
Technological University Dublin Technological University Dublin

ARROW@TU Dublin ARROW@TU Dublin

Conference papers School of Electrical and Electronic Engineering

2020

Digital Image Exchange using a No-key(s) Protocol with Phase-Digital Image Exchange using a No-key(s) Protocol with Phase-

only Encryption, only Encryption,

Jonathan Blackledge
Technological University Dublin, jonathan.blackledge@tudublin.ie

N. Mosola
University of KwaZulu-Natal

Follow this and additional works at: https://arrow.tudublin.ie/engscheleart

 Part of the Electrical and Computer Engineering Commons

Recommended Citation Recommended Citation
J M Blackledge & N Mosola (2020) Digital Image Exchange using a No-key(s) Protocol with Phase-only
Encryption, ISSC2020, IEEE UK and Ireland Signal Processing Chapter and IEEE Computational
Intelligence Society (UK & Ireland), Letterkenny Institute of Technology, 11-12, June 2020.

This Conference Paper is brought to you for free and
open access by the School of Electrical and Electronic
Engineering at ARROW@TU Dublin. It has been accepted
for inclusion in Conference papers by an authorized
administrator of ARROW@TU Dublin. For more
information, please contact arrow.admin@tudublin.ie,
aisling.coyne@tudublin.ie.

This work is licensed under a Creative Commons
Attribution-Noncommercial-Share Alike 4.0 License

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/engscheleart
https://arrow.tudublin.ie/engschele
https://arrow.tudublin.ie/engscheleart?utm_source=arrow.tudublin.ie%2Fengscheleart%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=arrow.tudublin.ie%2Fengscheleart%2F312&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Digital Image Exchange using a No-key(s)
Protocol with Phase-only Encryption

J. M. Blackledge
School of Electrical and Electronic Engineering,

Technological University Dublin;
Department of Computer Science,

University of Western Cape.
jonathan.blackledge@tudublin.ie

N. Mosola
School of Mathematics, Statistics and Computer Science,

University of KwaZulu-Natal;
Department of Computer Science,
National University of Lesotho.

nn.mosola@nul.ls

Abstract—This paper considers an algorithm for transferring
a digital image over an open network using a No-key(s) Protocol
or Three-Way Pass and phase-only encryption/decryption. After
providing a short study on the theoretical background to the
method, an algorithm is presented on a step-by-step basis.
Cryptanalysis is undertaken for the three intercept and single
intercept cases, when it is assumed that the encrypted data is
intercepted in its entirety for each pass or for any single pass,
respectively. The algorithm focuses on the exchange of a JPEG
image although in principle, the approach is independent of
the format of the image file that is used. Prototype MATLAB
functions are provided for the validation of the approach and
for further development by interested readers.

Index Terms—Stochastic Phase Functions, Phase-only Encryp-
tion, Digital Image Exchange, No-key(s) Protocol, Cryptanalysis.

I. INTRODUCTION

In [1], a method of exchanging a plaintext over an open
network was investigated which was predicated on using
phase-only encryption to implement a three-pass protocol.
In this paper, we consider an extension to this method for
exchanging full colour digital images, specifically, and, by
way of a commonly used example, JPEG images. The purpose
of this is two-fold: (i) to provide an algorithm of exchang-
ing a (full colour) covertext image prior to applications in
the method of ‘information hiding with data diffusion using
convolutional encoding for super-encryption’ considered in
[2]; (ii) To substantially increase the computational efficiency
associated with an application of the algorithm considered in
[1] for gray-level or colour images.

After introducing the theoretical background to the problem,
we develop a phase-only encryption/decryption algorithm that
is used to implement a three-pass protocol. A prototype
MATLAB function is provided in the Appendix upon which
the results given are based, using tagged image files to pass the
encrypted images. The purpose of this is to retain the image
data in floating-point form, the accuracy of which (in terms of
the number of bits used to represent a floating point number)
is fundamental to the numerical performance and successful
operation of the algorithm. This is because data integrity is

lost during conversion from a floating point array to a bitmap
irrespective of the image format that is used.

