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Abstract—Metal oxide (MOX) gas detectors based on SnO2

provide low-cost solutions for real-time sensing of complex gas
mixtures for indoor ambient monitoring. With high sensitivity
under ideal conditions, MOX detectors may have poor long-
term response accuracy due to environmental factors (humidity
and temperature) along with sensor aging, leading to calibration
drifts. Finding a simple and efficient solution to correct such
calibration drifts has been the subject of numerous studies but
remains an open problem.

In this work, we present an efficient approach to MOX
calibration using active and transfer sampling techniques coupled
with non-linear machine learning algorithms, namely neural
networks, extreme gradient boosting (XGBoost) and radial kernel
support vector machines (SVM). Applied on the UCI’s HT
detectors dataset, the study evaluates methods for active sampling,
makes an assessment of suitable neural networks architectures
and compares the performance of neural networks, XGBoost and
radial kernel SVM to classify gas mixtures (banana and wine
odours, clean air) in the presence of humidity and temperature
changes. The results show high classification accuracy levels
(above 90%) and confirm that active sampling can provide a
suitable solution.

Index Terms—Neural Networks, Extreme Gradient Boosting,
XGBoost, Support Vector Machines, Non-Linear Learning Meth-
ods, Machine Learning

I. INTRODUCTION

In-situ real-time gas monitoring has been increasing in pop-

ularity, as affordable metal oxide (MOX) gas sensors enable

applications aimed at gas detection for personal/wearable use,

automated mobile inspection of a site, home surveillance, and

public and industrial sites monitoring. Built as light detector

arrays or as Electronic Nose (EN) systems, such devices

bypass the need for a physical interface using wi-fi connections

through mobile phone or dedicated computer applications.

Nevertheless, MOX sensors deliver real-time, dynamic, mul-

tivariate signals which require complex analysis to derive

accurate readings for real-word applications. MOX signals

are typically convoluted and unclean through different factors

such as sensitivity changes due to humidity and temperature,

baseline signal instability and sensor aging, all leading to

sensor calibration drifts.

While electronics and material sciences continue to improve

the response quality by improving device-physics and techni-

cal output [1], analysing sensor responses to distinguish among

various gas components is a challenging task where advanced

data analytics techniques have to be deployed.

Initial approaches to improve calibration stability used ex-

tensive feature engineering and model learning of complex

multivariate time-series, which lead to models unstable over

time as calibration patterns no-longer match. This research

evolved into advanced bio-inspired odour sensing algorithms

but also towards techniques for dimensionality reduction,

simplified input features and active sampling. As discussed in

Section II, the latter approaches show numerous advantages in

computational costs and classification performance.

Inline with these recent approaches, this paper explores the

use of simple features and reduced dimensionality together

with deep learning techniques to improve odour classification

using time-dependent MOX sensors in the presence of humid-

ity and temperature changes.

II. RELATED WORK

Finding solutions to monitoring air quality in human habi-

tats [2] is crucial in closed environments where air is recycled

such as in modern energy-saving homes, industrial sites, air-

craft, or greenhouse farms, as well as inside space travel cabins

or the International Space Station. Gas monitoring allows

prevention and early warning of dangerous gas accumulation

in homes and can also serve to monitor home activities [3].

The development of electronic sensor arrays in the mid

1990s based on Conducting Polymers [4] or Metal-Oxide Sen-

sors [5] has opened the area of electronic nose (EN) devices

with advantages in low-cost, availability and connectivity.

EN devices incorporate classes of sensors designed for the

detection of one specific pollutant gas (such as: CO, CO2,

O3, NOx, NH3, SOx, H2S and VOC′s1) but soon evolved

into multi-gas sensors for applications such as detection of

insecticides, nerve agents or refrigerant gases [6].

A. Electronic Gas Sensors

The MOX gas sensors based on n-type oxide semiconduc-

tors such as SnO2 detect gases from a change in the electrical

resistance of a porous sensing body. The device consists of

1Volatile Organic Compounds: ethanol, propanol, butanol, acetone, toluene,
benzene, xylene, n-octane, methane, cyclohexane, trichloromethane, tetra-
chloromethane, tetrachloroethylene
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two metallic contacts deposited on a poly-crystalline oxide

pallet mounted on a micro-heater which maintains the required

operating temperature [7], [8].

Reviews from [9] and later by [10] provide details on

physico-chemical phenomena that characterise MOX sensors

and explain the influence of temperature and humidity on

MOX response as strongly related to surface reactions (ad-

sorption) and humidity induced effects can be counteracted

by heating the device to temperatures above 400oC.

