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Abstract. We provide a preliminary study of a Graphene fractal antenna operating at THz 

frequencies with the opportunity to modulate the emission. There are a number of advantages of 

the fractal design, namely multiband/wideband ability, and, a smaller, lighter and simpler 

configuration for higher gain, that can benefit from the coupling with Graphene, the thinnest and 

strongest of materials exhibiting very high electrical conductivity and tunability. This paper 

proposes a conceptual background for the study and presents some preliminary results on the 

electromagnetic emission simulations undertaken. 

1. Introduction 

Fractal antennas are receiving attention for the future of wireless communication because of their 

wideband and multiband capabilities, the opportunity of fractal geometries to drive multiple resonances 

and the ability to make smaller and lighter antennas, with fewer components and radiative elements less 

circuitry and higher gains. Extremely small and extremely high-frequency nanometric fractal antennas 

based on Graphene, a one-atom-thick, two-dimensional carbon crystal, may enhance wireless 

communications for commercial and military applications. 

Nano antennas based on surface plasmon polaritons enable the conversion of light from free space 

into sub-wavelength volumes establishing a way of communication using free electron propagation 

within networks of nanosized devices. This approach can be of high impact for many applications, 

including biochemical sensors, reconfigurable meta-surfaces, compact optoelectronic devices, advanced 

health monitoring, drug delivery systems and wireless nano-sensor networks for biological and chemical 

attack prevention.  Dynamic control and reconfigurable properties of these antennas are also very 

desirable for the above applications.  Owing to its unique electronic properties, Graphene has recently 

been identified as a promising platform to build integrated active plasmonic nanoantennas for a wide 

wavelength range in the mid-infrared, i.e. 10 - 100 THz. 

A Graphene fractal antenna is regarded as a high-frequency tunable antenna for radio 

communications in the Terahertz bandwidth, enabling unique applications in the military field, such as 

wireless nanosensor networks for biological and chemical attack prevention. Graphene is a one-atom-

thick two-dimensional allotrope of Carbon [1], with the highest known electrical conductivity that is 

currently unavailable in any other materials, including metals such as gold and silver. The nanostructures 



 

 

 

 

 

 
of Graphene can enable wireless communication enhancements within nanoscale electronic devices  

with a significant reduction in the energy needed for such communications [2].  Furthermore, as the 

electrons oscillate, they create an electromagnetic wave on top of the Graphene layer, referred to as the 

Surface Plasmon Polariton (SPP) wave [3], [4]. This enables the antenna to operate at the lower end of 

the Terahertz frequency spectrum [5], [6], which can be more efficient than current copper-based 

antennas [7].  

In this paper, we study a Sierpinski fractal triangle monopole antenna made of gold, graphene, 

silicon, and silicon dioxide by solving Maxwell’s equation for a complex refractive index in the 

frequency domain over the range 10 - 700 THz [8].  A few layers of graphene are deposited on a 

nanometric layer of silica on a Si substrate. Every material in the nanostructure is modeled through the 

complex refractive index with real, n, and, imaginary parts, k. The values of n and k are obtained from 

experimental data and theoretical models. The design permits the application of a gate voltage to modify 

the graphene optical conductivity over the operating region of 10 - 300 THz. We compare this design in 

Graphene and the operation with different gate voltages to the same design in gold, identifying the 

differences of using Graphene under the influence of the gate voltage.  

The present dimensions follow the computational constraints set up by the thickness of the fractal 

that cannot be thicker than 3 nm. A better design for the fractal antenna is to scale it up by an order of 

magnitude or more while retaining the same thickness.  This can be investigated as soon as such a 

design is feasible.  Such a design will be able to scan with an order of magnitude smaller frequencies 

(10 times larger wavelengths).  In this work, we model the material properties for wavelengths of 30 - 

0.4 µm (10 -750 THz).  

Our approach differs from similar work in [9], for example, where Graphene is placed underneath 

a Copper patch and the fractal is on the 100 x 100 m scale. Here, we consider a design which extends 

the frequency range of operation of a fractal antenna by introducing nanofeatures. Further, Graphene 

nanoantenna plasmonic properties [3], [6], [10] provide tunability in the Terahertz domain due to the 

Graphene surface conductivity, that can be modified by applying an electrostatic bias, which changes 

the chemical potential (Fermi level). In [10], Graphene is used as an electrically tunable load in a 

nanoscale metal antenna gap. This permits an in-situ control of the antenna’s frequency. The Graphene 

patch antenna resonance frequency changes with its width and Sierpiński-type fractals are of growing 

interest because of their broadband capabilities for applications using plasmonic metallic materials 

which generate emissions in the optical frequency (40 - 750 THz), [11].  

