and analyse the interactions for the desired response (see 
Section 5.4.1).  

!! =
!" − !!"
∆!" , ! = 1, 2, 3… ! (3) 

Where xi is a dimensionless value of an independent variable; Xi is real value of an independent 
variable; Xcp is real value of an independent variable at the design centre point; and ∆Xi is step 
change of the real value of the variable i [93]. Replicates at the central point are required to check for 
the absence of bias between sets of experiments. The fit of the model is then evaluated through 
analysis of variance (ANOVA) which determines the significance of each term in the equation and 
estimates the goodness of fit in each case [94] (see Figure 5 and Table 9 for more details). 

3.2. DoE Versus One-Factor-At-a-Time (OFAT) 

DoE advances the traditional OFAT approach; OFAT fails to account for variables interacting 
with and influencing, each other and also requires significantly more experiments to converge on 
an optimum; all of which increases cost and time [95]. Figure 2 provides a brief comparative 
description between DoE and OFAT.  
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Figure 2. Comparison between Design of Experiments (DoE) and One-Factor-at-A-Time (OFAT) 
examining the effect of two parameters, P1 and P2. (a) OFAT is performed using more experiments 
than DoE (each black dot represents an experiment) and does not identify the true optimum 
(indicated as a red oval). However, with the DoE approach (b) fewer experiments are used and the 
likelihood of finding the optimum conditions (in red) for the studied process is high. The combined 
or interaction effect of P1 (Parameter 1) and P2 (Parameter 2) on the response can be identified and 
measured. The ovals indicate production yields, blue indicates the lowest yields, whereas red 
indicates highest yields, where the optimum is found. The DoE approach also identifies a pathway 
to the optimum response (indicated by the arrow). 

In recombinant protein expression, where various independent variables do not always act in 
isolation, it is likely that their interaction effects can significantly influence protein production [96]. 
Therefore, it is necessary to use a controlled set of tests and a method that can examine the effects of 
many factors, as well as possible interaction effects, to achieve a set of optimal experimental 
conditions [97]. 

4. Defining a DoE Workflow to Optimise Recombinant Protein Production 

Employing DoE to optimise the production of a recombinant protein can be divided into two 
work packages, initial screening and subsequent optimisation. In order to evaluate all the 
conditions that influence the production process, it is initially preferable to carry out a 
wide-ranging experimental screening design. This first screening step will identify the effects of all 
factors that influence recombinant protein production [98]. The second step in the workflow is to 
use a DoE optimisation design to achieve optimum production focusing only on the factors 
identified through the initial screening Design. Different DoE software packages such as MINITAB 
(Minitab Ltd., Pennsylvania, United States), JMP (SAS Institute, Cary, United States) and Design 
Experts (Science Plus Group, Groningen, Netherlands) are commercially available and provide a 
variety of factorial designs depending upon the objective of the experiment. Regardless of the 
statistical package used, the main steps of a typical DoE workflow include planning the test, 
screening and optimisation (detailed schematically in Figure 3). 
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Figure 3. A typical DoE workflow for the optimisation of recombinant protein production. The 
figure describes the main steps involved in the experimental design when both screening and 
optimisation designs are used. (1) The objectives of the study are defined including the selection of 
factors, levels and responses. (2) Process variables and expected responses are identified; the process 
variable levels (for a 2 level study) are set as high (+), centre (0), low (-). (3) The experimental 
screening design is selected based on the objectives of the study and the number of factors involved. 
(4) A mathematical model is built with certain conditions to meet the desired objectives (e.g., 
measurement of all the desired responses, process stability and accurate approximation by 
polynomial models). (5) The response data are analysed and visualised using plots to permit ease of 
data interpretation. At this stage, reduced number of factors (i.e., the most influential) are retained 
for the subsequent optimisation phase. (6) Further optimisation can be carried out (via an 
optimisation DoE design). 

