
Technological University Dublin Technological University Dublin 

ARROW@TU Dublin ARROW@TU Dublin 

Articles School of Food Science and Environmental 
Health 

2018 

Unprecedented in Vitro Antitubercular Activitiy of Manganese(II) Unprecedented in Vitro Antitubercular Activitiy of Manganese(II) 

Complexes Containing 1,10- Phenanthroline and Dicarboxylate Complexes Containing 1,10- Phenanthroline and Dicarboxylate 

Ligands: Increased Activity, Superior Selectivity, and Lower Ligands: Increased Activity, Superior Selectivity, and Lower 

Toxicity in Comparison to Their Copper(II) Analogs Toxicity in Comparison to Their Copper(II) Analogs 

Pauraic McCarron 
Maynooth University, Department of Chemistry, Maynooth, Ireland 

Malachy McCann 
Maynooth University, Department of Chemistry, Maynooth, Ireland 

Michael Devereux 
Technological University Dublin, Michael.Devereux@tudublin.ie 

See next page for additional authors 

Follow this and additional works at: https://arrow.tudublin.ie/schfsehart 

 Part of the Chemistry Commons 

Recommended Citation Recommended Citation 
McCarron, P., McCann M. & Devereux, M. (2018). Unprecedented in Vitro Antitubercular Activitiy of 
Manganese(II) Complexes Containing 1,10- Phenanthroline and Dicarboxylate Ligands: Increased Activity, 
Superior Selectivity, and Lower Toxicity in Comparison to Their Copper(II) Analogs. Frontiers in 
Microbiology, vol. 9, no. 2 July 2018, 2018, Article number 1432. doi:10.3389/fmicb.2018.01432 

This Article is brought to you for free and open access by the School of Food Science and Environmental Health at 
ARROW@TU Dublin. It has been accepted for inclusion in Articles by an authorized administrator of ARROW@TU 
Dublin. For more information, please contact arrow.admin@tudublin.ie, aisling.coyne@tudublin.ie, 
vera.kilshaw@tudublin.ie. 

https://arrow.tudublin.ie/
https://arrow.tudublin.ie/schfsehart
https://arrow.tudublin.ie/schfseh
https://arrow.tudublin.ie/schfseh
https://arrow.tudublin.ie/schfsehart?utm_source=arrow.tudublin.ie%2Fschfsehart%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/131?utm_source=arrow.tudublin.ie%2Fschfsehart%2F286&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie
mailto:arrow.admin@tudublin.ie,%20aisling.coyne@tudublin.ie,%20vera.kilshaw@tudublin.ie


Authors Authors 
Pauraic McCarron; Malachy McCann; Michael Devereux; Kevin Kavanagh; Ciaran M. Skerry; Petros C. 
Karakousis; Ana Carolina Aor; Thaís P. Mello; Dos Santos, André Luis Souza Dos Santos, André Luis 
Souza; Débora Leite Campos; and Fernando R. Pavan 

This article is available at ARROW@TU Dublin: https://arrow.tudublin.ie/schfsehart/286 

https://arrow.tudublin.ie/schfsehart/286


ORIGINAL RESEARCH
published: 02 July 2018

doi: 10.3389/fmicb.2018.01432

Frontiers in Microbiology | www.frontiersin.org 1 July 2018 | Volume 9 | Article 1432

Edited by:

Rustam Aminov,

University of Aberdeen,

United Kingdom

Reviewed by:

Thomas Dick,

Rutgers, The State University of

New Jersey, United States

Naresh Singhal,

University of Auckland, New Zealand

*Correspondence:

Malachy McCann

malachy.mccann@mu.ie

Fernando R. Pavan

fernandopavan@fcfar.unesp.br

Specialty section:

This article was submitted to

Antimicrobials, Resistance and

Chemotherapy,

a section of the journal

Frontiers in Microbiology

Received: 05 April 2018

Accepted: 11 June 2018

Published: 02 July 2018

Citation:

McCarron P, McCann M, Devereux M,

Kavanagh K, Skerry C, Karakousis PC,

Aor AC, Mello TP, Santos ALS,

Campos DL and Pavan FR (2018)

Unprecedented in Vitro Antitubercular

Activitiy of Manganese(II) Complexes

Containing 1,10-Phenanthroline and

Dicarboxylate Ligands: Increased

Activity, Superior Selectivity, and

Lower Toxicity in Comparison to Their

Copper(II) Analogs.

