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Effects of Nonthermal Plasma Technology
on Functional Food Components
Aliyu Idris Muhammad , Xinyu Liao, Patrick J. Cullen, Donghong Liu , Qisen Xiang, Jun Wang, Shiguo Chen, Xingqian Ye,
and Tian Ding

Abstract: Understanding the impact of nonthermal plasma (NTP) technology on key nutritional and functional food
components is of paramount importance for the successful adoption of the technology by industry. NTP technology
(NTPT) has demonstrated marked antimicrobial efficacies with good retention of important physical, chemical, sensory,
and nutritional parameters for an array of food products. This paper presents the influence of NTPT on selected functional
food components with a focus on low-molecular-weight bioactive compounds and vitamins. We discuss the mechanisms
of bioactive compound alteration by plasma-reactive species and classify their influence on vitamins and their antioxidant
capacities. The impact of NTP on specific bioactive compounds depends both on plasma properties and the food matrix.
Induced changes are mainly associated with oxidative degradation and cleavage of double bonds in organic compounds.
The effects reported to date are mainly time-dependent increases in the concentrations of polyphenols, vitamin C, or
increases in antioxidant activity. Also, improvement in the extraction efficiency of polyphenols is observed. The review
highlights future research needs regarding the complex mechanisms of interaction with plasma species. NTP is a novel
technology that can both negatively and positively affect the functional components in food.

Keywords: antimicrobial peptides, antioxidant activity, ascorbic acid, bioactive compounds, cold plasma, polyphenols

Introduction
Fruits and vegetables (F&V) are known for their health bene-

fits. However, given the complexity of the modern food supply
chain, most foods are subjected to some degree of processing to
preserve their freshness. Such intervention may modify the func-
tional components of F&V or their juices (Bevilacqua et al., 2017;
Gironés-Vilaplana, Huertas, Moreno, Periago, & Garcı́a-Viguera,
2016). The term “functional components” refers to particular
biomolecules found in foods which, apart from their basic nu-
tritional properties, have the ability to protect human vital organs
from diseases (Abuajah, Ogbonna, & Osuji, 2015). Although func-
tional components are not regarded as medicine, their importance
in a “healthy” diet for disease prevention is now universally ac-
cepted. Functional components include nontoxic phytochemicals
which are derived from plant-based foods like fruits, vegetables,
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and whole grains (Craig, 1997; Idehen, Tang, & Sang, 2016; Liu,
2007).

Bioactive compounds are not nutritious but are considered
as antioxidants that work alongside fiber, minerals, and vita-
mins to boost human health (Gironés-Vilaplana et al., 2016;
Kongkachuichai, Charoensiri, Yakoh, Kringkasemsee, & Insung,
2015; Liu, 2013; Mann, 2011). Phytochemicals include phenolic
compounds, carotenoids, sulfides, phytosterols, glucosinolates,
lycopene, isoflavones, β-glucan, and lignans (Idehen et al., 2016;
Liu, 2013; Mann, 2011; Noomhorm, Ahmad, & Anal, 2014;
Schreiner & Huyskens-Keil, 2006). Approximately 900 phyto-
chemicals have been identified in foods. A serving of F&V may
contain nearly 100 different phytochemicals (Srividya, Venkatesh,
& Vishnuvarthan, 2010). Bioactive compounds are also found in
animals and include long-chain omega-3 polyunsaturated fatty
acids, bioactive peptides, linolenic acid conjugates, and probiotic
microorganisms. They are derived from animal products such as
fish, milk, and fermented milk products (Abuajah et al., 2015). All
the aforementioned bioactive components have been linked with
dual-purpose effects of providing nourishment and lowering or
preventing diseases, such cardiovascular disease, breast cancer, dia-
betes, and obesity (Idehen et al., 2016; Zhao et al., 2016). In view
of their significance, there is a need to study how processing tech-
niques may affect their functionality. Likewise, it is noteworthy
that conventional thermal processing may have significant adverse
effects on such food components. Sensitive food components
such as volatiles, governing aroma, may be destroyed leading to
lower-value products (Galanakis, 2017). Functional components
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in different food matrices are also found to be impaired due
to their thermolabile characteristics (Howard, Jeffery, Wallig, &
Klein, 1997; Song & Milner, 2001), and significant amounts of
bioactive compounds in thermally preserved F&V are lost along
with their freshness and succulent nature (Bahram-Parvar & Lim,
2018; Bevilacqua et al., 2017; Gironés-Vilaplana et al., 2016).
In a study on phenolic compound degradation due to heating, a
model solution of flavonols, rutin, and quercetin was found to be
degraded after cooking, and their radical-scavenging activity was
reduced. The new products formed from the quercetin degrada-
tion retained about 20% scavenging activity (Buchner, Krumbein,
Rohn, & Kroh, 2006). Consequently, the demand for whole and
fresh-cut ready-to-eat F&V by consumers over the years has led to
a surge in demand for nonthermal treatments of high-value food
products (Coutinho et al., 2018; Filho et al., 2016). Nonthermal
technologies are typically found to be superior treatment tech-
niques due to their reduced quality deterioration and beneficial
influence on functional activity enhancement. Foods subjected
to innovative technologies like ultrasound, gamma irradiation,
high-hydrostatic-pressure processing, pulsed electric field, ultra-
violet irradiation (UV-C), ozone, plasma-activated water (PAW),
and cold atmospheric plasma have been reported to improve
the retention of key nutrients, quality, and functional properties
(Aguiló-Aguayo, Gangopadhyay, Lyng, Brunton, & Rai, 2017;
Barba et al., 2017; Cano, Hernandez, & Ancos, 1997; Galanakis,
2017; Ma et al., 2015; Thirumdas, Sarangapani, & Annapure,
2014; Thirumdas, Trimukhe, Deshmukh, & Annapure, 2016;
Zhang et al., 2017; Zhang, Chen, Li, Li, & Zhang, 2015).
The antimicrobial effects of these technologies has since been
established, and many comprehensive review and research articles
have been published (Aguiló-Aguayo, Charles, Renard, Page, &
Carlin, 2013; Fernández, Noriega, & Thompson, 2013; Liao, Liu,
Xiang, Ahn, Chen, Ye, & Ding, 2017a; Liao, Muhammad, Chen,
Hu, Ye, Liu, & Ding (2018) Niemira, 2012; Pignata, Angelo,
Fea, & Gilli, 2017; Scholtz, Pazlarova, Souskova, Khun, & Julak,
2015; Weltmann et al., 2008; Ziuzina, Patil, Cullen, Keener, &
Bourke, 2014). Apart from their antimicrobial effects, processing
with some of the aforementioned technologies has the capability
of inducing functional modification of higher-molecular-weight
biomolecules like starch and protein. This may come with un-
desired effects from the formation of short-chain aldehydes with
toxic metabolites (Dong, Gao, Xu, & Chen, 2017; Liao et al.,
2018; Liao et al., 2017a; Muhammad, Xiang, Liao, Liu, & Ding,
2018; Pankaj, Bueno-ferrer, Misra, Bourke, & Cullen, 2014;
Sarangapani et al., 2016; Thirumdas et al., 2016; Zhu, 2017). In
general, nonthermal plasma technology (NTPT) is an innovative
technology with a diverse range of applications across different
industries, such as improving the adhesion, functional, and surface
energy properties of polymers and electronics, treatments of
textile materials and waste water, wound healing, and sterilization
of medical equipment (Harry, 2010; Joubert et al., 2013; Lotfy,
2017; Muhammad et al., 2018; Pankaj & Keener, 2018; Roth,
1995; Takai, Kitano, Kuwabara, & Shiraki, 2012; Xinpei Lu et al.,
2008; Yildirim et al., 2008). In food applications, the antimi-
crobial effect of NTP has been demonstrated for many products.
A rapidly expanding body of literature can be found regarding
the potent plasma efficacy of plasma-reactive species (RS), such
as reactive oxygen species (ROS) and reactive nitrogen species
(RNS) and their interactions with microorganisms on different
food matrices (Ekezie, Sun, & Cheng, 2017; Fernández, Shearer,
Wilson, & Thompson, 2012; Fridman et al., 2007; Kostov et al.,
2010; Laroussi, Mendis, & Rosenberg, 2003; Liao, et al., 2017a;