5. A Suggested DoE Workflow for Recombinant Protein Production 

5.1. Planning the Test; Selection of Factors and Associated Levels Influencing Recombinant Protein 
Production  

The DoE workflow in protein production, like in any other DoE process optimisation, starts 
with the planning the test [99]. This involves defining the objective of the study, identifying factors 
involved and associated levels (i.e., high, central and low). Thus, preliminary experiments are 
recommended when knowledge of effects of factors on the experiment is not sufficient to set levels. 
The factors refer to those input parameters that can be modified in the experiment and are referred 
to as the controllable factors. The levels of factors are fixed based on their working limits [82]. The 
most popular experimental designs are two level designs; however, more levels can be used 
depending upon the type of design and objective of the study. Table 2 depicts a two level 
experimental design. 
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Table 2. An example of a two level experimental design having nine factors that are known to 
influence recombinant protein expression. In this case the nine factors relate to two experimental 
components; media composition and induction conditions. When planning the screening phase the 
selected factors (yeast extract, tryptone, glycerol, NaCl, Inoculum size, IPTG concentration, 
induction temperature, incubation time and pH, labelled X1 to X9 respectively) and associated levels 
(high, defined as +1 and low defined as −1) are set up in a rational way to cover the intended 
experimental space (i.e., to cover the productive range). The levels are defined as the range between 
the known working limits. 

 Factors  
Levels 

Low High 

Media composition  

X1 Yeast Extract − + 
X2 Tryptone − + 
X3 Glycerol − + 

X4 NaCl  − + 

Induction condition  

X5 Inoculum size − + 
X6 IPTG concentration − + 

X7 Induction temperature − + 
X8 Incubation time − + 

X9 pH − + 

In general, for recombinant protein expression subjected to DoE, the most commonly selected 
factors relate to media composition and include components such as yeast extract [100], K2HPO4, 
MgSO4, starch, glucose, peptone, NaCl, sucrose, glycerine [101]. For induction conditions, common 
factors selected are incubation time, incubation temperature, pH, agitation, inoculum age and size 
[102,103]; induction period, induction temperature, culture inoculation concentration [48,104]; 
Optical Density (OD), Isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration [21].  

5.2. Screening Designs to Identify Factors that Significantly Affect Recombinant Protein Expression 

Screening designs are used to devise a matrix using factors and levels as formulated in the 
planning stage. [105]. By employing the statistical tools embedded in the DoE software, screening 
designs establish the relationships between variables and responses. The interaction effects between 
variables on a given response are also investigated at this stage [106]. In protein biotechnology, 
screening designs are mainly utilised to identify media composition and culture condition factors 
that significantly influence protein production [107]. Various researchers have explored the effects 
of both the media components [94,107–110] and culture conditions [111,112] on protein expression. 
There are many different types of screening designs and the choice depends upon the nature of 
experiment and the objective of the study. The classical screening designs include Full Factorial 
Designs, Fraction Factorial Designs and Plackett-Burman Designs. Current DoE software, such as 
JMP from the SAS Institute, provides additional screening designs such as Definitive Screening 
Designs and Custom Designs. The most common screening designs are explored and synoptically 
compared in Table 3. 
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Table 3. A comparison of DoE screening designs commonly used in optimising recombinant protein 
production. The table depicts the types of screening designs; the effect explained by the model along 
with number of factors and associated number of runs. It should be noted that extra runs (such as 
those related to central points) can be added when required. Custom design is more flexible and 
allows the designer to select the number of experimental runs. 