Front. Microbiol. 9:1432.

doi: 10.3389/fmicb.2018.01432

Unprecedented in Vitro
Antitubercular Activitiy of
Manganese(II) Complexes Containing
1,10-Phenanthroline and
Dicarboxylate Ligands: Increased
Activity, Superior Selectivity, and
Lower Toxicity in Comparison to
Their Copper(II) Analogs

Pauraic McCarron 1,2, Malachy McCann 1*, Michael Devereux 2, Kevin Kavanagh 3,

Ciaran Skerry 4, Petros C. Karakousis 4, Ana C. Aor 5, Thaís P. Mello 5, André L. S. Santos 5,

Débora L. Campos 6 and Fernando R. Pavan 6*

1Chemistry Department, Maynooth University, National University of Ireland, Maynooth, Ireland, 2 The Center for Biomimetic

and Therapeutic Research, Focas Research Institute, Dublin Institute of Technology, Dublin, Ireland, 3 Biology Department,

Maynooth University, National University of Ireland, Maynooth, Ireland, 4Division of Infectious Diseases, Center for

Tuberculosis Research, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, United States,
5Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro,

Rio de Janeiro, Brazil, 6 Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, São Paulo, Brazil

Mycobacterium tuberculosis is the etiologic agent of tuberculosis. The demand for new

chemotherapeutics with unique mechanisms of action to treat (multi)resistant strains

is an urgent need. The objective of this work was to test the effect of manganese(II)

and copper(II) phenanthroline/dicarboxylate complexes against M. tuberculosis. The

water-soluble Mn(II) complexes, [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O

(1) and {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3) (odaH2 = octanedioic acid,

phen = 1,10-phenanthroline, tddaH2 = 3,6,9-trioxaundecanedioic acid), and

water-insoluble complexes, [Mn(ph)(phen)(H2O)2] (5), [Mn(ph)(phen)2(H2O)]·4H2O

(6), [Mn2(isoph)2(phen)3]·4H2O (7), {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O

(8) and [Mn(tereph)(phen)2]·5H2O (9) (phH2 = phthalic acid, isophH2 =

isophthalic acid, terephH2 = terephthalic acid), robustly inhibited the viability of

M. tuberculosis strains, H37Rv and CDC1551. The water-soluble Cu(II) analog of (1),

[Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2), was significantly less effective against both

strains. Whilst (3) retarded H37Rv growth much better than its soluble Cu(II) equivalent,

{[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4), both were equally efficient against CDC1551.

VERO and A549 mammalian cells were highly tolerant to the Mn(II) complexes,

culminating in high selectivity index (SI) values. Significantly, in vivo studies using Galleria

mellonella larvae indicated that the metal complexes were minimally toxic to the larvae.

The Mn(II) complexes presented low MICs and high SI values (up to 1347), indicating

their auspicious potential as novel antitubercular lead agents.

Keywords:Mycobacterium tuberculosis, manganese(II), 1, 10-phenanthroline,metal-based complex, antimicrobial

agent, Galleria mellonella
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INTRODUCTION

Mycobacterium tuberculosis is a pathogenic, acid-alcohol
resistant bacillus and is responsible for the highly contagious and
potentially fatal disease, tuberculosis (TB) (Ryan et al., 2014).
The bacterium has an unusual, impermeable, waxy coating
composed mainly of mycolic acids, a feature in part responsible
for its inherent resistance to numerous drugs. The infected host
is thought to contain populations of M. tuberculosis in cavitary
lesions, closed caseous lesions, and withinmacrophages (Bennett,
1994). In cavities, the oxygen level is high, the medium is neutral
or slightly alkaline and replication is relatively fast. With the
other two populations, the oxygen concentration is lower,
the medium is neutral or acidic and multiplication is slower.
The disease most commonly involves the lungs and is readily
spread via aerosol. However, the infection may also spread to
distant sites, such as the brain, kidneys, spleen, liver, and bones
(Krishnan et al., 2010). In 2016, there were 9.6 million new cases
of TB and 1.5 million deaths (Who.int). Furthermore, there has
been an alarming rise in the number of patients presenting with
multidrug-resistant (MDR) TB, which is defined by resistance to
the two front-line drugs, isoniazid (INH), and rifampicin, and
extensively drug-resistant (XDR) TB, which additionally exhibits
resistance to two of the most important second-line drug classes
(fluoroquinolones and injectable agents). The World Health
Organization estimated that ca. 4,80,000 people developed
MDR-TB in the world in 2014, and that 9.7% of these cases had
XDR-TB (Who.int). The treatment for MDR-TB and XDR-TB is
costly, toxic, lengthy and less effective than the standard regime,
which contributes to medical non-adherence and the emergence
of totally drug-resistant strains (TDR-TB). Clearly, in order to
effectively treat these highly resistant strains of M. tuberculosis
there is an urgent need for new drug classes possessing novel
mechanisms of action.