Liao, Xiang, Liu, Chen, Ye, & Ding, 2017b; Mir, Shah, & Mir,
2016; Misra, Keener, Bourke, Mosnier, & Cullen, 2014; Misra,
Tiwari, Raghavarao, & Cullen, 2011; Niemira, 2012; Pankaj,
Misra, & Cullen, 2013; Smet et al., 2017; Surowsky, Schlüter, &
Knorr, 2014; Ziuzina et al., 2014). However, the effects of NTP
treatment on lower-molecular-weight bioactive compounds have
been studied to a lesser degree. Consequently, this review presents
an overview of recent studies on the application of NTP on
functional components, vitamins, and their antioxidant potentials.
The review also discusses the possible plasma mechanisms of
degradation or enhancement of functional components.

Nonthermal Plasma (NTP) Generation
Plasma exists as the fourth state of matter after solid, liquid, and

gas. There are two key classifications of plasma, thermal (equilib-
rium) and nonthermal (nonequilibrium) plasma. A thermal plasma
is generated when a gas is heated at a high-temperature range of
about 20 000 K to achieve the ionization of the gas. At this
condition, all the ions, electrons, and chemical species are in ther-
modynamic equilibrium (Harry, 2010; Misra, Schlüter, & Cullen,
2016). In the NTP, the applied energy leads to an elastic collision
of the gas particles, atoms, and electrons. This results in the trans-
fer of some kinetic energy to other particles in such a way that
the cooling of the uncharged particles and neutral ions is more
rapid than the energy transfer from the electrons. At this point,
the electrons are at a higher temperature of between 1 and 10
eV, while the neutrons, ions, and radicals remain close to room
temperature. This allows the gas bulk to remain at a low tempera-
ture, hence the plasma is referred as NTP (Fridman, 2008; Harry,
2010; Misra et al., 2016; Scholtz et al., 2015). Such conditions
enable the treatment of thermolabile food materials. The NTP
can be generated through ionization of gases, such as N2, O2, or
noble gases (He, Ar, or Ne) or combinations thereof that could
either be at a reduced or atmospheric pressure (Ekezie et al., 2017;
Niemira, 2012; Pinela & Ferreira, 2017; Scholtz et al., 2015). NTP
can be generated by any type of energy, such as electrical, pho-
toionization, optical (UV light), heat radiation, radio frequency,
and microwave energy. The most prominent are electrical or elec-
tromagnetic energy (Fridman, 2008; Liao et al., 2017a; Pankaj &
Keener, 2017). The key NTP species for biological treatments are
often found to be ROS, such as superoxide anion (O2

−), atomic
oxygen (O), singlet oxygen (1O2), hydroxyl radical (OH•), and
ozone (O3); RNS, such as excited nitrogen N2, atomic nitrogen
N, nitric oxide NO•; and also UV photons, positive and negative
ions, and free electrons (Laroussi & Leipold, 2004; Liao et al.,
2018; Ni, Lynch, Modic, Whalley, & Walsh, 2016; Schlüter &
Fröhling, 2014; Scholtz et al., 2015).

In recent years, there has been an increasing number of studies
in the literature on the application of NTP in foods, with
different devices employed for generating the plasma discharges at
atmospheric pressure with both direct or indirect food exposure.
The schematic representation in Figure 1 shows a direct plasma
exposure on target food materials with devices like dielectric
barrier discharge (DBD) plasma, corona discharge plasma, gliding
arc discharge plasma, and microwave cold plasma. Other plasma
discharge devices are dielectric barrier grating discharge plasma,
radio frequency plasma, nanosecond pulse plasma, and multijet
atmospheric plasma discharges shown in Figure 2 (Chiang et al.,
2010; Cullen et al., 2017; Gallagher Jr et al., 2007; Joubert et al.,
2013; Kim, Oh, Won, Lee, & Min, 2017; Korachi, Gurol, &
Aslan, 2010; Liao et al., 2017b; Moreau et al., 2007; Pankaj
et al., 2015; Park et al., 2015). A comprehensive description of
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Table 1–Effect of NTP treatment on the functional components of food.

NTP type Treatment conditions
Bioactive

compounds Food commodity Matrix Observation References

Atmospheric
pressure plasma
jet

0.20, 40, 80, and 120 s;
35 W; 27.12 MHz;

Flavonoids Lamb lettuce Lettuce leaf � Reduction in phenolic
acids levels.

� Decrease in caffeic acids.
� Increase in diosmetin.

Grzegorzewski
et al. (2011b)

Cold atmospheric
gas phase
plasma

3 and 5 min; 4 W; 25 kHz;
argon gas; 3, 5, and
7 cm3 sample volume.

Hydroxycinnamic
acids, flavonols,
polyphenols,

Chokeberry juice Juice � Increase in
hydroxycinnamic acids.

� Increase in flavonols
� loss of anthocyanins.
� Reduction in extraction

time of anthocyanins.
� Increase in

concentration of
neochlorogenic acid.

Kovačevíc
et al. (2016a)

High-voltage
atmospheric
cold plasma

0, 1, 2, 3, and 4 min;
80 kV; 46% RH.

Phenols,
flavonoids, and
flavonols

White grape Juice � A decrease in total
phenolics.

� A decline in flavonoids.
� Increase in total

flavonols.

Pankaj et al.
(2017)

Cold
Atmospheric
pressure plasma

0, 2.5, 5 and 10 min;
3 kHz; 9 kV; Air;

Flavonoid
glycosides

Pea Seed and
15-d old
Pea
seedlings

� A reduced concentration
of quercetin glycosides.

� Kaempferol glycosides
concentrations were
decreased.

Bußler et al.
(2015)

Cold atmospheric
gas phase
plasma

3, 5, 7 min; 4 W power;
25 kHz; 0.75, 1,
1.25 dm3 gas flow rate

Anthocyanin pomegranate Juice � Increase in anthocyanin
content.

� Positive impact on
anthocyanin stability.

Kovačevíc
et al. (2016b)

Radio-frequency
(RF)-glow
low-pressure
oxygen plasma

20-300 s: 75 W, and
150 W; O2 gas at
0.5 mbar

Phenolic acids,
Flavonoids

Lamb’s lettuce Leaf � Increase in
protocatechuic acid.

� Increase in luteolin and
diosmetin.

Grzegorzewski
et al. (2010a)

Atmospheric
RF-plasma jet

60 s; 20 and 40 W;
20-600 kHz

Total phenolics
content

Dragon fruit Dragon fruit
slice

� Reduction in total
phenolic contents.

Matan et al.
(2015)

Atmospheric
double barrier
discharge
plasma

Air, 60% RH; 15 kV;
10+10 and 20+20 min.

Total phenolics
content,
Carotenoids

Kiwifruit Fresh-cut
Kiwifruit

� No significant change in
total phenolic contents.

� A decrease in total
carotenoids.

Ramazzina
et al. (2015)

Cold plasma N2 gas; 10, 30, and
50 mL/min flow rate; 5,
10 and 15 min; 80 kHz;
30 kPa vacuum
conditions.

TPC and TFC Cashew apple
juice

Juice � Increase in TPC and TFC
at a higher gas flow rate.

� Overexposure led to
degradation of TPC and
TFC.