 
Factors  

Number of Runs  
Screening  

Design  
Effect explained by the model 2 3 4 5 6 7 

Full Factorial 
Design 

Main effect and 2 factor interactions 4 8 16 32 64 128 

Fractional Factorial 
Design  

Main effect only - - - 8 8 8 
Main effect and 2 factor interactions - 8 8 16 16 16 

Main effect and 2 factors 
interactions  

- - 16 16 32 64 

Plackett-Burman 
Design  

Main effect only - - - - 12 12 

Definitive 
Screening Design  

Main effect and 2 factor  
interaction  

- 13 13 13 13 17 

Main effect, 2 factor interaction and 
quadratic effects 

- 17 17 17 17 22 

Custom Design  Main effect only ≥3 ≥4 ≥5 ≥6 ≥7 ≥8 

5.2.1. Full Factorial Design  

When little is known about the effects of the factors on response, a full factorial design is 
recommended to initially examine as many factors as possible. This design includes all 
combinations of all factor levels and provides a predictive model that includes the main effects and 
all possible interactions [113]. This design consists of two, or more, levels with experimental runs 
that encompass all possible combinations of these levels, across all factors. In a full factorial design 
where k represents number of factors; 2k represents the number of experiments required to carry 
out a two level design with k factors. Similar to other screening designs, Full Factorial Design can 
include some key aspects such as centre points, randomisation and blocking variables to improve 
the efficiency of the design [14]. Previous literature has described this approach as significant in 
screening for, and identifying, the most influential factors affecting recombinant protein production 
for a variety of proteins [114,115] (see Table 4). 

5.2.2. Fractional Factorial Design (FFD) 

FFD is a recommended screening design when a large number of factors are involved. This 
design consists of reducing the initially large number of potential factors to a subset of the most 
effective ones and is presented using the following notation:  

2 ! − !!  

where 2 represents number of levels, k the number of factors, p the extra columns required and R 
the resolution of the method. The method resolution describes the degree to which the estimated 
main effects are aligned with the estimated interactions associated with levels [22,116,117]. 

5.2.3. Plackett-Burman Designs (PBD) 

PBD design is often used as an alternative for fractional and full factorial designs because of its 
potential to reduce the gaps found in fraction designs and to strengthen the estimation of the main 
effects, which may have been disregarded when full factorial designs are used [118–122]. 
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5.2.4. Definitive Screening Design (DSD) and Custom Design (CD) 

DSD and CD are a new class of screening designs that have potential applications in 
recombinant protein expression for assessing the impact of a large number of factors on a given 
response. DSD has recently been reported to be particularly advantageous as it allows the 
estimation of not only the main effects of a certain components alone but also the interactions of 
these components and the factors with non-linear effects such as quadratic effects (an interaction 
term where a factor interacts with itself); all executed with the minimum number of experimental 
runs [123]. CD enables tailoring a design, whilst simultaneously minimising resources use, as it is 
highly flexible and hence more cost-effective than other screening designs. It allows for the best use 
of the experimental budget and tackles a wide range of challenges with the capability to model 
effects including centre points and replicates. However, in most cases this design allows for the 
estimation of main effect only. Table 4 summarises the most common screening designs, along with 
their roles in identifying most influential independent factors, in recombinant protein production. 

Table 4. A selection of the widely used screening designs and their application in identifying the 
influential factors on the production of recombinant proteins. 

Host Organism 
Protein 

Involved 
Screening 

Design  
Factors 
Studied  

Screened 
Significant 

Factors  
Reference 

Bacillus I-1018 Xylanase 
Full Factorial 

Design 
Media 

composition 

Xylan, casein 
hydrolysate, 

NH4Cl 
[114] 

E. coli 
Non-structural 

protein NS3 
Full Factorial 

Design 
Culture 

condition 
temperature, 

induction length 
[124] 

Pseudoalteromon
as IND11 

Fibrinolytic 
enzyme 

Full Factorial 
Design 

Media 
composition 

pH, maltose and 
NaH2PO4  

[115] 

E. coli  
Zinc-metallopr
otease (SVP2) 

Fractional 
Factorial 
Design 

Media 
composition 
and culture 
condition 

IPTG and Ca2+ 
ion concentration 
and temperature 

[22] 

E. coli   
Soluble 

pneumolysin 

Fractional 
Factorial 
Design 

Media 
composition 
and culture 
condition 

Temperature, 
tryptone and 
kanamycin  

[6] 