In this paper, the combination of Graphene plasmonics and Sierpiński-type fractals is studied for 

the first time for a broad-band Terahertz antenna with a focus on nanoelectronic wireless 

communications, [3]. We note that the combination of metallic structures and Graphene, which has  

gate-voltage dependent optical properties, has already provided an antenna with narrower frequency 

operations, tuneable between 35 and 75 THz, [10].  

Our aim is to design a compact structure while pushing the order of the Sierpiński fractal to a high 

level by engineering nanometric details in Graphene. This fabrication can be achieved by Electron Beam 

Lithography patterning or 3D nano-patterning using focused ion beam lithography, as described in [6] 

and,[11]. Graphene is transferred on a SiO2 substrate to control the size and features at the nanoscale. 

The nanoantenna is based on the Sierpiński gasket fractal, with equilateral triangles as building blocks. 

2. Materials and methods 

We simulate the optical properties of Graphene nanoantennas and the electric field intensity distribution 

at different resonance frequencies in the mid-infrared and the visible range.  This is based on using the 

well-established Graphene optical conductivity based on a Drude-like model known as Kubo’s formula 

[12], [13], within the random phase approximation in the local limit adopted by [10]. Other quantum 

mechanical models have recently been introduced to describe Graphene surface conductivity [14]. 

However, based on the recent agreement between the semi-classical model and experimental results as 

given in [10], we argue that our model is a good represents for the proposed design. Additionally, we 

model the refractive index of Graphene in the visible range by using the experimental data from [15]. 



 

 

 

 

 

 
The optical or surface conductivity of Graphene is based on a semi-classical model of conductivity. 

The surface conductivity for a single layer of Graphene has been determined by [13] and is given by 

𝝈𝒔 = 𝝈𝒔,𝒊𝒏𝒕𝒓𝒂 + 𝝈𝒔,𝒊𝒏𝒕𝒆𝒓                                                (1)  

where 

𝝈𝒔,𝒊𝒏𝒕𝒓𝒂 =
𝒋𝒆𝟐𝒌𝑩𝑻

𝝅ℏ𝟐(𝝎+𝒋𝟐𝚪)
[

𝝁𝑪

𝒌𝑩𝑻
+ 𝟐 𝐥𝐧 (𝒆

−
𝝁𝑪

𝒌𝑩𝑻 + 𝟏)]       (2) 

𝝈𝒔,𝒊𝒏𝒕𝒆𝒓 =
𝒋𝒆𝟐

𝟒𝝅ℏ
𝐥𝐧 [

𝟐|𝝁𝑪|−(𝝎+𝟐𝑱𝚪)

𝟐|𝝁𝑪|+(𝝎+𝟐𝑱𝚪)
] ,  𝒌𝑩𝑻 ≪ 𝝁𝑪          (3) 

In the above equations μC is the chemical potential (Fermi energy), which depends on the charge 

carrier concentration, Γ is the scattering rate with τ=1/2Γ being the carrier relaxation lifetime, kB is the 

Boltzmann constant, T is the temperature and ω is the angular frequency. The first term of Eq. (1) is 

attributed to intra-band transitions and the second term to inter-band transitions. When the Fermi level 

is below half of the photon energy (Eph = ℏω), the contribution from the inter-band transition (visible 

and UV domain) dominates the optical conductivity. The inter-band surface conductivity can be 

calculated numerically or given in the analytic form under certain approximations. Once the Fermi level 

is increased above half of the photon energy, interband transitions are diminished due to Pauli blocking 

and intra-band transitions (in the IR and mid-IR) play a dominant role. To generate the surface 

conductivity of Graphene, the intra-band conductivity term can be obtained analytically while the inter-

band conductivity term needs to be determined numerically.   