Rodŕıguez
et al. (2017)

Cold atmospheric
gas phase
plasma

Argon gas; 3, 5, and
7 min; 25 kHz; 4 W; 3, 4,
and 5 cm3 sample
volume; 0.75, 1,
1.25 dm3/min flow rate.

Phenolic
compounds

Pomegranate
juice

Juice � Increase in
concentrations of ellagic
acid, chlorogenic acid,
ferulic acid, catechin and
punicalagin 1.

� Reduction in contents of
protocatechuic acid,
caffeic acid and
punicalagin 2.

Herceg et al.
(2016)

Atmospheric cold
plasma

Air; 15, 30, 45, and 60 s;
70 kV; 50 Hz; 22 mm
electrode distance;

TPC Prebiotic orange
juice

Juice � Reduction in TPC
irrespective of direct or
indirect exposure.

Almeida et al.
(2015)

Atmospheric cold
plasma

30, 60, 90, and 120 s;
650 W; 3000 L/h gas
flow rate; 25 kHz.

TPC Sour cherry
nectar, apple,
orange, and
tomato juices

Juice � An overall increase in
TPC in all treated juices
after 120 s.

Dasan and
Boyaci
(2018)

Gas phase
plasma

3, 4, and 5 min; Ar gas;
4 W; 2.5 kV; 25 kHz; 2, 3,
and 4 mL sample; 0.75,
1, 1.25 L/min gas flow
rate.

TPC and TAC Sour cherry
Marasca juice

Juice � Higher TPC was
recorded at shorter
treatment time.

� Lower TAC observed at
longer treatment time.

Garofulíc et al.
(2015)

Atmospheric cold
plasma

Air as gas; 0, 2, and 5 min;
60 and 80 kV; 50 Hz.

TPC, TFC, and
anthocyanin.

Blueberry Fruit � A significant increase in
TPC and TFC after 1 min
plasma exposure.

� Significant reduction in
anthocyanin with
extended treatment
time.

Sarangapani
et al. (2017)

Atmospheric cold
plasma

Air; 0, 15, 30, 45, 60, 90,
and 120 s; 549 W;
47 kHz; 7.5 cm electrode
distance; 113.27 L/min
flow rate.

Anthocyanin Blueberries Fruit � A significant decrease in
TAC after 90 s.

Lacombe et al.
(2015)

(Continued)
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Table 1–Continued.

NTP type Treatment conditions
Bioactive

compounds Food commodity Matrix Observation References

Microwave-
powered cold
plasma

N2 gas; 2, 5, and 10 min;
900 W; 0.25 Wm−2

wave; 20 L/min gas flow
rate

TPC Mandarin flesh
and mandarin
peel

Fruit � No significant increase
in TPC within the flesh.

� A significant increase in
TPC in the peel.

Yeon et al.
(2017)

Cold plasma Ar; 1 L/min; 0, 3, 5, 7, 9,
10, and 11; 15 kV;
12 kHz.

TPC Walnut Nut � No effect on TPC on
fresh and dried walnut.

Amini and
Ghoranneviss
(2016)

Microwave-
powered cold
plasma

He gas; 1 L/min; 10, 14,
25, 36, and 40 min; 400,
474, 650, 826, and
900 W; 0.7 kPa.

Quercetin content Onion powder Powder � No significant alteration
in quercetin content.

Kim et al.
(2017)

Dielectric barrier
discharge
atmospheric
cold plasma

Air; 30, 40, and 50 W; 0, 5,
10, 15, 20, 30, and 40 s;
2 mm electrode distance.

TPC Apple juice Juice � A decline in TPC with
increase and treatment
time and power.

Liao et al.
(2018)

Figure 1–NTP discharge devices during direct exposure on food materials,
(A) gliding arc discharge equipment, (B) microwave cold plasma
generator (Yeon et al., 2017), (C) DBD plasma generator, and (D) corona
discharge generator.

these devices is extensively discussed elsewhere (Lu, Laroussi,
& Puech, 2012; Misra et al., 2016; Muhammad et al., 2018;
Schlüter & Fröhling, 2014; Scholtz et al., 2015; Yildirim et al.,
2008). Given the scale and generally low-value-added nature of
food processing, the choice of gas is very important. Examination
of the rapidly expanding literature shows a clear trend toward the
use of atmospheric air as the operational gas of choice (Pignata
et al., 2017), offering a cheap processing aid for food applications
(Sarangapani, Patange, Bourke, Keener, & Cullen, 2018).

Mechanism of NTP Interaction with Functional Food
Components

Despite the number of research articles on the application of
NTP in food, uncertainty exists between the mechanism of in-
teraction of bioactive compounds and plasma RS. Unraveling the
mechanisms involved is particularly challenging given the highly
dynamic nature of plasma species. This relationship is likely to
depend on several control conditions, such as the process gas,
plasma source, input power, duration of exposure, and the dis-
tance between the discharge and the target. Elucidation of the
mechanism is important for future approval of plasma as a food
processing aid. The impact of NTPT on the functionality and
stability of phenolic compounds is a structure-dependent phe-
nomenon which may be explained by the synergistic effects of the

various active plasma RS. A strong surface oxidation effect was pro-
posed to have led to the addition of new carbonyl and carboxylic
groups followed by heightened oxygen formation (Grzegorzewski,
Michaela, Rohn, Kroh, & Schlueter, 2011b; Grzegorzewski,
Rohn, Kroh, Geyer, & Schlüter, 2010b). Further addition of func-
tional groups such as hydroxyl groups in the aromatic rings of phe-
nolic compounds was documented by Aadil, Zeng, Han, and Sun
(2013).

Comparably, the degradation of thermally treated model solu-
tions of flavonoids (rutin and quercetin) is reported to be due to
the presence of molecular oxygen (O2) and ROS such as O2

−,
OH•. The final compounds formed were due to the shifting of
some of the hydrogen atoms in the B-ring. Although the scaveng-
ing potentials of these compounds were reduced, they retained
about 20% of their scavenging activity (Buchner et al., 2006;
Patras, Brunton, O’Donnell, & Tiwari, 2010). Likewise, Makris
and Rossiter (2002) have linked the degradation of phenolic com-
pounds by plasma to that of a heat-induced oxidative cleavage path.
However, Grzegorzewski and group hypothesized that the plasma-
induced phenolics degradation was neither caused by photodes-
orption nor thermal desorption processes, it was rather induced
by the combined effects of numerous plasma RS (Grzegorzewski
et al., 2009; Grzegorzewski, Ehlbeck, Schlüter, Kroh, & Rohn,
2011b). In quercetin, for example (Figure 3A), an initial hydrogen
removal from the hydroxyl group in the C-4’ position is due to the
potent influence of atomic oxygen (O) and OH•. A subsequent
slower degradation is due to hydrogen inhibition via substitution
with β-O-linked D-glucose (quercetin-4’-O- monoglucoside) or
steric interference in an adjacent position to quercetin-3,4’-O-
diglucoside at C-3’ (Grzegorzewski et al., 2010b).

In a similar study, Makris and Rossiter (2002) proposed a hy-
droxyl free radical oxidative degradation of flavonols (quercetin and
morin) that formed low-molecular-weight phenolic compounds
(Makris & Rossiter, 2002). It was claimed that both compounds
have similar degradation pathways that depend on B-ring and 3-
hydroxyl group substitutions (Grzegorzewski et al., 2009; Makris
& Rossiter, 2002). Grzegorzewski and group speculated that
flavonoids degraded much faster than phenolic acids during NTP
exposure. Their assertion was based on the radical-scavenging po-
tential of polyphenols, which can scavenge the plasma-generated
RS. This has allowed phenolic compounds to resist the degra-
dation to a greater extent than flavonoids (Grzegorzewski et al.,
2011b).