Bacillus cerius L-asparaginase 
Plackett-Burma

n 
Media 

composition 

Soya bean mean, 
asparagine, 

woodchips, NaCl 
[122] 

E. coli 
Vascular 

endothelial 
growth factor 

Plackett-Burma
n design 

Media 
composition 
and culture 
condition 

Glycerine, 
inducing time, 

peptone 
[125] 

P. aeruginosa L-asparaginase 
Plackett-Burma

n Design 
Culture 

condition 

pH, casein 
hydrolysate and 
corn steep liquor 

[126] 

P. pastoris 
Human 

interferon 
gamma 

Plackett-Burma
n Design 

Media 
composition 

Gluconate, 
glycine, KH2PO2 

[85] 

S. griseorubens Chitinase  
Plackett–

Burman Design 
Media 

composition 
Yeast extract and 
K2HPO4, KH2PO4  

[127] 

The rationale of screening designs lies in identifying the variables that are statistically 
significant in influencing the production among a large number of potentially important variables 
[128,129]. Table 5 illustrates how screening data analysis identifies statistically significant factors 
based on their effect and probability values. 



Bioengineering 2018, 5, x FOR PEER REVIEW  12 of 28 

Table 5. Identification of the statistically significant factors during a screening process using a 
Fractional Factorial Design. The table depicts the effect, positive or negative and p-value for seven 
factors examined (labelled X1 to X7 respectively). The effect of each factor, positive (+) or negative (−) 
is identified during the analysis stage using the statistical formula imbedded in DoE software used 
(JMP in this example). Interaction effects are also identified (e.g., X5*X1 and X3*X7; where * indicates 
an interaction). The p-value of each factor is also shown, at the significance level of 0.05. In this 
example, the highlighted factors, (X3, X6, X1), were identified as the most influential based on their 
high effects (−1.11273, 0.2252, 0.17492) and p-values <0.05 (0.001, 0.0143, 0.0296). Thus, only factors 
X3, X6 and X1 are statistically significant at the level of 0.05, with X3 having a negative effect while X6 
and X1 have positive effects. Other factors, X2, X4, X5, X7 and interactions X5*X1, X3*X7 are not 
statistically significant. 

Factor Effect Relative Effect  p-value 

X3 −1.11273 
 

 0.001 

X6 0.2252 
 

 0.0143 

X1 0.17492 
 

 0.0296 

X4 0.06408 
 

 0.2215 

X7 0.04154 
 

 0.4112 

X2 −0.07970 
 

 0.1421 

X5 

X5*X1 

X3*X7 

0.00233 
0.04153 
-0.06405 

 

 
0.9664 
0.4211 
0.2623 

The screening process identifies most influential factors on the process under investigation 
(i.e., X1 and X6 in the example shown in Table 5) and thus paves the way for effective optimisation 
by reducing the number of factors to be optimised in the third work package of the DoE workflow 
[130]. 

5.3. Optimisation Designs to Maximise Recombinant Protein Production in Prokaryotic Systems 

As a collection of statistical design and numerical optimisation techniques [131], optimisation 
uses the reduced number of variables identified in the previous screening process and focuses on 
finding the variable levels that result in an optimal yield at the lowest production costs [132,133]. 
Figure 4, describes the benefit of carrying out an optimisation process after a screening process has 
identified a small number of key variables.  

 

Figure 4. A comparative illustration of screening and optimisation designs. (a) In screening designs 
a large number of factors, with reduced number of runs, are used to screen for important factors 
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affecting the process. (b) In optimisation designs, a reduced number of factors, with large number of 
runs, are utilised to find the optimum conditions for high yield of recombinant protein. 