We consider a method of decrypting the encrypted data by
a third party when access to all three passes is available with
full data integrity. It is shown that an attack can be prevented
by forcing the power spectrum of the cipher for the second
pass to become singular. A further approach to breaking a
cipheretext is considered using the potential associated with
the application of phase-retrieval algorithms. However, it is
concluded that unless the image is sparse and without prior
information on the plaintext (which unlike repetitive letters,
words and phases that occur in text, is not available in an
image), this form of cryptanalysis is redundant. Thus, the
algorithm presented in this paper provides an accurate and
numerically efficient way of exchanging digital images over
an open network that does not require the sharing of a key
and is computationally difficult an attack.

II. CONVOLUTIONAL ENCRYPTION USING PHASE-ONLY
FUNCTIONS

For an image function f(r), r ∈ R2 (the image plaintext)
and stochastic function or cipher n(r) say, convolutional
encryption (or coding) is based on computing the image
ciphertext c(r) given by

c(r) = n(r)⊗ f(r) ≡
∞∫
−∞

n(r− s)f(s)d2s (1)

where ⊗ denotes the (two-dimensional) convolution integral.
Given Equation (1), it is clear that in order to decrypt c(r)
and recover the plaintext f(r), it is necessary to deconvolve
c(r) given the cipher n(r). Application of a phase-only cipher
provides an exact and unique solution to this problem. This is
compounded in the following theorem.

Theorem 2.1: If n(r) has a phase-only spectrum, then the
deconvolution problem associated with Equation (1) is well-
posed, i.e. f(r) can be recovered from c(r) exactly and
uniquely.

Proof 2.1: Let Θ(k) be the phase function of a unit
amplitude phase-only spectrum such that

exp[iΘ(k)] = N(k)↔ n(x)978-1-7281-9418-9/20/$31.00 © 2020 IEEE

where ↔ denotes transformation to Fourier or k-space. Ap-
plying the convolution theorem to Equation (1), we can write

C(k) = exp[iΘ(k)]F (k)

where C(k) ↔ c(r) and F (k) ↔ f(r) and it is then clear
that

exp[−iΘ(k)]C(k) = F (k)

Hence, using the correlation theorem, the plaintext is given by

f(r) = n∗(r)� c(r) ≡
∞∫
−∞

n∗(r + s)c(s)d2s

where � denotes the correlation integral
Remark 2.1: The result compounded in Theorem 2.1 is of

no intrinsic value to the deconvolution problem in general
which occurs in the applications of digital image processing,
for example. This is because it can rarely, if ever, be assumed
that the Point Spread Function is characterised by a phase-
only spectrum. Further, natural noise can not, in general, be
assumed to be characterised by phase-only functions. Thus,
it should be understood that Theorem 2.1 is strictly only
applicable to the convolution model given in Equation (1)
when n(r) has a phase-only spectrum and thereby, has no
applicability to digital image processing in general. However,
as explored in this paper, Theorem 2.1 does have applications
in the area of cryptography. This is because the plaintext
f(r) can be recovered exactly and uniquely from the diffused
plaintext n(r) ⊗ f(r) provided the cipher n(r) is known
precisely.

III. ENCRYPTION USING PHASE-ONLY STOCHASTIC
FUNCTIONS

Consider the encryption model given by Equation (1) where

n(r)↔ exp[iΘ(k)], Θ(k) ∈ [−π, π]

The function n(r) is taken to be a cipher generated by
some key dependent algorithm characterised by a phase-only
spectrum with a random phase function Θ(k). For a plaintext
function f(r) that is real, the ciphertext is taken to be given
by Re[c(r)]. In Fourier space, Equation (1) is

C(k) = F (k) exp[iΘ(k)] (2)

Let the stochastic phase function Θ(k) be conditioned to
have a uniform distribution and wrapped between −π and π
radians. The phase function Θ(k) ∈ [−π, π] ∀k is constructed
by taking the Fourier transform of a random (uniformly
distributed) variable s(r) ∈ [0, 1], say, i.e.