Sensors responses are therefore dependent on their detection

principle and extracting reliable data from these signals has to

eliminate device-own noise, false signal (detected from other

sources, interference) and device response to environmental

factors (temperature, humidity, light, dust). Moreover, such

time-series of detector response can have unexpected or vari-

able window widths–bringing increasing complexity into the

analysis.

While MOX gas sensitivities are excellent (at 1 ppm2, for

certain models going down to 1 ppb3) with high selectivity,

durability and ruggedness at low cost, the major limitation

of currently available detectors is their sensitivity to changes

in humidity, temperature and gas flow rate [6], [8]. These

effects are observed as drifts in response baseline, which is

the sensor’s initial resistance in dry clean air [11] .

B. Drift compensation methods

To compensate for environmental influences or detector

aging which can change the baseline signal, re-calibrations are

required to restore models accuracy at weeks intervals, and

procedures are time consuming and expensive [12]. Finding

efficient methods to achieve reliable drift compensation (cor-

rections) can improve calibration life and have spun significant

research.

Among drift compensation methods as signal baseline

subtraction, signal corrections: univariate (calibration-derived

multiplication factors) or multivariate (linear discriminant

analysis or principal component analysis) the univariate meth-

ods based on calibration achieve much better classification

rates [13]. To ensure calibration stability, a 3-month calibration

regimen is advised for best results.

Changes in calibration parameters are proven to be due to

baseline drifts which cannot be corrected by multiplicative or

differential methods [8]. Observing that detectors response R

is a function of time-dependent humidity H(t) and temperature

T(t), they expressed the measured gas concentration C as:

C = g(R,H, T ) + E

with g a time-dependent function and E the error level. To

determine the function g, or in fact, to predict C, they used a

tree layer feed-forward artificial neural network (ANN) with

4 input neurons, 3 in the hidden layer and 1 in the output.

The predicted C is within 3% error level and therefore drift-

corrected when employing ANN, while the created model

renders ambient-independent sensor readings.

2parts per million
3parts per billion

Other approaches for drift compensation use multivariate

methods like PCA and CPCA (joint diagonalisation PCA)

find components of the drift variance that are common to

several gases in the feature space [14]. This ensures a correct

classification, less dependent of the gas type and drift-induced

errors.

Advanced multivariate methods such as Self-Organising

Maps (SOM) [15] or adaptive SOM (based on SOM and com-

ponent removal) [16] have obtained improved error rates of

about 20%. It has been noted that unsupervised SOM methods

are unreliable for overlapping classes as the reference pattern

may follow a different class [12]. They propose methods

based on sliding window wavelet decomposition de-compose

data into fine and coarse time-scales as noise appears in the

finer scales and drift is captured by the coarser scales. Using

Orthogonal Signal Correction (OSC) and Component Correc-

tion PCA (CC-PCA) - they tested 17 conductive polymer gas

sensors over a period of ten months. They show that OSC - a

technique used in spectroscopy to remove baseline trends - is

suitable for drift compensation.

Both methods perform well on a reduced training size, with

only 10 training samples from the reference class. For effective

validation they observe that test data has to be sampled at time

intervals situated after the time of train intervals.

Ref. [17] proposes λ-SVM, a Byes consistent algorithm

for multi-class classification derived from the Inhibitory SVM

formalism (equivalent to λ=1) designed for optimizing non-

linear problems and define a range of values for λ that ensures

low training times. They reached a classification accuracy of

82.6%. To enable classification of continuous incoming olfac-

tory data, [18] has also developed a spiking neural network

with bio-inspired architecture (insect olfactory system).

C. Novel drift compensation methods

More recent methods for controlling drift calibration ap-

proach data dimensionality reduction through reducing the

number of experiments and active sampling.

As opposed to passive sampling which is uniform (non-

adaptive) considering identically distributed and independent

observations, the active (adaptive or controlled) data sampling

can maximise learning while reducing the number of samples.

The active sampling methods (query learning, instance selec-

tion or sequential sampling [19]) were proven superior in terms

of generalisation error and reducing data dimensionality but

they are not always suitable for real-world pattern recognition

problems involving noisy data.

One of such approaches is optimising the choice of sam-

ple concentration so that it minimises the cross-validation

results for a given classifier (the multi-class Inhibitory SVM,

ISVM) [20]. Comparing accuracy for passive and active sam-

pling, the active sampling can improve results when little

information is available as training samples will have a higher

contribution.

Ref. [21] have designed a method for active sensing al-

lowing to discriminate multiple odours with one detector by

adaptive and inverse temperature modulation (dependent on
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a closed-loop feedback where detectors response controls the

temperature modulation). This method leads to a reproducible

response pattern for each odour and improvements in classi-

fication (by SVM, using the libsvm toolkit). Training was

done on 3000 random vectors (5% of the 60,400 concentra-

tions) reaching 92% accuracy.