Response Surface Methodology (RSM) is most popular optimisation method [134]. It consists 
of mathematical and statistical techniques used to build empirical models capable of exploring the 
process space and studying the relationship between the response and process variables to find the 
optimal response [99,133,135]. In general, for a given number of factors, RSM requires more runs 
than screening designs, thus, the number of factors to consider should initially be reduced through 
an appropriate screening process. Central composite designs (CCD) and Box-Behnken designs 
(BBD) are the two of the major Response Surface Designs commonly used in recombinant protein 
optimization [136]. 

5.3.1. Central Composite Design (CCD) 

CCDs are favoured in process optimisation due to their unique efficiency to determine the 
coefficients of a second-degree polynomial which fit a full quadratic during response surface 
analysis [127]. CCD has been used in optimising protein production process, specifically addressing 
the aim of increasing productivity and solubility [137]. There are different types of central 
composite designs such as uniform precision, orthogonal/block and so forth. However, a common 
standard characteristic includes the number runs per design [138], which depends on the number 
factors (see Table 6). Central composite uniform precision designs are used to provide protection 
against bias in the regression coefficients while central composite orthogonal designs can be used to 
avoid correlations between coefficients of variables [139]. 

Table 6. Common CCD components and the possible total number of runs. Factorial, axial and 
central points are the main components of a typical CCD and the total number of runs is dictated by 
the number of factors being tested. As the number of factors increases, the number of component 
points increase and so the total number of runs. In some cases, CCDs do not contain axial points, 
especially when the variance of model prediction is not suspected [140]. 

Number of 
Factors 

Number of 
Factorial Points 

Number of 
Axial Points 

Number of 
Central 
Points 

Total 
Number 
of Runs 

2 4 4 5 13 
3 8 6 6 20 
4 16 8 7 31 
5 16 10 6 32 
6 32 12 9 53 
7 64 14 14 92 

CCD has been intensively used to optimise the production of recombinant protein (see Table 7). 

5.3.2. Box Behnken Design (BBD) 

BBDs are also a class of response surface designs; however, they differ from CCD in their 
design structure. For example, a CCD with 4 factors requires 31 runs (experiments), whereas a BBD 
only has 27 runs for the same number of factors. For 5 factors, CCD has 52 runs while BBD has 46 
runs. Reduced runs can result in significant time and cost savings in an optimisation process. In 
optimisation experiments BBD is widely used as a good design to fit the quadratic model with 
fewer experiments [141]. Several studies show that BBDs have contributed to production increases 
for recombinant proteins (see Table 7). 
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Table 7. RSM methods used to optimise the production of recombinant proteins along with their effect on yield and citing reference� 

 

Microorganism Recombinant Protein RSM Methods Optimised Factors Optimised vs Non-Optimised Yield Reference 
E. coli BL21 Superoxide dismutase Box–Behnken design Tryptone, tween-80, lactose Enzyme activity increase by 1.54-fold [142] 

E. coli BL21-SI Human interferon beta Box–Behnken Design Temperature, cell density, NaCl 

hIFN- β concentration increase by 

5-fold 

[143]  

E. coli BL21-SI Human interferon gamma Box–Behnken Design Temperature, biomass concentration, NaCl 

hIFN- γ concentration increase by 

13-fold  

[144] 
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P. pastoris GS115 β-glucosidase Box-Behnken Design  Sorbitol, MeOH, pH Enzyme activity increase by 3.3-fold [145] 

Bacillus circulans GRS 313 Amylase Central Composite Design Soybean meal, yeast extract, wheat bran Enzyme yield increase by 1.25-fold [146] 

Bacillus IMG22.  α–amylase Central Composite Design Starch, yeast extract, glycerol, peptone Enzyme activity reached 17.54 IU/mL [147] 

E. coli BL21(DE3), Rosetta 2 
(DE3), Rosetta blue (DE3), 
and Rosettagami2(DE3) 

Cyclodextrin 

glucanotransferase 

Central composite Design IPTG, arabinose B, post induction temperature Enzyme activity increase by 3.45-fold [148] 