Another proposed mechanism of degradation for low-
molecular-weight organic compounds was ozone-induced

1382 Comprehensive Reviews in Food Science and Food Safety � Vol. 17, 2018 C© 2018 Institute of Food Technologists®
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Figure 2–(A) 450-mm-diameter multijet plasma discharge designed for continuous treatment of food materials conveyed using a conveyor belt and a
surrounding wall which helps in the retention of plasma RS (Cullen et al., 2017).

Figure 3–(A) Radical-induced oxidative degradation of quercetin leads to the formation of low-molecular-weight phenolic compounds II and III. The
degradation path is similar to heat-induced oxidative cleavage (Grzegorzewski et al., 2010b). (B) Direct reaction of ozone and subsequent
decomposition of ozonide to carboxylic acids and carbonyl compounds (Tiwari et al., 2009).

C© 2018 Institute of Food Technologists® Vol. 17, 2018 � Comprehensive Reviews in Food Science and Food Safety 1383
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Table 2–Effect of NTP treatment on antioxidant activity, antioxidant contents, and scavenging potential of functional food components.

NTP type Treatment conditions
Scavenging

assay
Food

commodity Matrix Observations Reference

High-voltage
atmospheric cold
plasma

0, 1, 2, 3, and 4 min;
80 kV; 46% RH.

DPPH White Grape Juice � A decrease in DPPH free
radical scavenging
activity.

� Reduction in antioxidant
capacity

Pankaj et al.
(2017)

Atmospheric
double barrier
discharge plasma

Air, 60% RH; 15 kV;
10+10 and 20+20
min.

ABTS, DPPH,
and FRAP

Kiwifruit Fresh-cut
Kiwifruit

� No significant change in
antioxidant activity and
antioxidant contents in
all assays

Ramazzina
et al. (2015)

Atmospheric cold
plasma

Air, 60% RH; 15 and
30 min; 70 mm
discharge distance;
15 kV.

ABTS and
ORAC

Radicchio Radicchio
leaves

� Slight decrease in
antioxidant activity in
both assays

Pasquali et al.
(2016)

Cold plasma N2 gas; 10, 30, and 50
mL/min flow rate; 5,
10, and 15 min; 80
kHz; 30 kPa vacuum
conditions.

FRAP, DPPH,
and ABTS

Cashew apple
juice

Juice � An initial increase in
antioxidant activity in
the 1st 5 min at a low
flow rate.

� Reduction in antioxidant
activity at high flow
rates.

Rodŕıguez
et al. (2017)

Atmospheric cold
plasma

Air; 15, 30, 45, and 60
s; 70 kV; 50 Hz; 22
mm electrode
distance;

DPPH, and
ABTS

Prebiotic
orange juice

Juice � No significant change in
antioxidant capacity
using DPPH assay.

� A significant decrease in
antioxidant capacity
using ABTS assay.

Almeida et al.
(2015)

Microwave-
powered cold
plasma

N2 gas; 2, 5, and 10
min; 900 W; 0.25
W/m2 wave; 20
L/min gas flow rate

DPPH Mandarin flesh
and
mandarin
peel

Fruit � No effect on scavenging
activity of the flesh.

� A significant increase in
activity for the peel.

Yeon et al.
(2017)

Cold plasma Ar; 1 L/min; 0, 3, 5, 7,
9, 10, and 11; 15 kV;
12 kHz.

FRAP and
DPPH

Walnut Nut � No effect was observed
in all samples.

Amini and
Ghoranneviss
(2016)

Microwave-
powered cold
plasma

He gas; 1 L/min; 10,
14, 25, 36, and 40
min; 400, 474, 650,
826, and 900 W; 0.7
kPa.

DPPH Onion powder Powder � Increase in antioxidant
activity.

Kim et al.
(2017)

PAW 98% Ar and 2% O2; 5
L/min flow rate; 10
kHz; 10 mm working
distance; PAW-5, 10
and 15 min.

UV/Vis
spectrometer

Button
mushroom

Mushroom � Increase in antioxidant. Xu et al.
(2016)

Cold plasma 400 and 900 W; 10
min; N2, He, N2+O2;

DPPH and
ABTS

Lettuce Vegetable � No significant effect on
the antioxidant
activities.

Song et al.
(2015)

Microwave-
powered cold
plasma

N2; 0, 2, 5, 10, and 20
min; 900 W; 667 Pa;

ABTS Radish sprout Vegetable � Antioxidant activity was
not affected.

Oh et al.
(2017)

Dielectric barrier
discharge
atmospheric cold
plasma

Air; 30, 40, and 50 W;
0, 5, 10, 15, 20, 30,
and 40 s; 2 mm
electrode distance.

DPPH Apple juice Juice � A slight decrease in
antioxidant capacity.

Liao et al.
(2018)

oxidative cleavage of the double bonds of organic compounds,
which leads to the formation of unstable ozonide, which sub-
sequently degrades. Such degradation follows either a direct re-
action with O3 or indirect reaction with another ROS such as
O2

− or OH•. The indirect reaction leads to electrophilic and nu-
cleophilic reactions with aromatic compounds which are replaced
with an electron donor (OH–) with high electron affinity in the
ortho and para positions. The direct reaction is explained by the
Criegee mechanism, which involves subjecting ozone molecules
to 1-3 dipolar cycloaddition with the double bonds. This results
in the formation of ozonides (1,2,4-trioxolanes) from the unsatu-
rated alkenes and then ozone with an aldehyde or ketone oxides,
which have finite lifetimes. However, due to the instability of the
ozonides, their oxidative degradation yields carbonyl compounds,
and carboxylic acids or ketones, as shown in Figure 3(B) (Criegee,
1957; Tiwari, O’Donnell, & Cullen, 2009).

Influence of NTP Treatment on Bioactive Compounds
Polyphenols are bioactive compounds that are mostly derived

from plants. They consist of flavones, flavonols, flavan-3-ols,
isoflavones, anthocyanidins, lignans, and so on. When consumed,
they are metabolized in the body with synergistic effects of antiox-
idant, anti-inflammatory, and antimicrobial properties, resulting
in a healthy body (Kristbergsson & Ötles, 2016; Scalbert, John-
son, & Saltmarsh, 2005; Siddiq, Ahmed, Lobo, & Ozadali, 2012).
NTP processing of F&V results in the alteration of composition
and functionality of polyphenols. Table 1 highlights the effect of
NTP treatment on various functional food components. For ex-
ample, anthocyanins are phenolic flavonoids situated in the cell
vacuole. NTP disruption of the cell membrane leads to the re-
lease of intracellular substances into the extracellular environment.
Consequently, an improved mass transfer and faster penetration
of solvents into the cell enhance the extraction of polyphenols
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Table 3–Effect of NTP treatment on vitamins (Vc).

NTP type Treatment conditions Assay type
Food

commodity Matrix Observations Reference

Cold plasma N2 gas; 10, 30, and 50
mL/min flow rate; 5, 10,
and 15 min; 80 kHz; 30
kPa vacuum conditions.

UV/Vis
spectropho-
tometer

Cashew apple
juice

Juice � An initial increase in Vc
content in the 1st 5 min
at a lower flow rate.

� Reduction in Vc content
at high treatment
conditions.

Rodŕıguez
et al. (2017)

Atmospheric
cold plasma

15, 30, 45, and 60 s; 70
kV; 50 Hz; 22 mm
electrode distance.

HPLC Prebiotic
Orange juice

Juice � Increase in ascorbic acid
content.

Diva et al.
(2017)

Atmospheric
cold plasma

Air as gas; 0, 2, and 5 min;
60 and 80 kV; 50 Hz.

