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the component of the resultant dipole moment along the long
molecular axis is of larger magnitude than normal to it, A¢ is positive
and vice versa. For this particular case, the transverse dipole
moment component is much larger than the longitudinal one, hence
Acg is negative and significantly large in magnitude.

Depending on the sign of A¢ and on the cell’s configuration (pla-
nar or homeotropic), molecular director can be realigned by the
applied electric field. The reorientation of the molecular director
via Freedericksz transition produces a desired change in the optical
properties of LC cell, underlying principle of a switching of the
pixel in a display. The dc electric field is applied across a
homeotropically aligned cell in the Ny, as a result of A¢ being neg-
ative, constituent molecules of the compound tilt away from the
vertical direction. Textures of homeotropically aligned cell of
cell-spacing 4 pm are recorded as the sample cell is cooled slowly
from the Iso to mesophases. As the electric field across the cell is
increased, molecules tilt and become planarly aligned except closer
to the surfaces. The field induced planar textures using POM in the
N (Schliern texture at 178 °C, 22 Vg_peak square wave at f = 1.4 kHz)
and Ny at (165.7 °C, 76 Vo_peak, Sine wave at f =20 kHz) phases are
shown in Fig. 10 (Insets in Fig. 10a and 10b correspond to textures
in the absence of external field). The focal conic domains in the Ntp
for T = 165.7 °C (Fig. 10b) are observed close to the N-Ntg phase
transition temperature.

The measured real and the imaginary parts of the complex per-
mittivity at different temperatures for N and Ng phases of BCI are
plotted in Fig. 11. The dielectric spectra reveal two fluctuation
modes in the frequency range 1 Hz — 10 MHz. The dielectric relax-
ation strengths (d¢) and the relaxation frequencies (f; and fs) of the
two modes of the BCI are obtained by fitting the dielectric spectra
to Havriliak - Negami empirical equation [33]:

(W) =¢ —ig =+ L{——lﬁ——w—fﬂ (4)

[1 + (iwrj)“i] @

£ is the high frequency permittivity; j = 1 and 2 are the two
relaxation processes observed in the experimental frequency win-
dow, & is permittivity of the free space, 7; is the relaxation time. ¢;
and f; are the symmetric and the asymmetric broadening parame-
ters of the j" process. The symmetric distribution parameter %=1,
5 < 1 is the broadening parameter of the relaxation spectra and a
measure of the depression in the Cole-Cole arch. o = 0 corresponds
to the simple Debye process. g4/€o® is the contribution of dc con-
ductivity to the imaginary part of the permittivity. The relaxation
frequency, f;, of the j*" process are related to their 7; by the equation
given in [34].

Frequency dependence of the real and imaginary parts of the
complex permittivity for temperatures in N and Nt phases are fit-
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Fig. 11. Permittivity ¢ and dielectric loss ¢” of a planar-aligned cell plotted as a
function of frequency in (a) N and (b) Ny phases.

ted to equation (4). Amplitudes and frequencies of the two pro-
cesses are calculated. The BCI exhibits two relaxation processes
in N and Nrg nematic phases. Temperature dependencies of (a)
3¢, for the high (m;) and (b) &, for the low (m,) frequencies cor-
responding to relaxation frequencies f; and f;, are plotted in
Fig. 12a and 12b, respectively. The dielectric strength 3¢, for m;

165.7°C

Fig. 10. Microphotographs of 4 um homeotropic aligned cell with electric field applied across the cell cooled slowly under crossed polarizers: (a) 22 Vo-pk, SqQuare wave,
f=1.4 kHz in the N phase at 178 °C and (b) 76 Vo_py, sine wave, f = 20 kHz. T = 165.7 °C, only 0.3 °C below the N-Nrz transition temperature of 166 °C . The Inset in Fig. 10a
shows perfect homeotropic alignment in the N phase prior to the external field having been applied and inset in Fig. 10b shows fine networks of focal conic defects in Nyp

phase recorded by a higher sensitivity camera.
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Fig. 12. (a) Plots of the dielectric relaxation strengths, 3¢ and 3¢s, and the (b) relaxation frequencies f; and f; as functions of temperature for the high (m1) and low frequency

modes (m2).

increases at the N-Nrg transition temperature, it increases further
in the N1p before falling off at Ny to Col phase transition temper-
ature. The relaxation frequency, f;, of m; increases at the N-Np
transition, plateaus within N1 and it then suddenly drops at the
Nrg to Col transition temperature. The high frequency mode m;
is assigned to the tilt fluctuations (f;) of the tilt director without
unduly affecting the periodic helical structure of the Ntg by a weak
probe field.

The high frequency mode behaves anomalously and its fre-
quency softens at the N-Ntg transition temperature. This is remi-
niscent of the presence of soft mode at SmA* and SmC* transition
temperature in a ferroelectric liquid crystal. On a reduction in tem-
perature the frequency, f;, drops down to lower frequencies in the
columnar phase. A continual freezing of the structure with a reduc-
tion in temperature is reflected here.

A magnified plot of the director tilt fluctuation frequency, f;, vs.
temperature in N and Ntg phases is shown in Fig. 13. Here the sub-
script t refers to the tilt. The plot has striking similarities to those
arising from the results of director fluctuations observed in
dynamic light scattering experiments of an LC mixture of the dimer
with its monomer [35]. Equation for a change in the frequency of
the tilt director with temperature is given as follows:
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Fig. 13. Temperature dependence of the relaxation frequency of the tilt fluctuation
mode (f;). The red line is the line of fitting to eqn. (6). K,sin’0 values are deduced
from the fit close to the transition temperature.