E. coli DH5α  Cytochrome 2C9 protein Central Composite Design Ampicillin, chloramphenicol, IPTG, peptone 

Enzyme production increased by 1.05- 

fold 

[149] 

E. coli BL21 (DE3) Interferon beta Central Composite Design DCW (dry cell weight), IPTG Production increase more than 3-fold [137] 

E. coli BL21 (DE3) L-Asparaginase Central Composite Design Tryptone, yeast extract, peptone, CaCl2 Enzyme activity reached 17,386 U/L [150] 

E. coli BL21 Peptide T-20 Central Composite Design  NPK, IPTG, post induction time  

Production increase by more than 

2-fold  

[106] 

E. coli BL21 (DE3) TaqI endonuclease Central Composite Design Glucose, (NH4)2HPO4, KH2PO4, MgSO4.7H2O 

Enzyme yield increase by about 

3.6-fold 

[151] 

E. coli DH5α Xylanase Central Composite Design Glucose, (NH4)2HPO4, CK2HPO4, DKH2PO4, MgSO4 Production increase by 1.7- fold [152] 

E. coli BL21 Bromelain Central Composite Design 

Temperature, inducer concentration, post induction 

period 

Enzyme activity increase by 1.3-fold [153]   

E. coli BL21 Phytase Central Composite Design Tryptone, yeast extract, NaCl Production increase by 2.78-fold [154] 

E. coli BL21 (DE3) Chitinase Central Composite Design Temperature, incubation time Total activity increased by 1.54-fold [115] 

E. coli BL21(DE3) Zinc metalloprotease Central Composite Design IPTG, Ca
2+

, induction time Production increase by 15-fold [22] 

E. coli JM109 Carboxymethyl-Cellulose Central Composite Design Rice bran tryptone and initial pH of medium Production increase by 3-fold [155] 

P. pastoris X33 Phytase Central Composite Design Yeast extract, tween-80, methanol  Specific activity increase by 21.8-fold [156] 

E. coli TB1 MBP-Heparinase 

Central Composite Design 

(Orthogonal) 

Yeast extract, glucose, Ca2+, OD600 Specific activity increase by 2.5-fold [157] 

E. coli BL21 
Cis-epoxysuccinate 

hydrolase 

Central Composite Design 

(Rotatable)  

Inoculation level, induction-starting time, lactose, 

induction temperature, induction time 

Enzyme activity increase by 4.6-fold [158] 
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5.3.3. Summary and Choice of Optimisation Methods 

Both CCD and BBD optimisation methods are widely used, the choice depends on the number 
of factors and objectives of the study (see Figure 1). The standard characteristic is that all response 
surface designs feature a second-order polynomial model which is required to describe the process 
when interaction terms introduce curvature into the response function and a first-order equation is 
inadequate to fit the model [159,160]. CCD is the most preferred RSM [16,161] due to the fact that 
this design contains full factorial or fractional factorial, with the potential to add central points to 
evaluate the experimental error and axial points to check the variance of the model [14,140]. The 
number of runs (N) in CCD is calculated using Equation (4). 

N = k! + 2k + Cp (4) 

where k is the number of factors and Cp the number of centre points [162]. Table 8 is an example of 
a two level CCD with two centre point replicates along with responses such as actual, predicted and 
residues (see Table 8).  

Table 8. Central Composite Design of four independent factors (labelled X1, X2, X3, X4 respectively) 

studied at two levels (+1 and -1) including two central point replicates (0 and 0). The table also 

shows different types of common responses found in optimisation process; (1) Actual data refers to 

experimental results; (2) predicted data are generated by software based on the design and actual 

results. The residues are the difference between actual and predicted data. The Responses (e.g., 

actual, predicted and residues) data are utilised during the optimization analysis to evaluate the 

validity of the model and determine the optimum 

 
       Coded values    Responses 

Runs X1 X2 X3 X4 Actual Predicted Residues 
1 -1 1 -1 1 

   
2 -1 -1 1 1 

   
3 0 0 0 0 

   
4 -1 0 0 0 

   
5 -1 1 1 -1 

   
6 1 1 1 1 

   
7 1 1 -1 1 

   
8 -1 1 1 1 

   
9 1 -1 -1 1 

   
10 0 -1 0 0 

  