HPLC Blueberry Whole fruit � A significant increase in
ascorbic acid content at
1min and 80kV.

� Significant decrease
after 5 min treatment
time and 80 kV.

Sarangapani
et al. (2017)

Microwave-
powered cold
plasma

N2 gas; 2, 5, and 10 min;
900 W; 0.25 W/m2

wave; 20 L/min gas flow
rate

HPLC Mandarin flesh
and mandarin
peel

Whole fruit � Insignificant change in
ascorbic acid
concentration.

Yeon et al.
(2017)

PAW 98% Ar and 2% O2; 5
L/min flow rate; 10 kHz;
10 mm working distance;
PAW-5, 10, and 15 min.

UV/Vis spec-
trometer

Button
mushroom

Mushroom � Increase in Vc
concentration with
increase PAW.

Xu et al.
(2016)

Atmospheric
cold plasma

Air; flow rate 5 slm; 30
mA; 500 V; 0, 30, 60, 90,
150, and 240 s.

HPLC
Cucumber
Carrot
Pear

Fruit Slices � 3.6% loss in Vc content
in cucumber slices.

� 3.2 % loss in carrot
slices.

� 2.8% loss in pear slices.

Wang et al.
(2012)

Cold plasma 400 and 900 W; 10 min;
N2, He, N2+O2;

HPLC Lettuce Vegetable � No significant effect was
observed.

Song et al.
(2015)

Microwave-
powered cold
plasma

N2; 0, 2, 5, 10, and 20
min; 900 W; 667 Pa.

HPLC Radish sprout Vegetable � MCP did not decrease
the ascorbic acid
concentration.

Oh et al.
(2017)

High-voltage
atmospheric
cold plasma

90 kV; 60 Hz; 30, 60, and
120 s; 4.44 cm electrode
gap.

HPLC Orange juice Juice � 120 s direct treatment
reduce Vc content by
22%.

(Xu et al.,
2017)

(Kobzev et al., 2013; Landbo & Meyer, 2001). Grzegorzewski and
coresearchers hypothesized that plasma ROS such as OH• and
Ar+ have caused etching of the upper epidermis of lamb’s let-
tuce which stimulated the release and degradation of flavonoids
and other compounds from the central vacuoles of the guard
cells (Grzegorzewski et al., 2011b). To study the degradation of
NTP-treated chokeberry juice, Kovačević and coresearchers em-
ployed high-performance liquid chromatography equipped with
UV/Vis-photo diode array detection (HPLC-DAD). Their re-
sults showed a 23% loss in anthocyanins due to their low stabil-
ity in the juice coupled with the oxidative effect of the plasma
RS. Also, increases in the concentration of neochlorogenic acid,
quercetin-3-rutinoside, and quercetin-3-glucoside were observed.
On extraction of the plasma-treated phytochemicals, a reduction
in the extraction time of anthocyanins, and a decrease in the per-
centage volumes of neochlorogenic acid (5%), caffeic acid (2%),
and quercetin-3-rutinoside (9%) were recorded (Kovačević et al.,
2016a). In another study on cold atmospheric gas plasma, the an-
thocyanin content of pomegranate juice was increased by about
21-35%, thus affirming NTP’s positive impact on anthocyanin
stability (Kovačević et al., 2016b).

The contents of protocatechuic, chlorogenic, and caffeic acids
in fresh lamb’s lettuce were decreased by 16%, 29%, and 35%,
respectively, after plasma exposure, while the diosmetin content
was increased by 44%, and the pure flavonoids (model solution)
showed a strong time-dependent decrease after NTP treatment
(Grzegorzewski et al., 2011b). Comparatively, negligible changes
in the contents of chlorogenic and caffeic acids after UV-C expo-

sure were reported by the same researchers. Conversely, protocat-
echuic acid, luteolin, and diosmetin were reported to be increased
by 70%, 53%, and 101%, respectively, due to the damaging effects
of UV-C on the epidermal and mesophyll cells (Grzegorzewski
et al., 2011b). A divergent result of a 2-fold increment in the pro-
tocatechuic acid and luteolin contents was observed after a 120-s
treatment irrespective of the input power. The diosmetin content
was also increased 2.5-fold in a similar manner (Grzegorzewski
et al., 2010a).

Pankaj and coresearchers studied the effect of high-voltage cold
atmospheric plasma on white grape juice, with an increase in
the total flavonols content observed. It was further stated that the
total phenolic and flavonoid contents (TPC and TFC) reduced
drastically with increased treatment time (Pankaj, Wan, Colonna,
& Keener, 2017). In agreement with Pankaj et al. (2017), Herceg
and coresearchers reported a 33.03% increase in TPC of plasma-
treated pomegranate juice. Additionally, the ellagic acid content
was 3 times higher in the plasma-treated juice than the untreated
juice. This might be due to the plasma RS bombarding the cell
membrane to induce hydrolysis and degradation of ellagitannins
leading to increases in the ellagic acid increment (Herceg et al.,
2016). The influence of ACP on orange, tomato, and apple
juices, and on sour cherry nectar, was also reported. Following
120 s of treatment, the TPC in all the juices were increased
by 9.52%, 14.81%, 14.43%, and 14.47%, respectively (Dasan &
Boyaci, 2018). From another research on sour cherry Marasca
juice exposed to gas phase plasma, a time-dependent effect
was observed. The highest concentration of total anthocyanins
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(TAC; 223.96 mg/100 g) was recorded after 3 min of treatment.
Likewise, a higher TPC of 163.36 mg/100 g was observed at the
shortest exposure time of 3 min, as against the samples treated for
5 min (Garofulić et al., 2015). These results point to the impact
of NTP on phenolic degradation. Prolonged exposure of both
anthocyanins and phenolic acids confirmed the reaction with
plasma-induced ROS (Grzegorzewski et al., 2011b). Regardless
of the applied voltage, a marked increase in TPC and TFC of
blueberries after just 1 min of ACP treatment was reported.
The research further showed a slight drop in both TPC and
TFC as compared with untreated samples after the treatment
was extended to 5 min. Meanwhile, the anthocyanin content
significantly dropped over extended periods of plasma treatment
at higher input voltage (Sarangapani, O’Toole, Cullen, & Bourke,
2017). The TPC in mandarin peel significantly rose after
microwave-powered plasma treatment, while that in the mandarin
flesh was not altered (Yeon, Jo, & Min, 2017). An increase in
TPC and polyphenolics could be described by the accumulation
of phenolic compounds within the epidermal cells which are trig-
gered by plasma RS such as UV that enhances their biosynthesis
(Grzegorzewski et al., 2010a; Laroussi & Leipold, 2004). Likewise,
Matan and coresearchers suggested that NTP treatment alone
caused a slight drop in TPC from 2.0 ± 0.2 mg 100/g to 1.9 ± 0.1
mg 100/g in dragon fruit. However, upon combining the dragon
fruit with 5.0% green tea extract, a marked increase in TPC was
noted (Matan, Puangjinda, Phothisuwan, & Nisoa, 2015).