Throughout classical antiquity, empirical formulations
comprising metal ions have been used for medicinal purposes.
However, following the discovery of penicillin and other drugs of
biological and synthetic organic origin the clinical use of metallo
compounds declinedmarkedly. But within the past 50 years there
has been a renaissance in metal-based pharmaceuticals, driven
mainly by problems of efficacy and resistance. Some examples
of therapeutically important, metal-containing systemic drugs
include platinum and arsenic for cancer treatment, samarium for
metastatic tumor pain relief, gold as an anti-arthritic, bismuth
as a gastrointestinal antimicrobial, antimony and arsenic as
anti-parasitics, iron in cardiovascular disease, lithium for bipolar
disorder, barium and gadolinium as diagnostic imaging agents,
radioactive isotopes of gallium, indium and technetium in
tomography, and radiopharmaceuticals containing strontium,
yttrium, samarium, and radium (Gielen and Tiekink, 2005;
Dabrowiak, 2009; Mjos and Orvig, 2014). Nanoparticulate silver
and silver salts are also being applied topically as antibacterial
agents in wound and burn treatments (Stobie et al., 2008;
Landsdown, 2010).

There are numerous examples where transition metal
complexes have been shown to inhibit the growth of M.
tuberculosis in vitro. Integration of metal ions into the drug

structure offers structural diversity, possible access to numerous
oxidation states of the metal and the potential of enhancing the
efficacy of an established organic drug through its coordination
to the metal (Viganor et al., 2015). Metal complexes containing
a variety of ligands, such as thiosemicarbazones, quinolones,
amines, imines and phenanthrolines, have shown substantial
growth inhibition of M. tuberculosis. Mechanistic studies have
been conducted on metal ligated by the pro-drug INH and
some of its derivatives. In particular, the octahedral Fe(II)
complex trianion, [Fe(CN)5(INH)]3−, which returned a MIC
value of 0.43µM (based on Na3[Fe(CN)5(INH)]·4H2O), has
been scrutinized in detail (Oliveira et al., 2004). Studies have
inferred that the mode of action of INH in blocking the
synthesis of M. tuberculosis cell wall mycolic acids is linked
to the in situ formation of coordination complexes with
redox-active metal ions like Cu(II) and Fe(II) (Bernardes-
Génisson et al., 2013). In the case of [Fe(CN)5(INH)]3−, it
is believed that the Fe(II) center initiates the oxidation of
the coordinated INH to form a bioactive species that confers
in vitro and in vivo growth inhibition activity against both
INH-sensitive and INH-resistant strains of M. tuberculosis. In
addition, cytotoxicity studies with [Fe(CN)5(INH)]3− against
mammalian cancer cells showed IC50 values >54µM, which
translated to a credible selectivity index (SI) of >125 (Oliveira
et al., 2004). More recently, Poggi et al. (2013) reported MIC
values of 2.2 and 0.41µM for the respective INH-containing
Cu(II) and Co(II) complexes, [Cu(INH)(H2O)]SO4·2H2O and
[CoCl(INH)2(H2O)]Cl·2.5H2O, against M. tuberculosis H37Rv.
Both complexes were only very sparingly soluble in water and
thought to be more lipophilic than uncoordinated INH. Very
encouraging SI values, established using VERO epithelial cells
(ATCC CCL81) and macrophage J774A.1 cells (ATCC TIB-67)
were obtained for the Cu(II) and Co(II) complexes.