Ref. [22] proposes the transfer sample-based coupled task
learning (TCTL) based on transfer learning and multi-task

learning (MTL) - i.e. learning multiple models simultaneously

and share information across models to improve accuracy.

Given labelled samples without drift (source domain) and a

small set of transfer samples as inputs, TCTL simultaneously

learns a prediction model for data in the source domain and

one for data in the target domain (from the device with drift).

The transfer samples are incorporated into a regularisation

term of the objective function.

The Direct Standardisation (DS) is proposed by [23] in

order to extend calibration models by mapping signals from

the reference unit (without drift) to other detection units (or

same detection unit later in time) using a reduced number of

transfer samples. The transformation relationship is :

Smaster = Sslave · F
where S are the response matrices and F is the transfer matrix

which can be derived from measured transfer matrices. This

method assumes a linear relationship between signals and was

applied previously in near-infrared spectroscopy.

When the master calibration model is transferred several

times the prediction error remains constant. Also, slave units

can be trained with a smaller set of transfer samples (60% less

samples) coupled with DS resulting in same prediction error

as if calibrated with the entire set of calibration samples.

Using a wrapper approach to investigate optimal feature

selection for MOX detectors based on SVM all-against-all

classifier and a subset of data points (responses at 6 time points

for 12 sensors) [24] find that using all available data points

for each sensor does not perform better than sub-sampled sets

of simple features. Also, clustering properties of the data and

correlation of detector responses can influence classification

performance (but not in an obvious way). Choosing simple

features lead to better results than derived features (response

maxima, area, moving averages, fast Fourier transforms or

discrete wavelet transform) and improved performance is

obtained when using a wrapper approach, although a filtering

approach can be useful.

D. Contribution

The methods for drift compensation have reached a

turnaround in complexity, starting from basic electrical and

thermal signal compensation, to complex feature engineer-

ing, signal de-convolution through univariate and multivariate

methods (removing the noise and drift components of signal),

culminate with neural networks and complex SVM with bio-

inspired architectures, and finally achieve true optimal solu-

tions through dimensionality reductions like active sampling,

sub-sampling and transfer learning.

Summarised in Table I), these findings encourage the idea

that active sampling with simple features selection with var-

ious degrees of correlation, coupled to deep learning models

can provide drift compensation methods that are cost-effective,

faster and with improved accuracy, hypotheses that are tested

in this work.

The proposed active sampling generates a new class-

balanced dataset, firstly selecting data within an exposure

interval (considering the time sequence) then generating the

balanced classes by random selection. While the new dataset

is no longer a time series, the advantage is that new and old

data are learned together as in transfer learning.

These approaches are observing the latest developments in

this field aiming at a fast and reliable model generation–

requiring simple implementation and reduced data size for

calibration–as model learning.

TABLE I: Performance comparison for passive and active

sampling

Method Metrics Result Refs.
Passive Sampling
Univariate better than multivariate [13]
(calibration factors) (LDA, PCA)
SOM, adaptive SOM error 20% lower [16]

than PCA
ANN (4:3:1) error on C <3% [8]
OSC, CC-PCA accuracy max. 97% [12]
λ-SVM accuracy 82.6% [17]
Active Sampling
selective sampling error exp. decrease [19]
Inhibitory SVM error on C 2.26%-26.13% [20]
random selection accuracy 92% [21]
transfer learning accuracy 90%-99% [22]
DS error 4% (30% better) [23]
sub-sampling better than all data [24]
with SVM sampling

III. METHODOLOGY

The proposed research investigates the use of active sam-

pling in connection with artificial neural networks (ANN), XG-

Boost and radial-SVM classifiers aiming to improve classifi-

cation performance. Results are supported by cross-validation.

The importance of co-variates in the dataset has been assessed

using multi-linear regression and PCA to understand their

contribution to the model.

The applied methodology includes the following steps:

• Data set presentation, exploration and pre-processing

• Data structure analysis, active sub-sampling and normal-

isation;

• Designing the ANN network by testing a set of hidden

layer designs and sample sizes with cross-validation to

find an architecture that allows for increased learning

without over-fitting;

• Generating and optimising models: ANN, XGBoost,

SVM;

• Evaluation and discussion.
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Fig. 1: Initial dataset: distribution of number of entries for

each induction.

A. Data set presentation, exploration and pre-processing

The data used in this work has been generated in a series

of experiments by [25] to demonstrate that the de-correlation

of temperature and humidity from detectors’ response can

improve model prediction performance. Their original dataset

(without de-correlation corrections) available to download

from the UCI Machine Learning Repository. The “Gas sensors

for home activity monitoring Data Set”, presented as a multi-

label, multivariate time-series (919438 instances) has been

used in the present work.