Meanwhile, a different result was reported by Almeida and core-
searchers after NTP treatment of prebiotic orange juice. The re-
sult showed a marked reduction in the TPC from 2.52 ± 0.20 to
2.37 ± 0.10 g/L and 1.93 ± 0.12 g/L for direct and indirect
exposure, respectively. In the indirect exposure, the TPC was sig-
nificantly affected at 60 s of treatment. Likewise, after ozone treat-
ment of the same juice, the TPC was slightly reduced to 2.33 ±
0.07 g/L (Almeida et al., 2015). It is also worth noting that O3 is
generally present in significant amounts where the plasma inducer
gas contains some level of oxygen (Mir et al., 2016; Misra et al.,
2015; Surowsky et al., 2014). Apple juice treated with atmospheric
cold plasma-DBD plasma showed a slight decrease in TPC at an
input power of 30 and 40 W. But after increasing the exposure
time at 50 W, the reduction in TPC was significant (Liao et al.,
2018). Lacombe and co-researchers observed a significant de-
cline in TAC for plasma-treated blueberries after 90 s of exposure
(Lacombe et al., 2015), although many factors could have resulted
in the change of anthocyanin stability. The processing temperature
could accelerate the rate of degradation of anthocyanin via tem-
pering with the enzymatic activity of β-glucosidase and polyphe-
nol oxidase (Patras et al., 2010). In the flavonol glycoside profile
of pea seeds, seedlings, and sprouts, a dose-dependent decline in
the concentrations of flavonol was observed after NTP treatment.
The concentrations of quercetin and kaempferol glycosides were
reduced as the treatment time was extended. This might be due
to their protective effects against oxidative stresses (Bußler et al.,
2015).

Another research group reported non-significant effects of NTP
treatment on TPC for some food products. Amini and Ghoran-
neviss (2016) recorded no effects for fresh and dried argon plasma-
treated walnuts after an 11-min exposure. Meanwhile, in onion
powder, the content of quercetin was not significantly affected
following the microwave plasma treatment. Although onions have
a high concentration of quercetin and quercetin glycosides, which
degrade upon thermal processing (Aguiló-Aguayo et al., 2013),
the plasma-treated quercetin content remained intact even after

storage at 4 °C for 28 d (Kim et al., 2017). This was possibly due
to the mild nature of the plasma treatment and the defense mech-
anism against oxidation. An onion of 10 g could provide about
4 mg of quercetin, which is equivalent to the allowable daily intake
of 8 to 10 mg/d of vitamin E for an adult (Bahram-Parvar & Lim,
2018).

This section clearly highlights improvements, declines, and no
notable effects of polyphenols after NTP treatment. These diver-
gent results may be due to differences in the food matrices, plasma
equipment configuration, and processing parameters, particularly
the gas used. From the food processing perspective, the after-effect
of NTP treatment on polyphenols warrants a comprehensive op-
timization of all process condition, in order to fully understand
their interactions with target food matrices.

Antimicrobial Peptides
Antimicrobial peptides (AMPs) are low-molecular-weight

biomolecules with a wide range of antimicrobial effects against
fungi, bacteria, yeasts, virus, and cancer cells. These biomolecules
are found naturally in living organisms as the first line of de-
fense, with a varying number of amino acids (Bahar & Ren, 2013;
Bazaka, Jacob, Chrzanowski, & Ostrikov, 2015; Villa & Viñas,
2016; Zhang & Gallo, 2016). However, bacteriocins are a sub-
group of AMPs produced by bacteria, which can inhibit or kill
closely related or nonrelated bacteria without posing any harm
to the bacteria themselves (Yang, Lin, Sung, & Fang, 2014). The
majority of the bacteriocins are produced by lactic acid bacteria
and are used as starters in food fermentation or as preservatives.
These bioactive peptides can also be added as hurdle technologies
in packaging systems for shelf life extension. For instance, nisin
produced by Lactococcus lactis was approved by the US Food and
Drug Administration (FDA) to be used in processed cheese in
1988 (Røssland, Langsrud, Granum, & Sørhaug, 2005; Villa &
Viñas, 2016). The pathway in which these peptides lead to bacte-
ria death is via inhibiting the protein synthesis and DNA replica-
tion pathways thereby subduing the cellular functions (Brogden,
2005). Most AMPs are positively charged with hydrophilic and
hydrophobic groups. These enable the peptides to target bacterial
cell membranes by binding to the lipid and phospholipid compo-
nents, which cause decomposition of the lipid bilayer (Izadpanah
& Gallo, 2005; Shai, 2002; Lijuan Zhang, Rozek, & Hancock,
2001).

Advantages and Limitations
Interestingly, bacteriocins do not harm the producing strain due

to specific immune proteins. Likewise, AMPs are stable to heat, can
extend food preservation duration, and treat malignant cancers and
pathogenic diseases. These peptides could potentially replace an-
tibiotics to treat multiple drug-resistant pathogens (Ghrairi, Chaf-
tar, & Hani, 2012; Lancaster, Wintermeyer, & Rodnina, 2007;
Van Heel, Montalban-Lopez, & Kuipers, 2011; Yang et al., 2014).
However, despite the aforementioned benefits, there are some im-
pending issues to their application in general. AMPs are susceptible
to proteases such as pepsin and trypsin (Cleveland, Montville, Nes,
& Chikindas, 2001), could potentially be toxic to humans (Pacor,
Giangaspero, Bacac, Sava, & Tossi, 2002), are costly to produce
(Bommarius et al., 2010), are bacterial resistance to some AMPs
(Bader et al., 2005), and lack of selectivity against specific strain
(Eckert et al., 2006).

Based on these challenges, AMPs could possibly be modified
by NTP to improve some of the functionalities. Arndt and core-
searchers reported the activation of β-defensin during wounding
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after NTP exposure (Arndt et al., 2015). Given the potential of
this avenue of research, more NTP food-related research ought
to be conducted to determine the possible AMPs enhancements
for immobilization on food packaging materials. This could be
potential new research area in active food packaging.

Influence of NTP Processing on the Antioxidant
Activity, Antioxidant Contents, and Scavenging
Potential of Functional Food Components

The major antioxidant and scavenging compounds in F&V are
vitamin C, vitamin E, and phenolic compounds. These bioactive
compounds have the capacity to scavenge free radicals responsible
for many diseases caused by oxidative stress and thereby mini-
mize their risk (Aadil et al., 2013; Bajpai, Mishra, & Prakash,
2017). The antioxidant components in fruit and vegetable tis-
sues are liable to degrade upon interaction with light, oxygen, or
exposure to enzymes, such as polyphenol oxidase, ascorbate ox-
idase, cytochrome oxidase, and peroxidase, after wounding (Gil,
Aguayo, & Kader, 2006). One major obstacle in the antioxidant
determination is identifying the assays suitable for a particular ap-
plication, as the antioxidants can induce numerous reactions, such
as hydrogen peroxide or hydroperoxide decompositions, radical-
scavenging, repairing biological damage, and quenching of active
pro-oxidants. In such situations, the choice of the antioxidant as-
say should be based on its predefined function being measured
(Apak, Özyürek, Güçlü, & Çapanoʇlu, 2016; Niki & Noguchi,
2000). The antioxidant assays commonly used include organic
radical-scavenging ability (2,2-azino-bis-3-ethylbenzthiazoline-6-
sulfonic acid, ABTS, and 2,2-diphenyl-1-picrylhydrazyl, DPPH),
electron transfer ability (Folin-Ciocalteu, FC), and metal-
reduction ability (ferric-reducing antioxidant power, FRAP) (Al-
temimi, Lakhssassi, Baharlouei, Watson, & Lightfoot, 2017). Over
the years, there has been confusion on what is being determined in
antioxidant capacity and phenolic contents using the FC method.
This assay determines phenolic contents, which are not a mea-
sure of the antioxidant capacity of the sample, although they are
related. However, this method should be used with caution as
it can be influenced by the presence of other antioxidants and
type of polyphenol (Apak et al., 2016; Prior, Wu, & Schaich,
2005). Therefore, careful selection of one or more antioxidant as-
say can provide a broad interpretation of the antioxidant capacity
of foods, provided that they were selected based on a predefined
objective.

