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Abstract: This article aims to develop a smart isolated energy community (EC) by coupling the
neighbouring rural community microgrids (CMGs) with enhanced droop control for efficient power
sharing. This recommended solution employs a power management (PM) based droop-control to
enable independent neighbouring CMGs to share power on an available basis by not constraining
CMG inverters to equal power sharing. During the grid-connected mode, the droop control may
have different power setpoints of each CMG. However, during the standalone mode of operation,
the power setpoint should be defined according to their power rating and availability to maintain
the system stability. In this article, a PM strategy is developed to maintain the power setpoints of
the autonomous CMGs. An improper selection of power setpoints in autonomous CMG can raise
the DC link voltage to an unmanageable value and can cause an inadvertent shutdown of CMG.
The suggested PM-based droop control enables the CMG inverter not to restrict the inverter to
equal power share but to distribute its active power as available in an asymmetric way, if required.
The dynamic performance of the proposed coupled system incorporated with two remote isolated
CMGs is investigated in a MATLAB environment. Further, a laboratory prototype of the proposed
system has been developed using a LabVIEW-based sbRIO controller to verify the efficacy of the
proposed approach.

Keywords: energy community; community microgrids; power sharing; droop control; power
management; parallel inverter; interconnected system

1. Introduction

The high penetration of renewable energy sources (RES) in rural ECs are the backbone
of the European Strategy (2018/2001/EU, RED II) [1] towards a clean and low carbon
society. EC is the modern recognition of smart communities, where everyone from energy
policymakers to customers plays a vital role in achieving sustainable living for society [2,3].
Any legal body, such as an association/community, a cooperative, a partnership, a non-
profit organization, or a small/medium-sized business, can form an energy community.
It makes it easier for its residents to pool their resources and invest in energy assets in
collaboration with neighbouring community participants. As a result, the energy commu-
nities can function as a single entity and access all appropriate energy markets on an equal
footing with other market participants, contributing to a more decarbonized and flexible
energy system [4,5].

ECs allow the neighboring CMGs to work together to achieve their own and col-
lective economic, environmental, and social goals while also helping to decarbonize the
energy system. Maintaining generation demand balance in an EC is a critical task for a
system/community operator. This requires maintaining a certain level of flexibility in the
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system, which forms an inevitable system service requirement. In these isolated CMGs,
the intermittent nature of dispersed energy sources, along with load uncertainties, might
induce a power mismatch, resulting in unwanted frequency and voltage variation. Imple-
mentation of intelligent demand response techniques or installing micro storage devices
(such as batteries, supercapacitors (SC), flywheels etc.,) [6,7] and diesel generators can
provide the required power to avoid this power scarcity. However, load shedding is still
necessary if there is insufficient power in a CMG. Critical community infrastructures have
to be connected with the power supply for the sustainable development of the community
during any contingency. The coupling of neighboring isolated CMGs is economical and
technically more feasible for any power exchange during any contingency.

Parallel operation of the inverters is the key issue of standalone coupled CMGs for
operational power-sharing and maintaining the voltage and frequency within acceptable
limits during dynamic load and generation change. The coupling of MGs was introduced
in [8], and thereafter a lot of research has been conducted in this area [9–13]. It has been
shown that proper utilization of available power sources among the neighbouring MGs
during the coupling situation can solve the power deficiency more efficiently and effec-
tively. Load sharing between the inverters can be achieved through either communication
channel-based PM technique or using conventional droop control. A dynamic multi-
criterion decision-making system-based overload management technique is presented
in [11]. A master-slave control [9] and small-signal stability-based control [14] for coupling
microgrids are also proposed. The coupling of hybrid (combination of different RESs) MGs
and their coupling issues are also elaborately discussed in [15–19]. Decentralized active
power control with a hierarchical control technique is proposed in [20] for the connection
of battery energy storage systems (BESS) with photovoltaics (PV) units. The bus signaling
method controls the power regulation among the MG elements. Moreover, an optional
secondary control technique is proposed for frequency restoration.