The first data set consists of MOX sensor response collected

from 8 MOX sensors exposed to two stimuli (banana and

wine odours) for time intervals between 10 minutes and 1

hour along with corresponding baseline signals (no stimuli or

background signal) creating a set of 34, 36 and 30 exposures

for banana, wine and baseline samples, respectively. The

signals were recorded with a sampling rate of 1/3600 [s−1] as

time line. A second dataset contains the exposures (numbered

from 0 to 99) showing for each exposure (induction) the

exposure type, the starting time and the duration of exposure.

While the data is presented as a time series, the classification

task does not require a temporal sequence for prediction.

In this work each line of the dataset is considered as an

independent vector of features (detector responses).

In pre-processing, the recording time (column “time” in the

first dataset) has been converted to minutes. The induction

duration (as hours in the second dataset) has been converted

into minutes. The two datasets have been joined based on the

induction number (id), attaching the labels column and the

starting time and duration columns. For the analysis data has

been normalised and the label column has been transformed

by ”one-hot-encoding”4.

For each induction the data is recorded from before the

start of the exposure (negative time) and continues after the

exposure stopped (positive time beyond the exposure dura-

tion). Data sub-sampling was performed by selecting vectors

recorded at times 2 minutes after the start and 2 minutes before

the end of each induction. This choice is expected to eliminate

transition signals at the beginning or end of exposure due to

4For three levels of the labels (1, 2, 3) the one-hot-encoding changes label
“1” to 1, 0, 0; label “2” to 0, 1, 0 and “3” to 0, 0, 1 generating three label
vectors.

Fig. 2: Sub-sampled dataset: distribution of number of entries

for each induction.

Fig. 3: Boxplot of detectors’ responses for inductions 3 and

6.

either sensor instabilities at the beginning of measurement or

gas flow (uneven concentrations).

In Fig. 1 and Fig. 2, the distribution of number of entries

(response vectors) for each induction are shown for the initial

data and for the sub-sampled data, respectively. Induction

types are indicated in colours (background: green: banana:

yellow, wine: red). It can be noticed that induction 95 is

missing, leading to a total of 99 inductions.

No corrections were performed to de-correlate the tem-

perature and humidity influences (as proposed by [25]). The

resulting dataset has 190000 rows and was stored in a csv file.

Examining boxplots of response signal for each detector

across various inductions shows that the signal from each

detector has no specific pattern or repeatable response for

similar inductions. Therefore, using the median of responses

will not be a good choice. Also, removal of outliers will signif-

icantly affect the data as the outliers are numerous and their

contribution to the overall response may have significance.

Examples for inductions 3 and 6 are shown in Fig. 3 where

induction 3 is for “wine” and 6 is for ”banana” odours. The

boxplots correspond to data from the initial (full-size) dataset.

Regarding the time intervals for each induction, these have an

irregular distribution shown as the height of bars (“instances”)

in Fig. 1 and Fig. 2.

More information on responses across all inductions are

shown in Fig. 4 and sustains the general observation of
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Fig. 4: Boxplots of responses for detector R2 across all

inductions.

Fig. 5: Cumulative proportion of variance explained with PCA.

noisy and unstable detector responses. This chart shows the

boxplots of response R2 (detector 2) across all 99 inductions,

illustrating how different the signal for the same detector can

be (even if the induction type is the same).

While it is expected that each detector has a specific

distribution of response for each type of odour, these are

overlapping or have very large variances, due to drifts induced

by detector aging or variations in temperature and humidity.

B. Active sub-sampling

While removing the first and last minutes of exposure is

a type of active sub-sampling applied for reasons of sensors’

operation, other methods of active sub-sampling can be tested

by selecting most or least correlated data. Performing Pearson

correlation on the original dataset, two groups of strongly cor-

related responses (coefficients above 80%) are found: R1, R2,

R3 and R4 and R7 and R8. The two separate correlation groups

are due to the type of temperature regulation implemented

for each (fixed temperature for the first group and reactive

temperature control on the second group) leading to different

response patterns.

It may therefore be possible to sub-sample the dataset by

using only selected detectors from the groups R1-R4 and R7-

R8. Interestingly, the influence of humidity and temperature

do not appear as strongly correlated with responses.

Another possibility to extract the most meaningful data is

to choose the variable (feature) having the highest coefficient

in a regression analysis indicating its high explanatory power.

A multi-linear regression analysis (package lm in R) finds

highest coefficients for responses R1, R2, R3 and R5 while all

10 features are highly significant. Nevertheless, the obtained

Multiple R-squared of 0.5421 shows a poor performance of

linear regression as the model involves a more complex, non-

linear relationship.