Θ(k) = atan2[S(k)], S(k)↔ s(r) (3)

where atan2 is taken to yield the 4-quadrant phase values in
the range [−π, π] by computing one unique arc tangent value
in which the signs of both arguments are used to determine the
quadrant of the result, thereby selecting the desired branch of
the arc tangent. Since s(r) is real and has no symmetry, S(k)
has a symmetric real component and an asymmetric imaginary
component. The 4-quadrant phase function is therefore an
asymmetric function, i.e. Θ(k) = −Θ(−k).

IV. THE THREE-PASS PROTOCOL

The principle of the Three-pass Protocol is well known as
are the algorithms that have been developed for its implemen-
tation. These include the Shamir three-pass protocol [5] and
the Massey-Omura method [6]. The principle associated with
the protocol is as follows: Alice encrypts her plaintext with
a known algorithm and private key KA, say, and sends the
ciphertext to Bob. Upon receipt of the ciphertext, Bob cannot
decrypt the ciphertext because he does not know KA. Instead
Bob encrypts the ciphertext using the same algorithm but a
new private key KB known only to Bob and sends the now
double encrypted plaintext back to Alice. Upon receipt, and
critically, assuming the encryption algorithm is commutative,
Alice can decrypt the doubly encrypted ciphertext with KA

and send the result (a single encrypted ciphertext) back to
Bob who is then able to decrypt the result using KB . By using
this protocol, Alice and Bob do not need to agree upon KA

and KB a priori and thus, no separate key exchange method
is required. Three principal conditions for the application of
this protocol are required: (i) The encryption algorithm used
must be commutative and strong enough so that the ciphertext
cannot be broken using a known algorithm attack based on an
intercept of any pass, particularly the single encrypted first and
third passes; (ii) the keys used must be of a sufficient length
to make an exhaustive attack impracticable on any pass; (iii) if
the encrypted information is intercepted for each of the three
passes, it is not possible to determine the plaintext from the
three intercepts (assumed to be complete intercepts in each
case). It is the third of the conditions above represents the
greatest vulnerability and any encryption system that exploits
this protocol must be based on algorithms that exhibit some
‘computational difficulty’ in this respect. For example, in the
case of the Shamir and Massey-Omura algorithms, the security
relies on the difficulty of computing discrete logarithms in a
finite field [7]. In the following section we consider an appli-
cation of the three-pass protocol using a phase-only encryption
(commutative) algorithm, the cryptanalysis associated with this
algorithm being explored in Section VI.

V. APPLICATION OF PHASE-ONLY ENCRYPTION TO THE
THREE-PASS PROTOCOL

Consider the case when Alice wishes to exchange an
image with Bob which is given by the real two-dimensional
function f(r) ↔ F (k). Alice generates the random phase
cipher Θ1(k) and similarly, Bob generates random phase
cipher Θ2(k). These phase functions are computed through
application of the Fourier transform method compounded
in Equation (3). The algorithm(s) for generating s(r) from
which these phase functions are obtained, are taken to
be cryptographically strong and ideally personal to Alice
and Bob through application of an evolutionary computing
approach [8] including the keys used to seed them. The
following steps are then applied.

Step 1: Alice encrypts F (k) to produce ciphertext C1(k)
using the equation

C1(k) = F (k) exp[iΘ1(k)] (4)

and sends Re[c1(r)] of c1(r)↔ C1(k) to Bob.

Step 2: Upon receiving the ciphertext C1(k) ↔ Re[c1(r)],
Bob encrypts C1(k) using the equation

C2(k) = C1(k) exp[iΘ2(k)] (5)

and sends Re[c2(r)] of c2(r)↔ C2(k) back to Alice.

Step 3: Alice decrypts Bobs ciphertext C2(k) ↔ Re[c2(r)]
using the equation

C3(k) = C2(k) exp[−iΘ1(k)]

= F (k) exp[iΘ1(k)] exp[−iΘ1(k)] exp[iΘ2(k)]

= F (k) exp[iΘ2(k)]

(6)

and sends Re[c3(r)] of c3(r)↔ C3(k) back to Bob.

Step 4: Bob decrypts the ciphertext C3(k)↔ Re[c3(r)] using
the equation

F (k) = C3(k) exp[−iΘ2(k)] (7)

The plaintext is then given by Re[f(r)] where f(r)↔ F (k).
An example for implementing this method for applications in
the exchange of JPEG images is given in Section VII.