Complexity in control topology, computational burden, and lack of reliability due to a
communication network is the main drawback in the above-proposed topologies. Note
that all of these coupling techniques and their control topologies are incorporated with
some communication technique, or there is an availability of a large power grid.

In order to overcome the drawbacks of the communication channel, the conventional
droop control method is employed to control the load sharing between the inverters.
Droop control-based clustering topology is also well discussed in recent pieces of litera-
ture [16,21,22]. A complete review of coupling/clustering MGs and their associated issues
are presented in [23–25]. Virtual impedance-based droop control [26], adaptive droop
control [27], and robust droop control [28] are also well discussed in recent literature. These
improved control techniques are implemented to overcome specific challenges such as
improved harmonic power-sharing, good dynamic response, good transient response,
stability improvement, accurate reactive power-sharing, improved frequency, and voltage
regulation. To achieve these improvements, sometimes these control techniques compro-
mise the accuracy of active power-sharing, reliability, stability etc. Sometimes there is a
practical difficulty to implement the complicacy [29].

Different PM strategies incorporating renewable energy sources and storage devices
are also proposed in [30,31]. To improve BESS usage in a PV-BESS based hybrid au-
tonomous system, Mahmood, H et al. [30,31] developed a power management system
based on an equivalent consumption minimisation technique. In all the cases, the PM strat-
egy is developed based on the state of charge (SoC) of BESS and the active/reactive power
control is achieved through the conventional droop control. Erdinc et al. [6] developed a
load sharing algorithm for a fuel cell/SC hybrid system based on fuzzy logic control and a
PM technique for a fuel cell/battery/SC hybrid system. The control solutions described in
these research papers are tailored to a single unit MG that functions as a standalone power
source from a control standpoint. Therefore, they cannot be deployed in multiple unit MGs
without modification.
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The majority of the above techniques can only accommodate two of the symmetrical
or hybrid distributed generation (DG) units in a MG. Most of them are connected to the
main grid power supply. In the most published literature, symmetrical droop units have
been considered, where equal power-sharing has been achieved. But in practical cases, due
to the intermittency of DG sources and different power ratings of neighbouring CMGs,
equal power-sharing can restrict proper utilization of coupling advantages. In asymmetric
power-sharing, inappropriate droop gain can lead the standalone CMG to an unstable
condition and considerably deviate the system voltage and frequency. To reckon with the
above issues, this research article has considered the following enhanced features:

• A well-defined control strategy where symmetric and asymmetric (if required) power-
sharing can be achieved through a PM-based droop control in order to couple the
neighbouring CMGs more efficiently. The proposed PM strategy defines the reference
power setpoints for the conventional droop control.

• An enhanced frequency regulation method without using a secondary controller. The
power flow between the CMGs is controlled keeping the frequency within an allowable
range. As the considered system is static and standalone, the proposed PM-based
droop control helps to maintain the system frequency in an acceptable range.

• A validated test of proposed controller by developing laboratory scale CMGs.

In order to cover the proposed research, the rest of this article is organized as follows:

• The suggested PM-based droop control technique, as well as the proposed system
configuration, are introduced in Section 2.

• The control of CMG inverters using PM-based droop control is discussed in Section 3.
• Section 4 uses simulated and real-time data in Section 5 to demonstrate the effective-

ness of the proposed controller.
• Finally, Section 6 draws the summary of the most critical contribution presented here.