The PCA analysis searches for features with higher explana-

tory power in an orthogonal space where new variables are

generated as linear combinations of initial features. Here, the

first two components PC1 and PC2 can explain 39.5% and

18.6% of the variance, respectively (Fig. 5, Appendix). Their

directions in the new feature space indicate PC1 having as

main components R1, R2, R3, R4 while PC2 has as main

components R5, R7, R8. While PC1 and PC2 can explain

over 58% of the variance this is not enough for reaching high

prediction accuracy. It also shows that the majority of variables

(responses) have to be involved in generating the model. No

separation of classes has been achieved indicating that PCA

alone is not suitable for prediction.

As a conclusion, the active sampling by reducing the

number of features (responses) is not fully justified here as

this may affect the completeness of the model.

Other types of active sampling have been applied in this

work by selecting data recorded within the time interval of

stable detector operation (2 minutes after start, 2 minutes

before end of each induction), then by sampling equal numbers

of vectors from each class (improved version of stratified

sampling). As the data is not used as a time series this

allows for random sampling across all data, creating a mix (or

superposition within the same model) of old patterns and new

patterns (similar to the methods of transfer sampling proposed

by [22]) enabling learning new behaviour in the context of

(related to) previous patterns.

IV. IMPLEMENTATION

The implementation includes the following steps: data

preparation and active sampling, testing for various types of

ANN architectures (number of nodes and sample sizes) using

a range of k-fold (10 - 50 folds) cross-validation, choosing

a suitable network, implementing weights updating methods

(two), training the model for various hyper-parameters with

each method, choosing the optimal settings and validating and

testing the model using 5-fold cross-validation. Re-sampling

(10 times) with 3-fold cross-validation, tuning, validation and

testing were also performed for XGBoost and radial-SVM.

A. Data preparation

The data set is biased as the exposure time (window) is

different for each induction. This favours a certain behaviour

related to the exposure with the longest time, leading to

unbalanced data. In this work, balanced sets have been chosen

by random sampling without repetition the same number of

vectors for each target class. The final (balanced) dataset
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TABLE II: Dataset structure details

total size size per class proportion
training 135000 45000 0.75
validation 27000 9000 0.15
test 18000 6000 0.1
data set 180000 1

(180000 rows) has been split into subsets for training (75%),

validation (15%) and test (10%) as shown in (Table II). The

datasets are sampled in succession and the already used vectors

are removed from the initial data so that they are not available

for sampling in the next set. This ensures the split data has no

cross-contamination (common vectors). As the length of the

initial dataset with all inductions contains 231000 rows, the

balanced dataset extracted contains 75% of the initial data.

The data has been normalised (interval [0,1]) and the classes

column has been used as factor for SVM and XGBoost. For the

ANN the classes column has been converted using “one-hot-

encoding”. The dataset has been split into training, validation

and testing sets. For the numerical experiments (training) the

training data set has been used, while the testing and validation

datasets are kept for testing.

B. Machine learning approaches

The performance of several machine learning algorithms

(MLA) that can generalize complex non-linear patterns–ANN

neural networks, XGboost–has been tested in connection to

the newly generated dataset obtained by active sampling.

Non-linear MLA are expected to augment the classification

power as linear methods cannot explain all variance implying

that a more complex, non-linear model is required (e.g. linear

regression gives a low multiple R-squared of 0.5421, as in

Section III-B).

For its flexibility and ease of programmable approach the

neuralnet library in R has been used to implement several

configurations of neural networks. While there are numerous

variants of network architectures, a suitable network (with

one hidden layer) has been chosen by observing the network

performance function of the sample size and number of nodes

in the hidden layer using multiple k-folds cross-validation

(described here in Section V-A).

The XGboost algorithm in R has been preferred for its

high performance in terms of solving non-linear multivariate

problems and for its speed (based on multi-threading paral-

lelization). The SVM radial kernel algorithm has been used for

its versatility in solving non-linear problems and for its many

strengths in dealing with multi-class classification.

These algorithms are based on significantly different ap-

proaches and comparing their performances (as the sum of

square errors and or accuracy) can provide insight into whether

the active sampling has enabled reaching a stable and more

accurate solution, independent of external influences and the

inherent detector aging and measurement noise and also inde-

pendent of the type of classification algorithm used.

C. Neural networks

Neural networks generate classification models using a pro-

cess that imitates neuron connections and decision making in

the human brain. Neural networks learn complex relationships

between features by constructing and solving a linear system

of equations in several steps (neuron layers), starting from all

features (input variables) and solving to fewer variables (thus

encoding information into more relevant outputs - which are

taken as the input for the next layer) and finally solving for

the desired number of response variables.