In 1969, Dwyer et al. (1969) published their comprehensive,
landmark treatise on the in vitro and in vivo antibacterial
activities of dicationic Mn(II), Fe(II), Co(II), Ni(II),
Cu(II), Zn(II), Cd(II), and Ru(II) chelates containing
1,10-phenanthroline (phen), substituted phen (R-phen), 2.2’-
bipyridine (bipy), and substituted bipy (R-bipy) ligands. Against
M. tuberculosis H37Rv the bipy complexes were considerably
less potent than their phen analogs. Metal centers chelated by
the 5-NO2-phen ligand showed the most potent antitubercular
activity, with the substitutionally-inert Ru(II) tris chelate being
128-fold less active. Importantly, the bacilli did not develop
significant resistance to the 5-NO2-phen complexes. However,
treatment with the phen complexes did not increase the survival
of M. tuberculosis-infected mice relative to the untreated rodent
(Dwyer et al., 1969). The low in vivo activity was attributed
to either poor bioavailability at doses safe for the host and/or
a failure to access locations where the organism proliferates.
More recently, Hoffman and coworkers (Hoffman et al., 2013)
preparedmono- and binuclear Co(II) and Cu(II) phen complexes
incorporating the water-solubilizing pyrophosphate ligands,
formulating as {[Co(phen)2]2(µ-P2O7)}, [Co(phen)2(H2P2O7)],
{[Cu(phen)]2(µ-P2O7)}, and [Cu(phen)(H2O)(H2P2O7)].
Mononuclear [Cu(phen)(H2O)(H2P2O7)] was the least active
against M. tuberculosis H37Rv (MIC = 71.53µM) whilst its
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mono-Co(II) analog was the most potent (2.05µM). In addition,
all substances were active against MDR ATCC 49967, with the
dinuclear complexes, {[M(phen)2]2(µ-P2O7)}, showing the
greatest activity (MIC values of 2.41 and 2.80µM, respectively,
for Co(II) and Cu(II) derivatives). Additionally, SI values
(based on A549 cells) for the Co(II) complexes were much
larger than those of their respective Cu(II) counterparts. The
complexes resisted efflux mechanisms in mycobacteria and
interfered with multiple biochemical pathways. Dholariya
et al. (2013) reported the antitubercular activities of Cu(II)
complexes ligated by dicoumarol (dicoum) derivatives and
phen, formulated as [Cu(dicoum)(phen)(H2O)(OH)]·xH2O
(Devereux et al., 2000). Against M. tuberculosis H37Rv, only
complexes incorporating hydroxylated (-3-OH) and chlorinated
(-4-Cl) dicoumarols showed appreciable activity (MIC90 =

4.05 and 64.8µM, respectively). Patel et al. (2012) tested an
array of similar Cu(II) acyl coumarin/phen complexes which
displayed only moderate anti-M. tuberculosis activity (MIC
range 49.5->243µM). Segura et al. (2014) synthesized Ag(I)
thiourea (tu)/phen complexes, [{Ag(phen)(µ-tu)}2]X2 (X =

NO−
3 , CF3SO

−
3 ), having MIC values of 11.0 and 14.2µM (X =

NO−
3 and CF3SO

−
3 , respectively) against H37Rv.

In the present study, we report the in vitro anti-M.
tuberculosis activity of the water-soluble Mn(II) and Cu(II)
phen/dicarboxylate complexes (Figures 1,2), [Mn2(oda)
(phen)4 (H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O(1),
[Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2), {[Mn(3,6,9-
tdda)(phen)2] ·3H2O·EtOH}n (3) and {[Cu(3,6,9-
tdda)(phen)2]·3H2O·EtOH}n (4) (odaH2 = octanedioic acid,
tddaH2 = 3,6,9-trioxaundecanedioic acid) (Figure 2), and the
water-insoluble Mn(II) complexes, [Mn(ph)(phen)(H2O)2] (5),
[Mn(ph)(phen)2(H2O)]·4H2O (6), [Mn2(isoph)2(phen)3]·4H2O
(7), {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8) and
[Mn(tereph)(phen)2]·5H2O (9) (phH2 = phthalic acid, isophH2

= isophthalic acid, terephH2 = terephthalic acid) (Figure 2). In
addition, we present toxicity profiling data for the complexes,
obtained using mammalian VERO (normal kidney) and A549
(adenocarcinomic alveolar) epithelial cells in vitro and against
Galleria mellonella larvae for the in vivo systemic toxicity
study.