2. System Configuration and Proposed Droop Control for Power Sharing

Static generators, such as PV based CMGs, have been considered in the proposed
system architecture to build a smart energy community. The intermittent nature of PV
power generation poses a significant challenge to the widespread adoption of PV systems
in islanded CMGs in the absence of storage devices. Furthermore, frequency regulation is
a great challenge in this kind of complete static generation. In order to maintain a power
balance in isolated CMGs, the deployment of BESS is necessary to compensate for the
intermittent nature of PV units. Battery systems, on the other hand, have limited power
ratings, capacities, and charging scenarios, all of which are determined by the battery
SoC. As a result, for effective and efficient energy generation, the functioning of the PV
and battery units must be coordinated. Installation of BESS and incorporation with PV
is not economical sometimes due to the low lifecycle of BESS (compared to PV, which
could have to replace three times in an entire PV plant life cycle) and high installation
cost [32]. Considering the above-stated issues, two CMGs are considered for coupling,
and between them in only one community the PV systems are connected with a BESS
through a bi-directional DC/DC converter, as indicated in Figure 1. In both the CMGs PV
panels are connected through a DC/DC converter, and the local AC loads are supplied
through a DC/AC inverter. Both the CMGs are operated only in isolated mode. In this
scenario, droop control is considered for required power-sharing.
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Figure 1. The overall architecture of the proposed system configuration.

The conventional voltage and frequency droop control equations for each inverter of
MGs are-

ω = ω*− kω(P− P∗) (1)

V = V*− kV(Q−Q∗) (2)

where kω and kV are the frequency and voltage control droop co-efficient; ω* and V* are
the nominal value of frequency and voltage, respectively.

Usually, in the grid-connected mode, the grid provides the rigid voltage and frequency
support, and it specifies the active and reactive power setpoints for the MGs. However,
suppose there is any significant deviation from the setpoint value. In that case, the MG
controller needs to disconnect/connect some load/sources as the connecting inverters are
operating in a grid following mode. However, in the case of isolated CMG operation, the
voltage and frequency are set to their nominal value, and the power setpoints play an
essential role in maintaining the voltage and frequency. In the proposed droop control,
a PM topology is adopted in order to maintain the frequency and voltage within an
acceptable range. The droop slopes are calculated accordingly to maintain the stable mode
of operation during coupling.

As shown in Figure 2, the droop control topology consists of two inverters for a
grid-connected and standalone mode of operation. For example, as the stiff grid con-
trols the frequency in grid-connected mode, the two inverters generate different power
(P1Grid & P2Grid) in the same frequency, ω0. But in a standalone/isolated mode of operation,
the system frequency starts to diverge from the nominal value. It is imperative to define
an acceptable frequency region for the stable mode of operation in this situation. For
standalone mode of operation, the acceptable frequency range is 50 Hz ± 2 Hz [33,34].
After reaching a stable frequency (ωisolated), both the inverters produce P1 and P2 for the
same droop coefficient. Now, the steady-state standalone frequency can be calculated as-

ωisolated = ω∗ − kω1P1 + kω1P1
∗ = ω∗ − kω2P2 + kω2P2

∗ (3)
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As the droop coefficients (kω1 = kω2) are the same so,

P1 = P1
∗ + P2 − P2

∗ (4)

As the total load power (PLoadtotal) is supplied by the two inverters (PLoadtotal = P1 + P2),
further the steady-state isolated frequency can be calculated as:

ωisolated = ω∗ − kω

2
(PLoadtotal − P1

∗ − P2
∗) (5)

So, it can be noted that the isolated frequency depends on the total load connected to
the system and the power set point for the droop control. For equal power-sharing from
both the inverter, the power setpoints (P1* & P2*) should be equal.

In this steady-state islanded frequency, the generated power from both the inverter
can be calculated as:

P1 =
1
2
(PLoadtotal + P1

∗ + P2
∗) (6)

P2 =
1
2
(PLoadtotal + P2

∗ − P1
∗) (7)

A critical case study where power transfer from one CMG to another has been illus-
trated in Figure 2. When the total load demand is less than the difference between two
power set points of the inverters, i.e., PLoadtotal <|P1

∗ − P2
∗|, the power can be drawn

from one CMG to another. In this condition, one of the inverters will import the power
(in Figure 2, the connecting inverter of CMG2 is importing power). The imported power
will cause to upsurge in the DC link bus voltage. So, extra power can be utilized to fulfil
the load demand in another CMG to maintain a stable mode of operation. The BESS will
further supply/import the power in case of any critical power balance situation.