VI. CRYPTANALYSIS

We consider two approaches to an attack when all three
ciphers are intercepted (a three-pass intercept) and when any
one cipher is intercepted. In the latter case, we evaluate the
use of phase retrieval algorithms in the absence of a priori
information.

A. Attack based on a Three-pass Interception

Let us assume that an attack is launched to estimate f(r)
based on knowledge of the three-pass protocol given in Section
V and accurate and complete records of the ciphers C1(k),
C2(k) and C3(k) obtained by intercepting the transmission
associated with Steps 1-3 and taking the Fourier transform of
the results.

Given Equations (4) - (7), we can then eliminate the ciphers
Θ1 and Θ2 to obtain the equation

F (k) =
C1(k)C∗2 (k)C3(k)

| C2(k) |2
, | C2(k) |> 0 (8)

However, since | C2(k) |2=| F (k) |2 we can write Equa-
tion (8) as

F (k) | F (k) |2= C(k) where C(k) = C1(k)C∗2 (k)C3(k)

and it is clear that to obtain F (k) we are required to solve
a cubic equation, a solution that is given by (obtained using
[10])

F (k) =
Cr(k)

| C(k) | 23
± i
(
Cr(k)− F 3

r (k)

Fr(k)

) 1
2

(9)

where Cr(k) denotes the real component of the spectrum
C(k). Note that because the imaginary component in this
solution for F (k) can be either positive or negative, the
solution is not unique, leading to ambiguities in this ‘plaintext
solution’. Moreover, both Equations (8) and (9) have the
potential to incur singularities which occur when the amplitude
spectrum | C2(k) | approaches zero. Thus, if we ‘force’ the
spectrum C2(k) to have very low numerical values at the
extreme limit of the floating point accuracy available to Alice
and Bob, then the effect will be to generate an inverse filter
1/ | C2(k) that is singular, thereby eliminating the potential
of an attack based on a three-pass intercept. To exploit this
effect, we introduce an exponential scaling factor α in the
second pass (Step 2) and final decrypt (Step 4) and modify
Equations (5) and (7) to the forms

C2(k) = C1(k) exp[iΘ2(k)− α]

and
F (k) = C3(k) exp[−iΘ2(k) + α]

respectively. The value of α that is applied depends on the
floating point accuracy that is available. In the MATLAB
application presented in Section VII and provided in Appednix
A, we set α = 500 (specifically in the function POX), a
value that causes the numerical evaluation of Equation (8) to
generate singularities, while maintaining a decrypt that is an
identical replica of the plaintext (in a least squares sense),
both the plaintext and decrypt being taken to be MATLAB
generated JPEG images.

B. Attack using Phase-Retrieval Algorithms

Consider the case when anyone of the ciphertexts in Steps
1-3 is intercepted. From this intercept we can then compute
the amplitude spectrum of the plainatext | F (k) |. This yields
a decryption problem that is equivalent to the phase retrieval
problem, i.e. given that f(r) ↔ F (k) =| F (k) | exp[iΘ(k)],
then if and only if | F (k) | is known, we are required to
estimate the phase function Θ(k) upon which f(r) can be
obtained by Fourier inversion. In general, the phase retrieval
problem is severely ill-posed with no uniformly stable so-
lutions, a result that holds for frames that are continuous.
However, phase estimation algorithms have been developed
to provide approximate solutions in two-dimensions, but the
uniqueness and stability of such algorithms depends on (i)
the sparsity of the image, e.g. f(r) is a binary image; (ii)
the existence of a priori information on the function f(r)
[11]. In regard to the latter case and cryptanalysis, this is
equivalent to having a Crib. Although passive Cribs may exist
in a written plaintext (in terms of expect key letters, words
and phrases, for example), image plaintext’s do not generally

have an equivalence. Hence, as long as the plaintext image is
not a sparse matrix but a full gray level or colour image, the
use of phase-only retrieval algorithms to launch an attack on
a single pass intercept is computationally difficult.