 

11 1 1 1 -1 
   

12 0 0 0 0 
   

13 0 0 1 0 
   

14 0 1 0 0 
   

15 1 0 0 0 
   

16 0 0 0 1 
   

17 1 1 -1 -1 
   

18 -1 1 -1 -1 
   

19 -1 -1 1 -1 
   

20 -1 -1 -1 1 
   

21 1 -1 -1 -1 
 

 

 
22 0 0 0 -1 

   
23 1 -1 1 1 

   
24 0 0 -1 0 

   
25 1 -1 1 -1 

   
26 -1 -1 -1 -1 
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5.4. Analysis and Interpretation of Optimisation Data 

Regardless of the DoE design employed, the general goal of DoE is to provide a methodology 
for conducting controlled experiments with the aim of obtaining a model that definitively selects 
the vital process inputs, investigating interactions between them and making predictions about the 
process output [163]. At a screening level, after the experimental data are entered, the DoE software 
generates a variety of graphs that are used to interpret the results obtained. These graphs include 
scatter plots, histograms, bar charts and Pareto charts; and they allow the researcher to identify the 
distribution of the data and statistical significance of the variables tested [85]. Different screening 
analysis methods have been used in the field of protein production [77,92,112,164]. Figure 5 
illustrates a typical DoE data analysis and interpretation route from data visualisation, through 
experiment validation and onto conclusion. 

 

Figure 5. A brief visual depiction of a typical DoE analysis route from initial experiments to 

validation and conclusions. The rationale for data analysis is to evaluate the effects of variables on 

response. Graphical visualisation interrogates how the data are distributed and to permit planning 

of an appropriate type of analysis going forward. The statistical analysis and probability stage 

identifies variables that are statistically significant. This will assist in determining which variables 

are important to bring forward to the subsequent optimisation step based on their statistical 

significance. The visualisation and interpretation focus on representational analysis that identifies 

where optimal levels are observed. 

5.4.1. Evaluation of Experimental Design and Predictive Model Validation  

For RSM analysis, the goals are to (i) develop a fully predictive model that describes how the 
process inputs jointly influence the process output and (ii) determine the optimal settings of the 
inputs [165,166]. Following the completion of the optimisation experiments, the results from RSM 
optimisation are used to fit a second-order polynomial equation (Equation (5)), in order to describe 
the mathematical relationship between the response and the independent variables tested [85]   

Yi =  β0 +  ∑ β!x! +  ∑ β!!x!! +  ∑β!"x!x! (5) 

Where Yi is the predicted response, β0, βi, βii and βij are regression coefficients for the intercept, 
first-order model coefficients, quadratic coefficient and linear model coefficient for the interaction 
respectively [167,168]. The fit of the model is then evaluated through analysis of variance (ANOVA, 
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Table 9) which compares the variation due to the change in the combination of variable levels with 
the variation due to the random errors [14,169].  

Table 9. An example of Analysis of Variance (ANOVA) for Response Surface Methodology fitted to 

second-order polynomial equation. The table depicts R-squared (R2), Adjusted R-squared (Adj-R2), 

Predicted R-squared (Pred-R2), degree of freedom (DF), adjusted sum of square (Adj SS), adjusted 

mean square (Adj MS), F-value and p-value of the model. 