3. CMG Inverter Control Strategy with PM Based Droop Control

Towards further analysis, the suggested static generating configuration, i.e., PV gener-
ation, as shown in Figure 1 is expanded to illustrate the inverter control method in Figure 3.
Each CMG includes the main energy source (PV), voltage source inverter and the LCL filter
as well as local loads. PV is linked with BESS via a bi-directional converter in one of the
CMG units. During any contingencies, both CMGs are interconnected by a switch.
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Figure 3. CMG inverter control strategy with incorporation of PM based droop control.

A conventional standalone single-phase system is considered to make the system
configuration more realistic for rural area connections. The implemented inverter control
technique is shown in Figure 3, where one side of the inverter control is depicted elaborately.
On the other side, the same control technique is adopted during standalone operation.
The proposed inverter control technique can regulate the system voltage and frequency
in the isolated mode without connecting to another synchronizing converter/generator.
In this proposed control system, the active power delivered by the converter is the function
of system frequency. The power-sharing of the converter is achieved by implementing
the communication less droop control, where a PM technique (as shown in Figure 4)
is adopted to define the power setpoints (P1* & P2*) of the inverters of the CMGs.
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Further, the voltage and frequency droop co-efficients are adjusted in such a way
(using Equations (3)–(7)) that the voltage and frequency always remain in the allowable
range. Figure 3 shows the detailed control topology of the CMG1 inverter when operating
in standalone mode. The operation of the CMG2 inverter is controlled by the maximum
power point controller/power management controller, which defines the power reference
values for the inverter. Additionally, the CMG1 inverter generates the voltage reference for
the CMG2 inverter in the coupled mode of operation.

The power setpoint calculation in an allowable stable frequency is achieved by using
the power management algorithm. Starting from the normal operating condition, several
constraints can give rise to challenging and intriguing situations for interconnected power
flow requirements between the two CMG, managing the voltage and frequency regulation.
It is also essential to identify strategic conditions where the BESS can be suitably recharged.
The following five modes are believed to have captured all of these possibilities. Control
algorithms have been devised for the uninterrupted operation of this interconnected
scheme as far as possible, except for faulty conditions. The implementation of the control
technique for the proposed coupled CMGs is shown in Figure 3. SW1 is the breaker switch
that is used to connect the neighbouring CMGs. The PM strategy and the coupling control
scheme are provided in Figure 4. The working principle during the different modes of
operations is elaborately discussed through five modes in this section.

3.1. Independent CMG Operation

This mode of operation is assumed for the isolated mode of operation before con-
necting two neighbouring CMGs for available power-sharing. In this mode of operation,
both the CMG contributes the required local loads by maintaining the desired frequency.
Figure 5a shows that both the CMGs are operating separately, and the breaker switch SW1
remains in the ‘off’ condition.

3.2. CMG1 Is Overloaded in Inter-Connected Mode

In this mode of operation, the shortage power in CMG1 can be exported from CMG2
if there is any excess power in CMG2 by switching on the breaker switch SW1. The power
calculation can be conducted in PM block, and to maintain the stable allowable frequency,
the power setpoint and the droop gain values should be updated accordingly. The power
flow diagram in this condition is shown in Figure 5b.

3.3. CMG2 Is Overloaded in Inter-Connected Mode

In this case as shown in Figure 5c, power can be drawn from the BESS to meet the
local load demand. Otherwise, the power can be drawn from the CMG1 (if there is any
excess power) to utilize the renewable energy generation in CMG1 fully. In the proposed
power calculation algorithm shown in Figure 4, if there is any excess power in CMG1,
it can be imported to CMG2 first, and BESS fulfils further deficiency (if any).