VII. PROTOTYPE MATLAB FUNCTION

Appendix A provides prototype software using MATLAB
R2020a to implement the algorithm given in Section V,
compounded in the primary function NKP, an acronym for
No-Key(s) Protocol. This function relies to three external
functions: function POX encrypts/decrypts the data; function
WTI writes the ciphertext to a file using a tagged image file
format thereby retaining the floating point accuracy associated
with the encryption/decryption process; function IF attempts
to attack the data and recover the plaintext assuming a three-
pass interception. The function NKP has been designed to
transfer a .jpg image between two users (Alice and Bob). It
encrypts/decrypts the colour components of a full 24-bit colour
image separately and has two inputs: (i) The key which is a
string of numbers between 0 and 9; (ii) the step which is
assigned input values 1(first pass), 2 (second pass), 3 (third
pass) and 4 (for the final decrypt). This key is multiplied
by the ASCII decimal integers for the R, G and B (colour
components) given by 82, 71 and 66, respectively and is
undertaken in function POX in order to provide different keys
for the encryption of each colour component, an approach that
can be elaborated upon by interested readers. This requires
that the length of the key input into function NKP must be
a maximum of 7 digits due to the limiting upper bound for
a MATLAB random number generator with a non-negative
integer seed < 232. The key is used by Alice for the first and
third passes. A different key is used by Bob for the second
pass and the final decrypt.

Function NKP has been designed on the basis of reading
and writing specifically named files. The default input file is
‘Image.jpg’ which can be any colour jpg image. The RGB
colour components of this image are extracted, converted
into double precision, the colour image reconstructed and
written to the default file ‘Plaintext.jpg’. The purpose of this
is to ensure that the plaintext is fully compatible with the
decrypt within the processing environment that is used, the
decrypt being output to default file ‘Decrypt.jpg’ by running
function NKP for step=4. For step=1, 2, 3, the ciphertext is
written to (and read from, for step=2 and step=3) default file
‘Ciphertext step.tif’. It is assumed that these .tif files are sent
(by email, for example) from Alice to Bob (step=1), from
Bob back to Alice (step=2) and from Alice back to Bob
(step=3). After receiving the ciphertext file ‘Ciphertext 3.tif’,
Bob undertakes a final decrypt to recover Alice’s plaintext
image ‘Plaintext.jpg’ which is output as a .jpg image to
’Decrypt.jpg’. This step includes a least squares test to evaluate
the fidelity of the decrypt with respect to the plaintext (which
needs to be known and is consequently a scenario that is
not possible in practice) and attempts to recover the plaintext
assuming that each pass has been successfully intercepted.

VIII. DISCUSSION AND CONCLUSIONS

The material presented in this paper is predicated on Theo-
rem 2.1 which casts the deconvolution problem as well-posed
problem and can thereby be solved exactly and uniquely.
The solution then depends on knowledge of the phase-only
cipher, which in turn, depends on knowledge of the key used
to compute the cipher. On the basis of Theorem 2.1, we
have considered a Three-pass Protocol in order to develop
a No-key(s) Protocol algorithm, where Alice and Bob do
not need to share their keys. This comes at the ‘expense’
of passing a different cipherext three times over an open
network. The algorithm has been designed to exchange a
.jpg image but can be extended to include different image
formats as required. Cryptanalysis shows that if the ciphertext
is intercepted for each pass, decryption is an ill-posed problem,
due to the potential singularities associated with the inverse
filter in Equation (8). This characteristic has been exploited
by introducing an exponential scaling factor that ‘forces’ the
inverse filter to become singular (within the floating point
accuracy that is available), thereby increasing the computa-
tional difficulty of an attack. An alternative attack based on
the use of phase retrieval algorithms is also computationally
difficult providing the image is not sparse and that no a priori
information on the image (image Cribbs) is available.