The radical-scavenging potential of functional components
in food altered during NTP processing could be of benefit or
disadvantageous. Such changes are particularly important for
high-value foods with clear functional properties like prebiotic
juices and whole F&V. Table 2 presents a summary of literature
related to the influence of NTP processing on antioxidant capacity
and scavenging potential. The DPPH free radical-scavenging ac-
tivity of high-voltage atmospheric cold plasma-treated grape juice
declined by 10.66% following 4 min of treatment. In the same way,
the antioxidant capacity was found to drop drastically in a similar
time-dependent manner (Pankaj et al., 2017). Likewise, the effects
of NTP and ozone on the antioxidant activity of prebiotic orange
juice have also been investigated. DPPH showed no significant
changes among the treated and untreated samples irrespective
of the mode of exposure. Meanwhile, in the ABTS assay, a
pronounced (50% reduction) in the antioxidant activity with
direct exposure at 60 s was recorded. It was hypothesized that the
ABTS method was more responsive than the DPPH method be-

cause of the reaction that occurred between the ABTS radicals and
the antioxidant compounds in the juice. Unlike the NTP-treated
juice, ozonated juice lost its antioxidant capacity by 18% when
compared with the untreated. Although the dosage, 0.23 mg
O3/mL, was far beyond the necessary dosage needed for pathogen
inactivation (Almeida et al., 2015). The antioxidant activity of
NTP-treated cashew apple juice using DPPH and ABTS was
also reported. In both assays, the common trend was an increased
antioxidant activity after a 5-min treatment at an N2 flow rate
of 10 mL/min. Following an increase in treatment time and N2

flow rate in the FRAP assay, the antioxidant activity was elevated,
while a significant drop in antioxidant activity was observed in the
DPPH assay. Therefore, low N2 plasma exposure at the lesser time
led to an increased antioxidant activity, whereas extended treat-
ment times and higher flow rates led to decline in the antioxidant
activity. The influence on the antioxidant potential might be due
to the higher vitamin C content in the juice (Rodrı́guez, Gomes,
Rodrigues, & Fernandes, 2017). An insignificant reduction in the
antioxidant capacity of apple juice was reported following NTP
exposure, however, a sharp decline was noticed with increasing
the input power to 50 W for 30 s (Liao et al., 2018). During the
exposure of radicchio leaves to NTP, an insignificant reduction
in the antioxidant activity of the radicchio leaves was observed.
The researchers, however, reported difficulty in investigating the
plasma effect due to synergistic interactions of ROS, which might
follow several reaction pathways (Pasquali et al., 2016).

Ramazzina and coresearcher used ABTS, DPPH, and FRAP
assays to observe the effect of DBD plasma on the antioxidant
activity and antioxidant contents of kiwifruit. The result showed
no alteration in all the assays conducted after the NTP treatment.
Generally, plasma-ROS should have caused oxidation of the
phenolic compounds responsible for the antioxidant activity,
however, due to the counteractive effect of the tissue response
mechanisms in the kiwifruit, the ROS-induced oxidation was
impeded (Ramazzina et al., 2015). The NTP treatment of fresh
walnuts was found to have no effect on the antioxidant activity
after 11 min of treatment. The FRAP and DPPH of the fresh
walnuts were 233-240 and 226-240 μmmol TAE/g, respectively
(Amini & Ghoranneviss, 2016). A similar assertion was made
for lettuce, in which antioxidant activity was insignificantly
altered after exposure to NTP, regardless of assay type, power,
treatment time, and type of gas used (Song et al., 2015). Another
insignificant effect on the antioxidant capacity was observed
in microwave-powered cold plasma-treated radish sprouts after
10 min of exposure at 900 W (Oh, Song, & Min, 2017). Equally,
the scavenging activity of plasma-treated mandarin flesh was not
altered after exposure; however, that of the peel was significantly
increased following the DPPH assay (Yeon et al., 2017). Similarly,
the DPPH-scavenging activity of plasma-treated onion powder
was increased from 80.71% to 84.94% after treatment at 400 W for
40 min (Kim et al., 2017). An alternative approach for delivering
plasma-generated RS to the target is the use of PAW, which
had recently been demonstrated to have significant antimicrobial
activity (Figure 4). However, there are sparse data on the effects of
PAW on the nutritional and functional properties of food products.
One study reports the antioxidant capacity of button mushroom
was extended with increases in PAW processing time. Among the
processing times, the PAW-15 min treatment resulted in the high-
est antioxidant activity (47.25%) (Xu, Tian, Ma, Liu, & Zhang,
2016). Overall, most of the studies have restricted their research
to either reporting an increase or decrease in the antioxidant po-
tential of NTP-treated food. Further work is needed to clarify the
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Figure 4–PAW generated from plasma exposure was used to immerse fruits for microbial inactivation.

reaction chemistry between plasma RS and antioxidants in food
products.

Influence of NTP on Vitamins
The importance of F&V as sources of different kinds of antiox-

idants has been discussed; however, there are also natural sources
of vitamins such as biotin, riboflavin (B2), and pyridoxine (B6)
(Altemimi et al., 2017; Pankaj, Wan, & Keener, 2018). These vi-
tamins are usually stable. Others such as lycopene, carotenoids,
vitamin A, C, and E, and thiamin (B1) are liable to change during
processing (Pankaj et al., 2018). Various researchers have reported
NTP-induced effects on the concentrations and scavenging po-
tential of vitamin C (Vc) (Aguiló-Aguayo et al., 2013; Bevilacqua
et al., 2017; Bravo et al., 2012; Pankaj et al., 2018; Rodrı́guez
et al., 2017). This might be connected to its antioxidant potential
for the regulation of ROS and RNS via quenching their induced
damage to the surrounding tissues and cells (Amatore, Arbault,
Ferreira, Tapsoba, & Verchier, 2008; Moldau, 1998).

Numerous articles report a positive effect of NTP processing
on vitamins (Table 3). For instance, the Vc content of cashew
juice was increased by 10.4% and 10.8% after 5 and 10 min NTP
treatment, respectively. Upon increasing the N2 flow rate and
treatment time, the Vc content declined (Rodrı́guez et al., 2017).
Similarly, the ascorbic acid content in NTP-treated prebiotic or-
ange juice was increased from 35.1 ± 0.35 mg/100 mL to 41.11
± 0.33 (direct exposure) and 49.21 ± 0.88 mg/100 mL (indi-
rect exposure) after 60 s of treatment (Diva et al., 2017). The
increment was attributed to various mechanisms, such as cell dis-
tortion, dissociation of smaller-sized particles, or due to chemical
reactions induced by the action of ROS. The same group reported
a similar increment in the same juice treated with high-pressure
processing at 450 MPa for 5 min. Meanwhile, the ascorbic acid
content of blueberries (8.91 mg/100 g) increased drastically to
14.01 mg/100 g following 1 min of NTP treatment at 80 kV. On
extending the treatment time to 5 min, the ascorbic acid con-
tent declined (Sarangapani et al., 2017). The treatment of button
mushroom with PAW increased the concentration of Vc. How-
ever, the researchers did not give further details, only linking the
increment to a postharvest storage of 7 days (Xu et al., 2016).

Yeon and co-researchers reported a distinct result after a whole
mandarin was subjected to microwave cold plasma treatment. The
ascorbic acid concentration in the flesh recorded an insignificant

change, which ranged between 0.5 and 0.6 mg/mL. Although
this was linked to the level of energy applied, the presence of the
thick mandarin peel might have shielded the target from the gen-
erated ROS (Yeon et al., 2017). Using similar plasma equipment,
no reductions in the concentration of ascorbic acid was noticed
after 10 min 900 W NTP treatment. Additionally, no accelerated
degradation was observed during its storage at 4 °C and 10 °C
(Oh et al., 2017). Irrespective of the NTP processing parameters
(power, time, plasma gas), NTP-treated lettuce showed no sig-
nificant effects on the concentration of ascorbic acid even after
12 days of storage (Song et al., 2015).