K; is the elastic constant for the molecular tilt director, y is the
viscosity at the N-Nrp transition temperature, and 7, is the relax-
ation time of the tilt fluctuations. Results for the tilt mode were
obtained independently using a different procedure and agree with
those calculated for the viscosity ¥ = 0.9 Paes found for a temper-
ature of 438 K [26]. The low frequency mode is assigned to the
hydrodynamic mode q = g,z with the z-dependent rotation of
the heloconical director n(r) and a consequent displacement of
the pseudolayers (leading to compression and dilation of the
pseudo-layers). This mode persists in the N-phase close to the N-
Npg transition temperature, as expected. The wave vector
q = 2m/p, where the pitch in the absence of the external field in
Nrg phase, p = p,, is ~ 14 nm [18]. y/¢? is aproximately a constant,
independent of temperature, as due to similar dependencies of g>
and y on temperature in numerator and denominator, changes
are cancelled out with each other. Hence f; is related to the helicon-
ical tilt angle .

The data for f; are fitted to eqn. (6) and K .sin’0 deduced from the
fit close to the transition temperature are plotted in Fig. 13. Red
line is the line of fitting of Eqn (6). If the elastic constant for the
molecular tilt K; is assumed constant close to the N-Ng transition
temperature, we find from calculations of 6 that the helicoid is
spontaneously formed in the N phase close to the transition tem-
perature. The heliconical angle, 0, jumps, at the N- Nyg transition
followed by a rapid increase in its value with a reduction in tem-
perature, in Ng, as shown in Fig. 14.
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Fig. 14. Variation of the heliconical tilt angle 6 as a function of temperature in the N
and Ny phases.
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The low frequency mode is assigned to the hydrodynamic mode
q = g,z with the z-dependent rotation of the heloconical director
n(r), leading to z-dependent displacement of pseudolayers (com-
pression and dilation). This fluctuating mode resembles the sym-
metry breaking Goldstone mode in ferroelectric liquid crystals.
The relaxation time in the low frequency limit is written as [35]:

1 B.q?
- = 2775fs = 2,))

Ts

B. is the effective elasticity for the compression of a pseudo
layer structure in the Npg. Value of ¢° is found using Eqn. (7). It is
assumed that B, and y are independent of the electric field. For
B. = 10 pN, q is calculated from p, using p = 27/q, the pitch lies
in the wavelength range 400 to 800 nm. The three-photon excita-
tion fluorescence polarizing optical microscopy experiment per-
formed in CBC11CB, shown in Fig. 1a, has given q in the sub
micrometer range [13]. These observations are confirmed from
SEM imaging of the polymerized Nip structure of a mixture of
CBC7CB and 5CB [21]. Since this lower frequency mode is found
to be of significantly larger dielectric strength, the polar order in
Nrg is also very large. The bent core mesogen of BCI, though similar
in characteristics to the bimesogens (dimers) with odd numbered
spacers such as CBC7CB, yet it has different conformational ener-
gies. The mesogens are frozen in the columnar structure in two-
dimensional ordering as temperature is reduced.

(7)

4. Conclusions

From extensive experimental studies carried out on the hockey
shaped bent-core liquid crystal, several results are obtained for LC
cells in confined conditions of alignment. Using the pyroelectric
effect, polarization arising from the flexoelectric effect for a par-
tially unwound helix (as a result of the electric field of 2.2 V/um
applied across a planar aligned cell) in Ny is found 5 nC/cm?. Such
a cell shows large outputs for the first and the second harmonics of
the input signal in Ng and N phases, respectively. Result confirm
the polar and the chiral characteristic feature of the Nrg. From
results of the dielectric measurements of the sample in planar
and homeotropic aligned cells, A¢ under confined geometrical con-
ditions is calculated at a frequency of 1 kHz for different tempera-
tures. A¢ values are found negative and much larger in magnitude
than for compounds studied before. In general a larger A¢ enables
an induction of the new field-induced nematic phase/phases for
relatively lower electric field strengths. Birefringence measured
at a visible wavelength shows a marked reduction in An in N
and Ntg phases relative to those extrapolated from higher to lower
temperatures. A reduction in An seems to arise from a spontaneous
formation of heliconical structure in the N phase close to the N-Ntp
transition temperature, where helicity continues to persist in the
Ntg phase. The order parameter, S, shows apparent discontinuity
at the I - N and N - N transition temperatures. Dielectric mea-
surements in the frequency range 1 Hz to 10 MHz show two collec-
tive modes. The higher frequency mode is assigned to the tilt
fluctuations of the heliconical angle in the N and Nt phases with
strong temperature dependencies of the frequencies recorded. This
shows softening of the relevant frequency at the N to Nyp transition
similar to that observed for SmA-SmC* transition temperature.
However the lower frequency mode is significantly larger in
strength and is assigned to the compression and dilation of the
periodic pseudo-layer structure of the phase. On cooling the sam-
ple from the Iso state, the heliconical angle increases with a reduc-
tion in temperature, it jumps at the N-Np transition temperature
and continues to increase with a further reduction in temperature.
Temperature dependence of the heliconical angle accords with the
Landau model [36]. It has been argued that the structure of the Nt
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phase is a result of efficiency of the molecular packing arising from
shape entropy of the constituent molecules [37]. Recently a set of
molecules (CB60.m, m < 10, m is the number of methylene units
in the spacer), similar in structure to the trimer already discussed
[7], have exhibited Ntg over a restricted range of temperatures
[38].
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