APPENDIX A
PROTOTYPE MATLAB FUNCTIONS FOR THE

IMPLEMENTATION OF A NO-KEY(S) PROTOCOL USING
PHASE-ONLY ENCRYPTION TO EXCHANGE A JPEG IMAGE

The functions given in this Appendix are provided to give
the reader a guide to the basic programming used to implement
the computational procedures discussed in this paper. Both the
code and commentary have been condensed in order to comply
with the format and prescribed page limit for this publication.

function []=NKP(key,step)
%PROCESS: To exchange a full colour jpg
%image using a No-key(s) Protocol (NKP).
%INPUTS: key - an integer string (0-9)
%with a max string length of 7 digits.
%step=1: First pass encryption.
%step=2: Second pass encryption.
%step=3: Third pass decryption.
%step=4: Final decrypt of jpg image.
%EXTERNAL FUNCTIONS:
%POX - Phase-only Encryption/Decryption.
%IF - Attack using Inverse Filter.
%WTI - Tagged image file (tif) output.
if step==1%Apply processing for step 1.
%Read an image I from a jpg file.
I=imread(’Image.jpg’);
%Extract RGB components of the colour
%image and convert RGB arrays to double.
I_R =I(:,:,1);I_G =I(:,:,2);
I_B =I(:,:,3);I_R=im2double(I_R);
I_G=im2double(I_G);I_B=im2double(I_B);

%Reconstruct colour image,
I = cat(3,I_R,I_G,I_B);
%Output new MATLAB generated jpg image
imwrite(I,’Plaintext.jpg’,’jpg’);
%and display the image in figure 1.
figure(1), imshow(I);
%Phase-only encrypt the image,
I=POX(I,key,step);%dispaly in figure 2,
figure(2), subplot(2,2,1),
imshow(I./max(max(I)));
%and output ciphertext to Ciphertext_1.tif.
WTI(I,1); end %Apply second pass.
if step==2 %Read first pass ciphertext,
I=imread(’Ciphertext_1.tif’);
%phase-only encrypt,
I=POX(I,key,2);%display ciphertext
figure(2), subplot(2,2,2),
imshow(I./max(max(I)));
%and output ciphertext to default tif.
WTI(I,2); end%Apply third pass.
if step==3 %Read second pass ciphertext,
I=imread(’Ciphertext_2.tif’);
%phase-only decrypt,
I=POX(I,key,3);%display ciphertext
figure(2), subplot(2,2,3),
imshow(I./max(max(I)));
%and output ciphertext to default tif,
WTI(I,3); end %Apply step 4, i.e.
%decryption of third pass ciphertext.
if step==4 %Read third pass cipher.
I=imread(’Ciphertext_3.tif’);
%Phase-only decrypt,
I=POX(I,key,4);%display in figure 2
figure(2), subplot(2,2,4), imshow(I);
%and output result to Decrypt.jpg.
imwrite(I,’Decrypt.jpg’,’jpg’);
%Compute Least Squares Error between
%Plaintext and Dercypt jpg images.
A=imread(’Plaintext.jpg’);
B=imread(’Decrypt.jpg’);
E=sum(abs(A-B).ˆ2,’all’)
%Apply 3-pass intercept cryptanalysis.
%Read intercepts.
I_1=imread(’Ciphertext_1.tif’);
I_2=imread(’Ciphertext_2.tif’);
I_3=imread(’Ciphertext_3.tif’);
%Extract RGB components associated with
%each intercept & convert to type double.
%First intercept.
IR_1 =I_1(:,:,1);IG_1 =I_1(:,:,2);
IB_1 =I_1(:,:,3);IR_1=im2double(IR_1);
IG_1=im2double(IG_1);IB_1=im2double(IB_1);
%Second intercept.
IR_2 =I_2(:,:,1);IG_2 =I_2(:,:,2);
IB_2 =I_2(:,:,3);IR_2=im2double(IR_2);
IG_2=im2double(IG_2);IB_2=im2double(IB_2);