3.4. Both CMGs Are Overloaded in Inter-Connected Mode

In this condition, BESS is used to meet the total load demand. The power flow diagram
is shown in Figure 5d. In the worst-case scenario, when BESS and both the PV plant cannot
supply the local loads, the CMG coupling connection can be revoked, and the load shedding
technique can be adopted to maintain system stability. It should be noted that the load
shedding techniques are not in the scope of this research.

3.5. Both the CMGs Are Underloaded in Inter-Connected Mode

In this condition, both the CMGs can be used to recharge the BESS. In this condition,
the complexity in the control strategy can be increased. So, in order to keep it simple,
the full produced power of CMG1 is utilized to meet the local load demand in CMG1
and CMG2. The power produced in CMG2 is used to recharge the BESS and to meet the
remaining load power demand. The power flow diagram is shown in Figure 5e.
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4. Simulated Results with Discussion

To prove the efficacy of the proposed system, two PV based single phase CMGs are
developed and previously discussed, and five different modes of operations are considered.
Each PV inverter is interfaced with the local load through an LCL filter. All of the system
parameters in normal operating stable conditions are provided in Table 1. The droop co-
efficient is adjusted according to the mode of operation to maintain the system frequency
and stability. The active power-sharing with unity power factor is proposed in this research
work. It is worth noting that reactive power-sharing and the challenges that go along with
it are not included in this study. Matlab SimPowerSystem is used to develop the detailed
model of the CMGs.

Table 1. CMG system Parameters.

System Parameters

DC Link Capacitor (C) 2000 µF

Filter Inductor (Lf 1 & Lf 2) 6.8 mH

Filter Capacitor (Cf) 30 µF

Power Rating for Inverter 1 10 kW

Power Rating for Inverter 2 10 kW

BESS Capacity 10 kWh

Frequency drooping gain 0.05 rad/s/W

Voltage drooping gain 0.01 V/var

4.1. Normal Operation

A normal standalone operation of the CMGs before the coupling is considered in this
case study. The load demand in CMG1 and CMG2 is 6 kW each. The load power and the
frequency in both the MGs are shown in Figure 6. In this situation, the load demand in
both CMGs suddenly increases by 4 kW at instant 0.8 s in CMG1 and at 0.9 s in CMG2.
It can be observed from Figure 6 that the frequency is maintained within the allowable
range as the power set point of the CMGs are modified to maintain the frequency. It is also
notable that as both the systems are not connected together so CMG1 will not be affected
by any change in CMG2. It can be observed that both of the systems have two different
frequency profiles as they are not connected.
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4.2. CMG1 Is Overloaded

In steady-state operation, if the power demand increases in CMG1 and exceeds the
total power rating of the CMG1, then according to the proposed configuration, power
can be drawn from the CMG2, if there is any excess power available. In this situation,
the load consumption in CMG2 is always constant. In this case study, a 10-kW load is
initially attached to CMG1, and a 6-kW load is connected to CMG2, so that there is excess
available power in CMG2. Now the load demand is increased by 4 kW in CMG1 at the
simulation time instant 1 s. It can be observed from Figure 7 that the excess power is
supplied in CMG1 from the CMG2. The frequency spectrum, also shown in Figure 7,
is also within the allowable range. In this case study, symmetric droop control is applied
for equal power-sharing during the coupling condition.
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4.3. CMG2 Is Overloaded