A Drude-like approximation for 𝝈𝒔, is valid for mid-infrared wavelengths, where the intra-band 

conductivity term usually dominates over the inter-band term; thus, an approximation can be obtained 

from Eq. (2) for 0.01 to 100 THz given by 

𝝈𝒔,𝒊𝒏𝒕𝒓𝒂 ≈
𝒋𝒆𝟐𝝁𝑪

𝝅ℏ𝟐(𝝎+𝒋𝟐𝚪)
    (5) 

where the carriers relaxation time is 𝝉−𝟏 =
𝒆𝒗𝒇

𝟐

𝝁𝝁𝑪
, μ being the carrier mobility which is typically 2,000 

cm2/(V s) and 𝒗𝒇, the Fermi velocity of Dirac fermions in Graphene is given by 𝒗𝒇≈8.5 × 105 ms−1 to 

3 × 106.  With silica substrate a measured value can be found which is 1.8 × 106, [16]. 

A specific conductivity model was derived in [3], by taking into account the impact of lateral 

electron confinement in Graphene nanoribbons, but the above models converge for Graphene strips 

which are 50 nm wide or more. Further, experimentally measured values of the surface conductivity of 

Graphene nanoribbons can be utilized to better model small nanofeatures [17]. A closed empirical 

expression [18] that resolves numerical singularities in the Graphene surface conductivity occurring at 

ℏ𝝎 = 𝟐 𝝁𝑪 can also be used for λ > 250 nm up to a few microns; this model provides comparable results 

to the model adopted here, at least in the visible spectrum. 

In this paper, we consider the Graphene sheet optical conductivity within the Random-Phase 

Approximation (RPA) in the local limit [12], [19] and also adopted in [10]. This model has been 

validated against direct measurements of the Graphene bulk conductivity. According to this model, the 

surface optical conductivity is given by 

𝝈𝒔(𝝎) =
𝟐𝒋𝒆𝟐𝒌𝑩𝑻

𝝅ℏ𝟐(𝝎+𝟐𝒋𝚪)
𝐥𝐧 [𝟐 𝐜𝐨𝐬𝐡

𝝁𝑪

𝟐𝒌𝑩𝑻
] +

𝒆𝟐

𝟒ℏ
[

𝟏

𝟐
+

𝟏

𝝅
𝐚𝐫𝐜𝐭𝐚𝐧 (

ℏ𝝎−𝟐𝝁𝑪

𝟐𝒌𝑩𝑻
) −

𝒋

𝟐𝝅
𝐥𝐧

(ℏ𝝎+𝟐𝝁𝑪)𝟐

(ℏ𝝎−𝟐𝝁𝑪)𝟐+(𝟐𝒌𝑩𝑻)𝟐
]     (6) 

where the first term is attributed to the intra-band transition and the second term is the inter-band 

transition. The Graphene Fermi level, 𝝁𝑪, can be changed by applying a gate voltage. The approximate 

relationship can be estimated as a parallel capacitor. The capacitor-induced carrier concentration of the 

Graphene is ng = ε0εdVg/ed and the Fermi level is μC= ℏ vf (πng)
1/2. Here the εd is the dielectric constant 

of the insulating layer and d is the thickness of the insulating layer.  



 

 

 

 

 

 

The bulk conductivity is related to the surface conductivity by 𝝈𝑽 =
𝝈𝒔

𝚫
,  where Δ is the thickness 

of the Graphene layer, which is much smaller than the excitation wavelength. In this context, Graphene   

is modeled as a very thin (< 4nm) three-dimesional material. The volumetric anisotropic permittivity, , 
can then be calculated if we assume that the Graphene layer has a finite thickness, Δ. 

To turn the surface conductivity of a Graphene layer into a uniaxial anisotropic permittivity, the 

background relative permittivity of a thick material (Graphite), 𝝐𝒓 , is introduced. The uniaxial 

anisotropic permittivity, in-plane and out of the plane components are then given by [20]   

𝝐∥ = 𝝐𝒓 + 𝒋
𝝈𝒔

𝝐𝒐𝝎△
      (7) 

𝝐⊥ = 𝝐𝒓 

where 𝝐𝒓 can be set at 2.5, [20] which is based on the dielectric constant of Graphite. The real and 

imaginary refractive index components can then be obtained from 𝒏 + 𝒊𝒌 = √ 𝝐∥. 