%Third intercept.
IR_3 =I_3(:,:,1);IG_3 =I_3(:,:,2);
IB_3 =I_3(:,:,3);IR_3=im2double(IR_3);
IG_3=im2double(IG_3);IB_3=im2double(IB_3);
%Recover plaintext using inverse filter.
[J_R,status_R]=IF(IR_1,IR_2,IR_3);
[J_G,status_G]=IF(IG_1,IG_2,IG_3);
[J_B,status_B]=IF(IB_1,IB_2,IB_3);
%Check status of process.
if status_R==0 | status_G==0 | status_B==0
%and print note that attack has failed.
fprintf(’Three-pass intercept Failure\n’);
%otherwise reconstruct colour image
else
I = cat(3,J_R,J_G,J_B);
%and display in figure 3.
figure(3), imshow(I); end; end

function [J]=POX(I,key,step)
%PROCESS:Phase-Only Encrypt/Decrypt.
%INPUTS: Colour Image (I), key & step.
%OUTPUT: Colour Image (J).
%INTERNAL PARAMETER: alpha
alpha=500;%Set value of alpha.
%Extract RGB components, evaluate size
%and convert RGB arrays to type double.
I_R =I(:, :, 1); I_G =I(:, :, 2);
I_B =I(:, :, 3); [N,M]=size(I_R);
I_R=im2double(I_R); I_G=im2double(I_G);
I_B=im2double(I_B);
%Compute uniformly distributed phase
%arrays for each RGB component using
%the input key and function ’rand’
%based on the ’twister’ algorithm.
%Each RGB component key is obtained by
%multiplying the input ’key’ with the
%ASCII decimal integers for R G and B.
key_R=key*82;key_G=key*71;key_B=key*66;
rng(key_R,’twister’);Theta_R=rand(N,M);
rng(key_G,’twister’);Theta_G=rand(N,M);
rng(key_B,’twister’);Theta_B=rand(N,M);
%Compute the two-dimensional discrete
%Fourier transforms of each array using
%function ’fft2’ and the phase angles
%associated with the real and imaginary
%components of spectrum using function
%’angle’ giving random phase-only spectra.
if step==1 | step==2%For step=1 & 2,

sign=1; end %set sign=1 to encrypt.
if step==3 | step==4%For step=3 & 4,

sign=-1; end %set sign=-1 to decrypt.
N_R=exp(sign*i*angle(fft2(Theta_R)));
N_G=exp(sign*i*angle(fft2(Theta_G)));
N_B=exp(sign*i*angle(fft2(Theta_B)));
%Set scaling constant for step=2 and
%re-scale data.

if step==2
c=exp(-alpha);N_R=N_R.*c; N_G=N_G.*c;
N_B=N_B.*c; end
%Set scaling constant for step=4 and
%re-scale data
if step==4
c=exp(alpha); N_R=N_R.*c; N_G=N_G.*c;
N_B=N_B.*c; end
%Encrypt input RGB components using
%phase only ciphers returning reals
I_R=real(ifft2((fft2(I_R).*N_R)));
I_G=real(ifft2((fft2(I_G).*N_G)));
I_B=real(ifft2((fft2(I_B).*N_B)));
%Reconstruct colour image
J = cat(3,I_R,I_G,I_B);

function WTI(I,step);
%PROCESS:To write image I to a tif
%maintaining floating point values.
%The function is based on ’Writing an
%image with floating point values’, from
%Stackoverflow available at %https://
%stackoverflow.com/questions/14003402/
%writing-an-image-with-floating-point
%-values/33353930
%INPUTS: Image array (I) and step
%OUTPUTS: None
%If step=1 (first pass) write I
%to’Ciphertext_1.tif’
if step==1
t = Tiff(’Ciphertext_1.tif’,’w’);end
%If step=2 (second pass) write I
%to ’Ciphertext_2.tif’
if step==2
t = Tiff(’Ciphertext_2.tif’,’w’);end
%If step=3 (third pass) write I
%to ’Ciphertext_1.tif’
if step==3
t = Tiff(’Ciphertext_3.tif’,’w’);end
t.setTag(’Photometric’, ...
Tiff.Photometric.RGB);
t.setTag(’BitsPerSample’, 64);
t.setTag(’SamplesPerPixel’, 3);
tagstruct.RowsPerStrip = 16;
t.setTag(’SampleFormat’,...
Tiff.SampleFormat.IEEEFP);
t.setTag(’ImageLength’,size(I,1));
t.setTag(’ImageWidth’, size(I,2));
t.setTag(’PlanarConfiguration’, ...
Tiff.PlanarConfiguration.Chunky);
tagstruct.Software = ’MATLAB’;
t.setTag(tagstruct);
t.write(I); t.close();

function [f,status] = IF(I_1,I_2,I_3)
%PROCESS:Recover plaintext using
%inverse filter for a three-pass attack.