To speed up reaching convergence, an activation function

(usually a step function with limits between 0 and 1 like

sigmoid, hyperbolic tangent, relu) is applied in order to

transform the output of each layer to either 0 or 1; thus

generating inputs for the next layer. In backpropagation neural
networks the error at the output layer can be improved by re-

adjusting the weights (coefficients in the systems of equations)

in the direction and amount required to improve the error, in

many successive runs, until convergence is reached (overall

error is smaller than a given threshold).

In this work the neuralnet library in R by [26] has

been used to implement the ANN classification model. The

neuralnet function includes several backpropagation methods,

out of which the resilient backpropagation (rdprop+) has

been used in this work ([27]).

The neuralnet function allows for custom setting of several

hyper-parameters : the hidden layer structure (number of

hidden layers and nodes in each layer), error type: sum of

squared errors (SSE) or cross-entropy (CE) and activation

functions : logistic (sigmoid) and hyperbolic tangent. The

start weights can be randomly generated or assigned from

previous steps. The weights update methods implemented and

the hyper-parameters choice performed in this study will be

discussed for each numerical experiment.

D. XGBoost

Developed by [28], XGBoost is an advanced gradient tree

boosting algorithm that gained notoriety for its excellent

performance in standard benchmarking as well as in many

high complexity classification and ranking problems. Its per-

formance is enhanced by a high scalability using parallel and

distributing computations and out-of-core memory. XGBoost

includes novel tree-learning algorithm optimisations in finding

the best split as percentiles of features distribution and solving

this globally across the entire tree, for all leafs simultaneously,

while data is organised in a block (column) structure. Finding

the optimal split from statistics within a block data structure

allows for distributed computing and parallelization. XGBoost

uses a regularised model which improves error levels and

prevents over-fitting.

E. Support Vector Machines

Support vector machines (SVM) can generate non-linear

learning models for data classification and regression analysis

by mapping data vectors as points in a higher dimensional

space where a suitable separation hyperplane can be found.
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The separation margin on each side of the hyperplane

is controlled by the Cost (C) parameter which decides the

trade-off in the optimisation problem between maximising the

margin and accurately classifying data points. A large C can

lead to high classification error while a low C improves the

error levels but can lead to a difficult to solve optimisation

problem and also to over-fitting.

The projection to a higher dimensional space, known as

the Kernel trick (proposed by [29]) performs a mapping

assigning to the scalar product between vectors (i.e. x and y)

a specific function (which can be a polynomial, a hyperbolic

tangent or other). When using a radial function described

by: K(x, y) = e−γ||x−y||2 ; each point is characterized by a

Gaussian distribution (described by the radial function).

The parameter gamma defines the radius of influence of

each vector (i.e. a large gamma leads to a narrow influence

region and ultimately to over-fitting) while a too small gamma

can loose the specificity in the classification task leading to

an imprecise boundary. The gamma parameter controls the

trade-off between bias and variance in the model. Due to its

flexibility and non-liner projection, the radial function SVM

has been used in this work.

V. EVALUATION

A. Choosing the ANN architecture

As the neuralnet function is known to work well with

small inputs (several hundred rows) [30] batch sampling is

performed to learn large input data.

There are numerous choices of hyper-parameters and layers

& nodes architecture which have to be tested. As complex

architectures are computationally expensive, a series of ar-

chitectures with one hidden layer are tested as a function of

the number of nodes in the hidden layer, for various sizes

of the data (100–500 rows). To assess the results, a k-fold

cross-validation (CV) experiment is performed with k taking

successive values 10, 20, 30, 40 and 50 by recording the

evolution of model and test accuracy.

The neuralnet parameters used here are: activation function:

“sigmoid”, error type:(SSE and these parameters are be kept

for all experiments. The weights are randomly selected (by

default) and 5 repetitions of the algorithm have been run,

with the best output recorded. The k-fold CV is run in a

double loop (for each k-fold CV and number of nodes in

the hidden layer). The samples with sizes from 100 to 500

rows are randomly selected from the initial training dataset

and confusion matrices are generated for both the train/test sets

created by cross-validation from which accuracy is calculated.

The obtained results are shown in Fig. 6, where test accuracy

is about 10% lower than model accuracy for all experiments

and accuracy depends noticeably on the number of nodes in

the hidden layer and on the sample size. The algorithm is not

convergent for some of the tested configurations (which are

not shown).

An interesting observation is that accuracy is high for low

number of nodes at low sample sizes (e.g. for h=2 and S=100)

and for high number of nodes at high sample sizes (h=9

Fig. 6: Results on model accuracy and test accuracy with k-

fold cross-validation. The number of nodes are shown on top

panels, the data size (S) in legend. Error bars are the standard

deviation over 5 repetitions.

and S=500). The configuration with h=7 appears to be over-

fitted (with model accuracy above 95% and much lower test

accuracy, 70%) and non-convergent for the larger sample sizes.