In this case study, the load consumption in CMG1 is constant, and load demand in
CMG 2 is increased and exceeds the PV power generation rating of the CMG 2. In this
situation, there are two possibilities to supply the excess load demand. One is from BESS,
which is already installed in CMG 2, and the other one is if there is any excess power in
CMG 1 that can be transferred to CMG2 to meet the requirement. Here, in this case study,
6 kW load is added to CMG 1 so that there is some excess power to transfer to CMG2 and
initially, in CMG2 the load demand is 10 kW. Then, at the simulation time of 1 s, the total
load demand in CMG2 is increased to 16 kW. In this situation, according to the flow chart,
the excess power in CMG1 (4 kW) is transferred to CMG2, and the BESS within the CMG2
supplies the remaining power demand (2 kW). Thus, asymmetric power-sharing has been
achieved in this case study by adequately adjusting the power set point and droop gain.
It can also be observed from Figure 8 that initially, when power demand was supplied
individually, both the CMGs had different frequencies and, after coupling, both the CMGs
settled at a stable frequency.
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4.4. CMG1 & CMG2 Both Are Overloaded

When Both CMGs are overloaded, then the excess load demand can be supplied from
the BESS. But it can be noted that this BESS also has some limitations. The load demand
should not be increased beyond the rating of BESS, and CMGs should not be overloaded for
a long time. In this case study, initially, the load demand is 10 kW individually in both the
CMGs. At simulation time instant 1 s, the load demand in both the CMGs are increased to
12 kW, which exceeds the power generation rating for both the CMGs. Figure 9 illustrates
that the 4-kW excess power is supplied from the BESS, and 2 kW power is transferred from
CMG2 to CMG1. In this case study an asymmetric power-sharing and a stable mode of
operation is also achieved.
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4.5. CMG1 & CMG2 Both Are Underloaded

When both CMGs are underloaded in this situation, the excess power can be uti-
lized to charge the BESS. In this case study, it is considered that both the CMGs are
having an 8-kW load. In this situation, according to the PM algorithm (given in Figure 4),
the available excess power (2 kW) in CMG1 can be transferred to meet the load demand,
and the internal excess power of CMG2 can also be utilized to recharge the BESS. It can
be observed from Figure 10, that the excess 2 kW power is transferred from the CMG1 to
CMG2, and 4 kW internal power of CMG2 is utilized to recharge the BESS. As both the
systems are interconnected, they have the same frequency (as shown in Figure 10).
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5. Experimental Results

A laboratory-scale prototype of two isolated CMGs have been developed to verify the
efficacy of the proposed controller, as shown in Figure 11. Two PV simulators (100 V, 20 A)
in each CMG has been used as a DC source, and further single-phase inverters are connected
to supply the local load. The proposed control strategy has been developed in the LabView
platform. The Mitsubishi L series intelligent power module (IPM) PM25CL1A120 is used
for implementing both the inverter. The proposed control algorithm is implemented in the
National Instrument-based sbRIO-9683 controller. To verify the power-sharing efficiency
effectively, three different case studies have been conducted.

5.1. Case 1: MGs Are Operated Independently and Sudden Load Change

In this case study, both of the CMGs are operated separately and supplying the
local load individually, as shown in Figure 12a. As a result, the implemented controller
can maintain the desired voltage and frequency and provide the required load demand.
Initially, in the case of study 1 (Figure 12a), 10 A and 5 A current drawing load was
connected to CMG1 and CMG2 individually. In the second scenario of this study, as shown
in Figure 12b, a transient load change condition is considered to check the efficacy of
the proposed controller. In this scenario, initially, in CMG1, the load current was 10 A,
and the CMG2 was in no-load condition, and after triggering the load suddenly, 5 A current
was drawing by the load. It can be seen that voltage and frequency remained unchanged
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during this load change. This scenario provides satisfactory testing of the CMG controllers
in the standalone mode of operation.
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5.2. Case 2: Symmetric and Asymmetric Power-Sharing

One of the most important contributions of this research article is to share the power
according to the power set point of the inverter, calculated from a PM strategy. According
to the PM strategy, as shown in Figure 4, the power setpoints are defined by the power
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availability of the CMGs and load connected to the CMGs. In the case of coupling the
neighbouring CMGs, the power should be shared symmetrically or asymmetrically as
the distributed energy sources, and load demands are volatile. Low voltage CMGs have
a limited capacity to fulfil the load demand. The asymmetrical power-sharing helps a
particular CMG share the power according to its availability, which allows the coupled
system to act more efficiently. The power-sharing performance during the coupled mode is
demonstrated by representing the output current waveform of each CMG.