In contrast to the above results, a loss of 3.6%, 3.2%, and 2.8% for
cucumber, carrot, and pear slices was recorded, respectively, after
NTP treatment (Wang et al., 2012). Another loss of Vc concentra-
tion was found for high-voltage atmospheric cold plasma-treated
orange juice. The loss of concentration was a function of treatment
time (Xu, Garner, Tao, & Keener, 2017).

Looking at the aforementioned findings, it is evident that NTP
had more positive than negative impacts on Vc. The critical factors
found for ascorbic acid degradation are the food matrix, process
gas, higher input power, and extended exposure times. Further
studies on the influence of NTP on other vitamins is recom-
mended.

Effect of NTP Species and Their Toxicity
ROS and RNS in NTP are the most important species gener-

ated for food applications. However, it is poorly understood which
species could adversely cause health-related effects upon interac-
tion with food matrices. Liao et al. (2018) reported increased
concentrations of O3, H2O2, and nitrate with treatment time and
power. The accumulation of nitrates and nitrites is a concern due
to induced changes in cell viability (Tresp, Hammer, Weltmann,
& Reuter, 2013). Furthermore, ROS and RNS detected in PAW
treated with helium gas plasma have resulted in significant effects
on the rate of apoptosis (Chen, Lin, Cheng, Gjika, & Keidar,
2016), while H2O2 and O2

− produced have led to generation
of OH• in cells via the Haber-Weiss reaction, which resulted in
apoptosis and cell death (Xu et al., 2015).

Similarly, plasma RS has induced chemical changes in food con-
stituents, such as the modification of amino acid in proteins, ox-
idation of higher-molecular-weight compounds to organic acids,
and lipids peroxidation, which could result in toxic metabolites
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like short-chain aldehydes (Muhammad et al., 2018). The only
toxicity plasma research on edible film coatings conducted on rats
reported very low toxicity in the edible films, which suggested
that the plasma-treated films had no harmful byproducts (Han,
Suh, Hong, Kim, & Min, 2016).

Apart from the aforementioned, the potential rise in concen-
trations of nitrogen compounds in other food products, such as
apple juice, needs in-depth analysis from researchers. Their con-
centration may exceed WHO standards such as 50 mg/L nitrate
and 3 mg/L nitrite for drinking water, or the acceptable daily in-
take (ADI) of 222 mg/day for a 60-kg adult (FAO/WHO, 2012).
Therefore, more scientific approaches using both animals and hu-
man subjects are required to elucidate on the interactions with
plasma RS.

Disadvantages and Limitations of NTPT
In spite of the immense contribution of NTP in various studies,

its intricate RS chemistry is challenging in terms of regulatory
approval and process validation. The abundant RS generated is
already a complicated phenomenon, and their interactions with
food materials become even more complex to understand because
of the multicomponent nature of the food (starches, proteins,
lipids, minerals, vitamins, and water). The reaction chemistry
could be better predicted when these food components are
studied in isolation (Muhammad et al., 2018). Moreover, the
difficulty in the precise control of plasma reaction chemistry is
worth mentioning due to the diverse moisture contents of foods
(Coutinho et al., 2018). NTP treatment has caused increased lipid
oxidation in high-fat foods such as walnut, peanuts, and milk,
cheese, and oil after extended processing times. This was due to
the oxidizing effect of radicals such as OH• which might have
oxidized the molecules of the lipids. Other detrimental effects
were declined pH, fruit firmness, and color, whereas increased
acidity and formation of off-flavors were equally mentioned
(Coutinho et al., 2018; Kim et al., 2015; Muhammad et al., 2018;
Thirumdas et al., 2014). These are major concerns that need an
exhaustive sensory evaluation for novel food processes.

Many studies have employed a variety of gases, such as argon,
helium, or their combination with oxygen, as plasma process gas
(Khani, Shokri, & Khajeh, 2017; Kim et al., 2011; Rød, Hansen,
Leipold, & Knøchel, 2012). Irrespective of the gases used, both
ROS and RNS will still be generated, even when the process gases
do not contain either of O2 or N2 (Brandenburg et al., 2007). Eco-
nomic analyses are also scarce; however, the technology could be
affordable when atmospheric air is used as process gas instead of
the expensive noble gases. Cullen et al. (2017) highlighted the
likely approach to choose a cheaper alternative (air) for industrial
scale-up looking at the large-scale volume encountered in food
processing. The researchers stated that the limiting factor would
be the dielectric strength of air (3 × 106 V/m ), which requires
high voltages to break down at atmospheric conditions (Cullen
et al., 2017). Apart from the cost of the equipment design, all re-
current costs, including power and inducer gas, will probably help
in estimating the operational cost. The rise in wattage consumed
from lthe aboratory to industrial scale will be in accordance with
size and capacity of the plasma equipment, ranging from watts
to several thousand kilowatts. This should be compared to exist-
ing conventional and nonthermal technologies at the industrial
level. For plasma systems, Niemira (2012) estimated the cost of
power consumption in kWh as $0.05. This implied that for every
1000 h of operation, $4500 will be the approximate electricity
cost.

Conclusion and Recommendation
Despite NTPT being at a nascent stage, it is rapidly gaining in-

terest from researchers and industry alike. There have been numer-
ous research studies focused on microbial inactivation, while less
attention has been given to the effects on food components. This
review highlights the complexity of plasma RS interactions with
various bioactive compounds, antioxidants, and vitamins. More-
over, this article has explained the plasma chemistry as a driver of
NTP enhancement of bioactive compounds and their antioxidant
potentials. Other applications include improvements in polyphe-
nol extraction and reductions in the required extraction times.
Reaction chemistry is critical in NTP modification of functional
food components, which are influenced by process conditions such
as voltage, process gas, and treatment time. Oxidative degradation
and double bond cleavage of polyphenols induced by ROS, such
as OH•, O3, and O2

−, are the likely mechanisms that lead to the
formation of compounds with carbonyl and carboxylic groups.
There is a need for further elucidation of the interaction with
polyphenols and vitamins, especially vitamins that have quench-
ing effects against ROS and RNS-induced changes. Furthermore,
a potential NTP interaction with AMPs for possible enhancement
could be an interesting research topic that needs attention.

In addition, the establishment of safe NTP dosages (concen-
trations, treatment times, input power) at which toxic effects can
occur on target food matrices is important. This might be dif-
ficult due to different plasma equipment configurations and the
diverse moisture levels of food products. However, this can be
achieved through process validation, optimization, and control to
reduce the negative impacts on high-value food products such as
(F&V), milk, meat, spices, and beverages. More in vivo studies to
ascertain the toxicity of plasma-treated food materials are highly
recommended as their safety is essential for regulatory approval for
industrialization of the NTP technology.

Nomenclature
ABTS 2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid
ACP Atmospheric cold plasma
AMPs Antimicrobial peptides
Ar Argon
DBD Dielectric barrier discharge plasma
DPPH 2,2-diphenyl-1-picrylhydrazyl
FC Folin−Ciocalteu
FDA Food and Drugs Administration
F&V Fruits and vegetables
FRAP ferric-reducing antioxidant power
He Helium
N Atomic nitrogen
N2 Excited nitrogen
Ne Neon
NO• Nitric oxide
NTP Nonthermal plasma
NTPT Nonthermal plasma technology
O Atomic oxygen species
O2

- Superoxide anion
O2 Molecular oxygen
1O2 Singlet oxygen
OH• Hydroxyl radical
O3 Ozone
PAW Plasma activated water
RF Radio frequency
RNS Reactive nitrogen species
RS Plasma reactive species
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ROS Reactive oxygen species
TAC Total anthocyanins
TPC Total phenolic content
TFC Total flavonoid content
UV-C Ultraviolet irradiation
Vc Vitamin C
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