3. Results  

Preliminary simulations are performed for a 3rd-order Sierpinski fractal monopole antenna of nanometric 

dimensions. The Graphene fractal triangle has lateral dimensions 640 nm x 560 nm and a thickness of 3 

nm. The smallest triangle from which the fractal is composed has lateral dimensions 1/16 times the 

‘fundamental triangle’. The fractal triangle is deposited on top of a 10 nm SiO2 substrate which rests on 

top of a 10 nm Si substrate. The fractal antenna is fed by a coaxial cable and placed on a ground plane 

which has a diameter of 800 nm and a thickness of 25 nm. This is the basic configuration.  

Macroscale Sierpinski fractal triangle monopole antennas are intended to be used for different 

discrete frequency bands. Nanoscale equivalent antennas are not expected to operate in the same way, 

as the materials have their own properties and cannot be assimilated to be a Perfect Electric Conductor 

(PEC). At the nanoscale, the volumetric conductivity is described in terms of the real and imaginary 

components of the relative permittivity, which can be translated in terms of the real (n) and imaginary 

(k) components of the refractive index.  

In the model, a Graphene fractal is connected through a coaxial lumped port to a ground plane made 

of gold. One spherical Perfectly Matched Layer (PML) then includes the Sierpinski fractal triangle, the 

ground plane and the surrounding volume of air. The bottom of the Sierpinski fractal triangle is flat and 

connected to the coaxial cable feed. The inner coaxial cable is taken to be gold and surrounded by a 

SiO2 outer coaxial casing.  In our simulations, the ground plane is also made of gold and the Sierpinski 

fractal triangle made of Graphene.  

As Graphene is two-dimensional material, the volumetric conductivity is expressed in terms of the 

surface conductivity divided by the Graphene layer thickness as described in Eq. (7). The Sierpinski 

fractal triangle is positioned on a layer of a dielectric SiO2 on top of a semiconductor Si substrate. 

Additional matching parts are not required for using the antenna at higher-order resonances with the 

given fractal structure. The governing equation for the propagation of electromagnetic waves in the 

(temporal) frequency domain is obtained from Maxwell’s equation and given by 

𝛁𝒙(𝛁𝒙𝑬) − 𝒌𝟎
𝟐𝜺𝒓𝑬 = 𝟎        (8) 

where 

𝜺𝒓 = (𝒏 − 𝒊 𝒌)𝟐 

For the lumped port, the governing equation is Z=V1/l1. 

The temporal frequency domain model is appropriate under the assumption that all material 

properties are constant with respect to field strength and that the field will change sinusoidally in time 

over the range of frequencies considered. The properties of the materials do not play any role in the 

macroscopic model, providing the conductivity is high enough to qualify as PEC.  However, at the 

nanoscale, the material models for n and k selected in the design change the resonances of the antenna. 

For the nanometric dimensions, and, given fractal antenna theory the macroscopic Sierpinski, the second 



 

 

 

 

 

 
and third-order resonances of the small structures are placed at 320 and 600 THz [8]. We study the small 

structure for 10 -1000 THz.  

In regard to the material properties, for the case of Gold, experimental values for n and k are 

provided for different configurations (films of different thickness, evaporated gold, template stripped 

gold, single-crystal gold) over the range of wavelength 0.3-25 μm [21], [22]. For Silicon, the n, k data 

are obtained over the range 0.2-1.45 µm from [23] and [24]. Above this wavelength, the values are 

extrapolated linearly. For Silicon Dioxide, the SiO2 values of n and k are available for 0.21 – 1000 µm 

from [25]. In the case of Graphene, experimental measurements of 𝒏 and 𝒌 are available in the region 

0.15-0.95 µm from [15]. These values depend on the Graphene thickness and substrate. Alternatively 

Graphene surface conductivity is modelled using the RPA in the local limit [12] from Eq. (6), based on 

validation of the carrier relaxation time measured from the Graphene bulk conductivity at 300 oK [10].  

Figure 1 presents the model for real and imaginary components of the Graphene relative 

permittivity, refractive index and surface conductivity obtained using the RPA in the local limit (Eq. 6) 

with μC= 0.43 eV, corresponding to a carrier concentration of ng = 1.1× 1017 and μC=0.19 eV (Vg=2.5V), 

corresponding to a carrier concentration of ng =2.2×1016 m-2 (Vg=0.5V). Graphene has the advantage of 

tunability, i.e. the opportunity of changing n, k by applying a voltage across the thin layer, as this 

introduces a change on the Fermi energy level (𝝁𝑪) and thus of the carrier concentration, ng. This gives 

the ability to reconfigure the frequencies of the antenna. Thus, we used values of carrier mobility of 

𝝁 = 2000 cm2/(Vs),  𝒗𝒇=1.2 × 106 ms−1 and 𝝁𝑪=0.19 eV and 0.43 eV, corresponding to a carrier 

concentration of ng =2.2×1016 m-2 and 1.1× 1017 m-2, respectively.  