In this section, two different scenarios (symmetric and asymmetric power-sharing)
have been considered. As shown in Figure 13a, a symmetrical/equal power-sharing has
been illustrated. Initially, 10 A and 6 A current drawing load was connected in CMG1
and CMG2, respectively, and in this situation, MGs are coupled to share the total load.
The PM strategy has been implemented and can be seen from Figure 13a, the loads are
shared symmetrically, and the frequency is also in the allowable range. On the other
hand, as shown in Figure 13b an asymmetrical power-sharing has been illustrated. In this
case study, asymmetrical power-sharing has been achieved during the coupled condition,
where CMG1 supplies 4 A and CMG2 supplies 8 A of load current. The system voltage and
frequency are kept at their desired levels thanks to a flawless PM technique application
and careful droop gain selection.
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5.3. Case 3: Power Transfer between the Microgrids

In this section, finally, to check the efficacy of the coupling controller, power transfers
between the CMGs have been illustrated clearly. The current flowing through the coupling
switch is measured in order to show the power transfer between the CMGs. As shown in
Figure 14, both the CMGs are supporting the loads individually. In Figure 14a, CMG1 is
generating 18 A while MG2 is generating 14 A to support the load demand. At this instance,
the CMGs are coupled, and the equal power-sharing control topology is implemented.
The PCC current at the coupling time has been measured, as shown in Figure 14b. It can
be clearly seen from Figure 14b that power has been transferred from CMG1 to CMG2 to
share the load demand.
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6. Conclusions

Sharing available energy resources among neighbouring CMGs creates a sense of
isolated energy community, which can be considered a socially responsible strategy to
cost-effectively combat energy poverty. The challenge related to sharing of available energy
resources has been discussed in this paper, with an enhanced droop control method to
strengthen the coupling efficiency of standalone neighbouring CMGs during any contin-
gency. In addition to classic droop control, the proposed controller implements a PM-based
droop control to ensure asymmetric power-sharing. Two PV based static single-phase
CMGs were considered to verify the novel PM-based droop control. The MATLAB based
simulation and experimental validation results conclude the following:

• An efficient coupling scheme for available power-sharing among the neighbouring
microgrid is developed. The proposed scheme is able to support neighbouring CMGs
during any kind of contingency.

• The power management-based setpoint calculation for the droop control provides an
accurate power-sharing between the MGs. The proposed topology is able to share
the power among the MGs in asymmetric way as-well, which does not restrict the
inverters for equal power-sharing. The experimental results corroborated the benefits
of this unique features.

• The frequency of the proposed system is maintained within the acceptable allowable
range (50 Hz ± 1) with the help of PM based droop control. A wide range of case
studies has been considered, and the efficacy of the proposed controller for frequency
regulation is verified.

It should be emphasized that the proposed technique has some limitations. If the
power demand exceeds the coupled CMG rating, load shedding is the only way to keep
the system stable.
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Abbreviations and Notations

EC Energy community
PM Power management
CMG Community microgrids
RES Renewable energy sources
BESS Battery energy storage systems
SC Supercapacitors
PV Photovoltaics
SoC State of charge
DG Distributed generation
kÑ Frequency droop co-efficient
kV Voltage droop co-efficient
Ñ* Nominal value of frequency
V* Nominal value of voltage
ω0 Grid Frequency
ωisolated Standalone/isolated Frequency
P1 & P2 Generated Power from CMG1 & CMG2
P1* & P2* Power setpoints of CMG1 & CMG2
PL1 Load power demand in CMG1
PL2 Load power demand in CMG2
C DC link capacitor
Lf 1 & Lf 2 LCL Filter Inductors
Cf LCL Filter Capacitor
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