The accuracy from k fold CV shows low sensitivity with

increase in k but high sensitivity with the sample size and

number of nodes in the hidden layer. This can be explained by

observing that a more complex architecture can accommodate

larger data size (a more complex model) while a reduced

architecture maps well (generates a better model) for small

data size. The best choices appear to be h=9 and large sample

sizes (400-500 rows), achieving model accuracy above 95%

and test accuracy of 92% and 87% respectively .

The following experiments will use this suitable architecture

(one hidden layer, 9 nodes) to implement various batch data

sizes for training the ANN.

B. Experiments with neural networks

The experiments were performed on a network with 10

inputs, 1 hidden layer with 9 nodes and 3 outputs (as one-hot-

encoded class type). Two methods (M) for weights updates

have been tested:

1) weights updates from previous batch, Method 1;

2) weights updates from previous batch (within one epoch)

and averaged between epochs, Method 2.

The type of experiments performed to determine an optimal

model are shown in Table III, where “LF” is the learning rate

factor and “M” is the weights updating methods used. Three
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Fig. 7: Evolution of SSE error with number of epochs. The labels correspond to the ID of each experiment in Table III.

TABLE III: Choices of hyper-parameters and batch sizes for

the neuralnet model.

batch
size

batches
per

epoch

LF
limits

Min.
Error

Mean
Error Stdev M ID

1000 135 0.5; 1.2 22.0 44.7 13.5 1 A
1000 135 0.5; 1.2 22.3 37.9 5.7 2 B
450 300 0.5; 1.2 22.3 27.4 5.6 1 C
450 300 0.95; 1.2 18.2 24.1 4.7 1 D
450 300 0.7; 1.2 22.2 25.2 1.1 2 E
450 300 0.7; 1.4 16 28.0 5.1 2 F
150 900 09; 1.2 12.0 16.1 1.3 2 G
150 900 05; 1.2 9.0 11.3 0.7 2 H
150 900 0.7; 1.4 n.a 37.3 6.0 2 I

batch sizes (1000, 450 and 150 vectors each) where used;

several changes in the minimum and maximum limits of the

learning rate factor (LF) which has as default limits (0.5; 1.2).

Experiments with various learning rate (LR) values have not

shown any change in the algorithm convergence or error levels

(not an active parameter).

Although a shallow convergence is obtained for all cases,

two of the models show promising results: model D with a

region of error decrease and model G (with low error levels)

in Fig. 7 (red trend and gray trend, respectively). The methods

D and G are showing low error levels and are expected to

provide the best classification accuracy. The other methods

(A-C, E-F) have increasing error with the number of epochs

showing a lack of convergence of the ANN.

Considering the evolution of SSE for train an validation

sets with number of epochs (Fig. 8) the optimal models were

chosen as the ones generated after the first 25 epochs for model

D and after only 5 epochs for model G. Their accuracy for

Fig. 8: Evolution of SSE error with number of epochs for the

train and validation sets for models D and G (from Table III).

.

training and testing (obtained by 5-fold cross-validation) are

presented in Table IV. The cross-validation results confirm

that the model is not over-fitted as the test accuracy for both

models are close to training accuracy.

C. Experiments using XGBoost

The dataset obtained using the same type of active sampling

described in Section IV-A has been used with XGBoost to

assess classification performance. The main parameters set-

up for XGboost are: number of classes: 3, maximum tree

depth (“max depth”): 16, proportion of data instances to

grow tree (“subsample”): 0.7, step size shrinkage (“eta”):

0.3, minimum sum of instance weight needed in a child

(min child weight):12. For multi-class classification a “multi-

softmax” algorithm is used and as evaluation metric the

“mlogloss”.
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(a) Error during tuning for the train and
test data.

(b) Feature importance.

Fig. 9: XGBoost

Fig. 10: Statistics on grid search parameters C and gamma

from SVM tuning across the dataset.

While a 3-fold cross validation is performed by the XG-

Boost algorithm, in order to provide for data variability another

10 fold cross-validation loop has been designed to sample in

a different manner the vectors from the initial dataset (in fact

by re-applying active sampling 10 times). The train and test

datasets initially created are joined after each selection, to

allow for the XGboost’s internal CV to be applied. The train-

test split used by XGBoost cross-validation is 0.7:0.3. The

tuning shown in Fig.9a shows a very fast convergence allowing

for early stopping after the first 20 rounds. The performance

results from XGBoost from 10 times 3-fold cross-validation

(10 re-sampled datasets) are shown in Table IV.

The results obtained with XGBoost outperform those from

neuralnet but show that the classification problem is relatively

easy to solve when using the proposed active sampling. The

low standard deviation between the 10 trials indicates that

each new re-sampled dataset has a similar data distribution.