Assuming a SiO2 of thickness d =10 nm, it takes Vg ∼0.5 - 2.5 V to change the Fermi level from 

0.19 - 0.43 eV. These values are used to match the experimental validation of a Graphene single layer 

surface conductivity measurements reported in [10]. The real and imaginary parts of the refractive index 

of Graphene can be obtained from the surface optical conductivity model as described in Eq. (6) and the 

volumetric anisotropic permittivity as given in Eq. (7). This model is validated from 3 to 10 µm and can 

be extended to lower wavelengths. The application of a voltage across the Graphene layer is not 

modelled, but values of n and k are modified accordingly.  

 
Figure 1. Model for the real and imaginary components of the Graphene relative permittivity , refractive 

index (n, k) and surface conductivity (r, i) obtained using the RPA in the local limit (Eq.6) with μC= 

0.43 eV, corresponding to a carrier concentration of ng = 1.1× 1017 m-2 (red lines) and 𝝁𝑪=0.19 eV 

(Vg=2.5V), corresponding to a carrier concentration of ng =2.2×1016 m-2 (Vg=0.5V) (blue lines) 

 



 

 

 

 

 

 
Example results of our simulations are given in Figure 2. In this simplified model, the far-field emission 

is similar to the one that could be achieved by a radiator modelled as a PEC. However, lower resonance 

frequencies are observed due to the properties of the material.  From actual nanometric dimensions but 

with classic macroscopic Sierpinski fractal antenna theory, second and third-order resonances of the 

structure are placed at 320 to 600 THz. Depending on the values of n and k for the actual material 

selected for the fractal radiator the ground plane and inner coaxial, this pattern is changed at the 

nanoscale as observed in the results given in Figure 2(c).  In this case, three resonances are found at 35, 

110 and 215 THz.  

     Current dimensions are dictated by the thickness of Graphene being less than 3 nm. The thickness 

of Graphene also influences the tunability. This dictates the minimum size of the mesh for modelling 

the fractal which must be a fraction of the thickness. To keep the number of mesh elements to a 

minimum, the other dimensions have also been kept to a minimum; hence, the 10 - 1000 THz range, as 

shown in Figure 2. By further scaling the antenna to operate in the range of frequency 10 - 120 THz,  

     Graphene may have the advantage of being able to tune the refractive index (surface conductivity) 

if the thickness is approximated to a single layer or a few layers, by applying a voltage across the layer 

and substrates. As discussed in [26], the opportunity to model the properties of Graphene given a suitable 

Maxwell equations solver relies on special conditions to be enforced for the current density within the 

radiator. This can be accomplished by evaluating the complex permittivity of Graphene as the frequency 

and other parameters are varied and treating the film thickness as an impedance boundary that 

establishes a relationship between the currents flowing on the two film surfaces. This increases the 

number of degrees of freedom and computational complexity, but, in this way, the total losses through 

the film can be computed with a more computationally stable discretization. Moreover, nanoscale effects 

such as interface roughness can be introduced, evaluated, and correlated with experimental evidence. 

Hence, back-to-back modeling and experimental activity are certainly necessary to further progress the 

design. 

  

 

 



 

 

 

 

 

 
  

 

 

Figure 2 – (a) Sierpinsky antenna model. (b) Sierpinski Global S-parameter (in dB) vs. frequency with 

three resonances at 35, 110 and 215 THz. (c) Sierpinski far-field polar coordinate patterns at selected 

frequencies. (d) 3D emission patterns. (e) Sierpinski surface E-fields at the resonance frequencies. (f) 

Sierpinski mid-section E-fields at the resonance frequencies. 

 

4. Conclusions 

A preliminary study has been performed for a Graphene fractal antenna to work in the THz frequencies 

with the opportunity to modulate the emission. The paper has proposed the conceptual background for 

the study, as well as the result of simulations based on Maxwell equation (Eq. 8). The model must be 

carefully revised to simulate the proposed antenna by using externally performed simulations for the 

conditions to be enforced in the Maxwell solver. 
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