MATERIALS AND METHODS

Synthesis of Complexes
All the chemicals were purchased from commercial
sources and used without further purification. Complexes
1-9 (Devereux et al., 2000; Kellett et al., 2011; Gandra
et al., 2017) were prepared as previously reported by our
group.

Mycobacterial Strains
The M. tuberculosis strains that were utilized for these studies
were the well-characterized laboratory reference strain, H37Rv
(ATCC 27294) (Cole et al., 1998) and clinically-derived CDC1551
(Manca et al., 1999).

In Vitro Screening Against M. tuberculosis

H37Rv
The anti-mycobacterial activity of the complexes was determined
by the resazurin microtiter assay method (Palomino et al., 2002).
Stock solutions of the test complexes were prepared and diluted
in Middlebrook 7H9 broth (Difco) supplemented with oleic
acid, albumin, dextrose, and catalase (OADC enrichment –
BBL/Becton–Dickinson), to obtain the final drug concentration
range of 0.09–25 mg/L. INH was dissolved in distilled water and
was used as control. A suspension of H37Rv cells was cultured
inMiddlebrook 7H9 broth supplemented with OADC and 0.05%
Tween-80 until an OD600 of≈1.0. The culture was diluted to 5×
105 bacilli per mL and of 100 µL were added to each well of a 96-
well microplate together with equal volumes of the complexes.
Samples were set up in triplicate. The plates were incubated for 7
days at 37◦C. Resazurin (solubilized in water) was added (30 µL
of 0.01%). The fluorescence of the wells was read after 24 h with
a Cytation 3 R©. The MIC was defined as the lowest concentration
resulting in 90% inhibition of growth of the bacterium.

In Vitro Screening Against M. tuberculosis

CDC1551
A total of 105 bacilli (OD600 = 0.5) were inoculated into
separate tubes containing 1mL of supplemented Middlebrook
7H9 broth lacking Tween. To these cultures increasing (2-fold)
concentrations of test compounds were added and the tubes were
left standing at 37◦C for 14 days. The MIC was defined as the
lowest concentration failing to produce a visible pellet.

Mammalian Cell Cytotoxicity
A549 cytotoxicity was evaluated using the 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide
(MTT; Sigma-Aldrich, USA) assay. A549 lung epithelial cells
(104) were seeded into tissue culture plates (TPP, Switzerland)
and cultured during 24 h in confluence at 37◦C in a 5% CO2

atmosphere. The wells were then washed twice with DMEM
to remove non-adherent cells and the test compounds were
added in different concentrations (ranging from 0.0313 to 512
mg/L), followed by incubation the plates for 48 h under the
same conditions mentioned above. Subsequently, the cellular
viability was evaluated by adding the MTT reagent to each well
and by incubating the plates for 3 h, allowing the viable cells
containing active mitochondrial dehydrogenases to metabolize
the tetrazolium salt into formazan. The formazan crystals
were dissolved with DMSO (100 µL) and the absorbance was
measured using a Thermomax Molecular Device microplate
reader at 450 nm. In parallel, cytotoxicity was also performed
on normal epithelial cells VERO (ATCC CCL-81) as previously
described by Pavan et al. (2010). The cells were incubated at
37◦C in a humidified 5% CO2 atmosphere in flasks with a surface
area of 12.50 cm2 in DMEM medium (10mL) supplemented
with 10% fetal bovine serum, gentamicin sulfate (50 mg/L) and
amphotericin B (2mg/L). The technique consists of collecting the
cells using a solution of trypsin/EDTA, centrifugation (2,000 rpm
for 5min), counting the number of cells in a Neubauer chamber
and then adjusting the concentration to 3.4 × 105 cells/mL in
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FIGURE 1 | Ligand structures: 1,10-phenanthroline (phen), octanedioic acid (odaH2), 3,6,9-trioxaundecanedioic acid (tddaH2), phthalic acid (phH2), isophthalic acid

(isophH2), terephthalic acid (terephH2).

FIGURE 2 | Proposed structures of complexes utilized for anti-tubercular testing: [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O (1),

[Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2), {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3), {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4), [Mn(ph)(phen)(H2O)2] (5),

[Mn(ph)(phen)2(H2O)]·4H2O (6), [Mn2(isoph)2(phen)3]·4H2O (7), {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8), [Mn(tereph)(phen)2]·5H2O (9).