%INPUT: Intercepts for first (I_1),
%second (I_2) and third (I_3) passes.
%OUTPUT: Plaintext f; If the process
%fails, f=0 and status=0, else status=1.
%Compute spectra of ciphertexts.
C_1=fft2(I_1);C_2=fft2(I_2);
C_3=fft2(I_3);
%Compute spectrum of inverse filter,
%checking that all elements > 0.
D=abs(C_2).ˆ2; Check = all(D(:) > 0);
if Check==1
F=(C_1.*C_3.*conj(C_2))./D;
%Return real component of ifft2 and
%set status to value > 0.
f=real(ifft2(F));status=1; else
%Print note on singularity of filter,
fprintf(’Singular Inverse Filter\n’);
%assign output to 0 and return status=0.
f=0; status=0; end

ACKNOWLEDGMENT

The author J. M. Blackledge would like to acknowledge
the support of the Science Foundation Ireland, Technological
University Dublin, Ireland, University of Western Cape, South
Africa, University of KwaZulu-Natal, South Africa and the
University of Wales (Wrexham Glyndwr), UK.

REFERENCES

[1] J.M Blackledge, P. Tobin, W. Govere, D. Sibanda and C. M. Adolfo,
Phase-only Digital Encryption using a Three-pass Protocol, ISSC2019,
IEEE UK and Ireland Signal Processing Chapter, Maynooth University,
17-18, June 2019.

[2] J. M. Blackledge, P Tobin, J. Myeza and C. M. Adolfo, Information
Hiding with Data Diffusion using Convolutional Encoding for Su-
perencryption, International Journal for Pure and Applied Mathematics
(Mathematica Aeterna), vol. 7, no. 4, pp. 319-356, 2017.

[3] J. M. Blackledge, Cryptography and Steganography: New Algorithms
and Applications, Lecture Notes, Center for Advanced Studies, Warsaw
University of Technology, Warsaw, 2012, ISBN: 978-83-61993-05-
6;https://arrow.dit.ie/engscheleart2/40/

[4] P. C. Mogensen and J. Glückstad, Phase-only Optical Encryption,
Optics Letters, vol. 15, no. 25(8), pp. 566-568, 2000.

[5] A. Menezes, P. Van Oorschot and S. Vanstone, Handbook of Applied
Cryptography, CRC Press, pp. 500-642, 1996; ISBN: 0-8493-8523-7.

[6] J. L. Massey and J. K. Omura Method and Apparatus for Maintain-
ing the Privacy of Digital Messages Conveyed by Public Transmis-
sion, US Patent US4567600A, 1986. https://patents.google.com/patent/
US4567600

[7] K. Sakurai and H. Shizuya, “A Structural Comparison of the Compu-
tational Difficulty of Breaking Discrete Log Cryptosystems“, Journal
of Cryptology, vol. 11, pp. 29-43, 1998.

[8] J. M. Blackledge, S. Bezobrazov, P. Tobin and F. Zamora, “Cryptogra-
phy using Evolutionary Computing”, Proc. IET ISSC2013, Letterkenny,
Co Donegal, Ireland, June 20-21, 2013.

[9] J. M. Blackledge, Digital Signal Processing: Mathematical and Com-
putational Methods, Software Development and Applications, Edition
2, Woodhead Publishing: Series in Electronic and Optical Materials,
2006; eBook ISBN: 9780857099457. https://arrow.dit.ie/engschelebk/4/

[10] Symbolab Algebra Calculator, 2020. https://www.symbolab.com/
solver/algebra-calculator

[11] M. V. Klibanov, On the Recovery of a 2D Function from the Mod-
ulus of its Fourier Transform, Journal of Mathematical Analysis and
Applications, vol. 323, no. 2, 818–843, 2006.

	Digital Image Exchange using a No-key(s) Protocol with Phase-only Encryption,
	Recommended Citation

	tmp.1591109378.pdf.qs24Y