Source  DF Adj SS Adj MS F-Value p-Value 
Model 11 40.4149 3.67408 1255.77 0.0001 
Linear  4 3.1531 0.78828 269.43 0.0001 
Square  4 35.3209 8.83022 3018.09 0.0001 
Interaction  3 1.9409 0.64697 221.13 0.0001 
Residues  40 0.117 0.00293 

  
Lack-of-fit  13 0.00369 0.00284 0.96 0.515 
Pure error 27 0.0802 0.00297 

  
Total  51 40.532 

   
R2= 99.71%, Adj-R2 = 99.63%, Pred-R2 = 99.48% 

 
 

The coefficient value of R2 defines how well the model fits the data. The closer the R2 is to 1, the 
better it describes the experimental data [21]. The Adjusted R2 is used to check the adequacy of the 
model by measuring the amount of variation about the mean explained by the model;, the closer the 
value is to 1, the better it describes the model [130]. For example, in Table 9, the R2 = 0.9971 indicates 
the significant regression of the fitting equation and therefore, adequacy of discrimination, 
indicating that only 0.29% of the total variation could not be explained by the fitting equation [142]. 
When R2 = 99.71%, Adj-R2 = 99.63%, Pred-R2 = 99.48% are in good agreement with each other (as in 
Table 9), this provides confidence in the accuracy of the model [156]. 

Additionally, the p-value and signal-to-noise ratio are used to estimate the quality of the 
model. For a significant model, a p-value < 0.05 is desirable [170]. Appropriate precision measures 
the signal-to-noise ratio; where a ratio greater than 4 indicates an adequate model [171] and is 
commonly used in protein production optimisation [172,173]. Furthermore, the p-value lack of fit 
and the plot of observed values versus predicted values are also used to estimate the quality of the 
model. With a good model, the p-value lack of fit should be > 0.05 [168] as shown in Table 9. Finally, 
all data should fall on the straight line on the observed versus predicted plots [145] as described in 
Figure 6. 

 
Figure 6. A linear plot estimating accuracy of a regression model by comparing actual versus 

predicted data sets. The plot determines the correlation between the model’s predictions and actual 
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results and thereby indicates how well the model fits the data. The closer the value of R2 is to 1, the 

better the fit of the line to the data and the goodness of the model. 

5.5. Optimum Determination 

Once the predictive model has been validated, it can be used to determine the optimised 
parameters. The statistical tools embedded in DoE software are used to analyse the experimental 
data to generate 3D-graphs, called surface contour plots, to visually describe the relationship 
between variables and response [174,175]. The 3-D surface and contour graphs are generated as a 
combination of two test variables with the others maintained at their respective zero levels [176] see 
Figure 7. Surface, contour and residual plots, along with ANOVA, are the main optimisation 
analysis tools commonly used to determine optimum levels for high yields of recombinant protein 
[20,177–179]. 

 
Figure 7. An example of response surface and contour plot adapted from Nelofer and co-workers 

[163]. The figure depicts the two-factor interaction (in this case the two factors explored are glucose 

and culturing temperature) where one factor influences the response of another factor. It also shows 

the visualisation of optimum levels. The colour scale indicates the level of lipase activity (IU/mL) 

where red indicates the region of optimal yield, yellow indicates medium yield, and green indicates 

low yield. In this case, the optimal enzyme activity (33 IU/mL) was achieved at a culture 

temperature between 30 °C and 34 °C; and a glucose concentration between 40 g/mL–50 g/mL. 

Image used with permission. 

6. Conclusion; getting it ‘just right’ 

DoE offers many choices for screening and optimisation designs which advance traditional 
optimisation methodologies, such as one-factor-at-a-time. The statistical approach offered by DoE 
has proven to be applicable in protein biotechnology, effectively investigating media composition 
and culture condition factors in recombinant protein production. DoE’s ability to identify the most 
influential factors in recombinant protein through screening designs and identify the factor/levels 
that give the maximum yield has considerably enhanced the production of soluble, active 
recombinant protein. With the recent development of more flexible screening and optimisation 
designs, enhancements in computational processing speed and the desire to reduce wastes as part 
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of lean production values, DoE will continue to find applications in biotechnology; in recombinant 
protein production and beyond.  
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