The importance of features (responses R1 - R8, humidity

and temperature) as calculated by XGboost algorithm provides

alternatives for feature selection in active sampling (Fig. 9b).

D. Experiments with Support Vector Machines

In this work, the e1071 SVM library in R has been

used to assess the classification performance ofa radial basis

SVM. The data is prepared as described in Section IV-A. The

parameters C and gamma have been tuned performing a grid

search against a range of C values and a range of gamma

TABLE IV: Comparative results on accuracy using neuralnet,

XGBoost and SVM.

Train Test
Accuracy[%] stdev Accuracy[%] stdev

neuralnet model D 91.17 1.42 91.26 1.24
neuralnet model G 89.51 1.18 89.10 1.33
XGBoost 99.96 0.14 99.43 0.36
SVM 97.71 0.53 96.62 0.85

values across 100 batches (each of size 1500) sampled from

the dataset. As tuning is performed across tuning parameters

and batches from the dataset, the tuning cannot be represented

as a grid search, a boxplot and histogram where median values

for C and gamma can be seen is preferred (Fig. 10), from

which the median values of C=4 and gamma=1 are chosen

for the tuned model. These best parameters have been chosen

just outside the best tuning region (C=2, gamma=1) to avoid

over-fitting. The results for the average accuracy in a 3-fold

cross-validation (per batch) and for 10 re-sampled datasets are

shown in Table IV.

E. Discussion

The evolution of the SSE error with the number of epochs

shown in Fig. 7 shows a very slow convergence and shallow

minimum regions. This slow learning of the network can have

several causes: (i) when the neuron’s output is close to 1

the learning rate becomes very small as the derivatives of

the sigmoid function are very small; (ii) insufficient network

complexity; (iii) data requires standardisation; (iv) data is

too noisy and random (an ill-posed problem, with multiple

solutions or no solution).

Observing the training and validation error over 250 epochs

(Fig. 8) the validation errors lay in a constant range, at same

level as the lowest level of the training error (or even below,

for experiment G). This behaviour is unexpected as usually

the validation error is higher than the training error. This can

be explained as large datasets with balanced sampling have a

good representation of training data pattern in the validation

set, leading to similar error levels for validation. This is not

consistent with over-fitting where usually the validation error

is much higher than the training error.

This is due to the type of active sampling that restricts

the size of the training set (to reliable interval) and selects

data regardless of recording time (transfer learning) leading to

higher accuracy as data is easier to fit into the model. While

more complex ANN (2 hidden layers, e.g. with 5:3 nodes

in each layer) have been tested, these configurations were

computationally expensive and not even convergent within the

maximum step and threshold settings of neuralnet.

The solutions found using the proposed active sampling

with the neuralnet model satisfy conditions of simple and less

expensive computational model and provides good accuracy

levels. The particularities of low ”learning rates” and flat test

and validation error levels are a consequence of the type

of problem (noisy input data) relaxed solver (network with

9 nodes, close to 10 inputs number) and also the inclusion
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of correlated features which bring an excess of information

leading to a flat cost functional (without obvious minima).

The classification accuracy from XGBoost and SVM models

are also high and with low variances across 10-fold cross-

validation and multiple re-sampling, as shown in the compar-

ative table (Table IV). This indicates that results are consistent

across various types of solvers.

VI. CONCLUSIONS

The proposed work has assessed one of the recent ap-

proaches for modelling MOX detectors calibration drifts using

active sampling. The proposed active sampling is performed

by choosing a class-balanced dataset where recording times

are mixed, thus including in the model new data along with

old data. This type of active sampling is consistent with the

methods of transfer sampling proposed by [22] and data sub-

sampling proposed by [24].

The results using ANN (neuralnet), XGBoost and SVM

(radial function) algorithms show that classification accuracy

is significantly improved when using a dataset that has been

actively sampled as proposed here. The classification accuracy

levels are high (above 90 %) and with small variances (lower

that 2 %) across 10-fold cross validation and 5 to 10 times

re-sampling. This is in agreement with above cited work and

other results from active sampling (Table I).

The methodology used in this project has reached to power-

ful, non-linear machine learning algorithms but only as basic

methods that allow direct parameter control in tuning and

validation and provide an insight into partial results which

have lead into making choices on sample and batch sizes

or hyper-parameters. Due to time constraints, only one type

of active sampling has been tested. However, we intend to

eventually explore a more comprehensive parameter space

using scalable data analytics techniques [31].

While advanced deep learning can be used (convolutional or

recurrent networks, LSTM) here a basic use of neural networks

allows a study of batch size versus network architecture,

providing a means for network optimisation.

Further work will investigate more examples of active

sampling considering choices of correlated features, examining

limits of validity for sub-sampling and dimensionality reduc-

tion.
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