DMEM. Then, 200 µL of this suspension was deposited in each
well of a 96-well microplate to obtain a concentration of 6.8× 104

cells per well and incubated at 37◦C in an atmosphere of 5% CO2

for 24 h to allow the cells to attach to the microplate. Dilutions
on the test compounds were prepared to obtain concentrations
from 500 to 1.95 mg/L. The dilutions were added to the cells
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after the medium and the non-adherent cells were removed. The
cells were then incubated for an additional 24 h. The cytotoxicity
of the compounds was determined by adding 30 µL of resazurin
and reading on a Synergy H1 (BioTek R©) reader after 6 h of
incubation using a microplate and excitation and emission filters
at wavelengths of 530 nm and 590 nm, respectively. For both
cellular systems, the 50% cytotoxic concentration (CC50) was
defined as the compound concentration which caused a 50%
reduction in the number of viable cells. In addition, selectivity
index (SI) is calculated as follows: CC50 (mammalian cells)/MIC
(M. tuberculosis cells).

In Vivo Cytotoxicity
G. mellonella larvae in the 6th developmental stage were used
to determine the in vivo cytotoxicity of the test complexes
(Kellett et al., 2011; Desbois and Coote, 2012; McCann et al.,
2012). Thirty healthy larvae, each weighing between 0.2 and
0.4 g and with no cuticle discolouration, were used for each
experiment. Fresh solutions of the test complexes were prepared
immediately prior to testing under sterile conditions. Test
compounds (0.05 g) were dissolved in DMSO (1mL) and added
to sterile water (9mL) to give a stock solution/suspension
(5,000µg/mL). Test solutions/suspensions were prepared from
the corresponding stock solution using Millipore water only to
dilute to the desired concentration and each compound was
screened across the concentration range of 5,000–100 mg/L. Test
solutions/suspensions (20 µL) were administered to the larvae
by injection directly into the haemocoel through the last pro-
leg. The base of the pro-leg can be opened by applying gentle
pressure to the sides of the larvae and this aperture will re-
seal after removal of the syringe without leaving a scar. Larvae
were placed in sterile Petri dishes and incubated at 30◦C for
72 h. The survival of the larvae was monitored every 24 h. Death
was assessed by the lack of movement in response to stimulus
together with discolouration of the cuticle. Three controls were
employed in all assays. The first consisted of untouched larvae
maintained at the same temperature as the test larvae. The second
was larvae with the pro-leg pierced with an inoculation needle
but no solution injected. The third control was larvae that were
inoculated with 20 µL of sterile water.

RESULTS

Anti-mycobacterial Activity of Metal
Complexes
In vitro growth inhibitory data (MIC values) for the complexes,
MnCl2·2H2O, phen and the first-line anti-mycobacterial agent,
INH, against H37Rv and CDC1551 strains of M. tuberculosis
are displayed in Table 1. Based on µM concentrations, the
most active of the Mn(II) complexes against H37Rv were
[Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O (1)
and {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3), which had
MIC values comparable to INH (0.44µM). With the exception
of the Mn(II) complex (3), all of the metal complexes showed
markedly increased inhibitory activity (up to 10-fold in some
instances) against strain CDC1551 relative to H37Rv, and many
had an MIC value less than that of INH (0.44µM). Against

CDC1551, {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8), 1
and [Mn2(isoph)2(phen)3]·4H2O (7) were the most active (MIC
range 0.12–0.18µM), with an almost 3-fold increase in potency
compared to INH. The Cu(II) counterparts of 1 and 3, i.e.,
[Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2) and {[Cu(3,6,9-
tdda)(phen)2]·3H2O·EtOH}n (4), were considerably less active
against H37Rv, but this disparity was noticeably smaller for the
CDC1551 strain, possibly reflecting a degree of specificity by
these d9 metal complexes.

Activity Against Mammalian Vero and A549
Epithelial Cells
In vitro growth inhibitory data (IC50 values) for the compounds
against mammalian VERO and A549 epithelial cells are
listed in Table 1. Both cell lines were more tolerant of INH and
MnCl2·2H2O than phen and themetal-phen complexes.With the
exceptions of phen and {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n
(4), A549 cells were substantially more passive toward
the metal complexes than VERO cells. The two Cu(II)
complexes, [Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2)
and 4, were more toxic toward these mammalian cell
lines than the seven Mn(II) complexes. Of the Mn(II)
test samples, the water-soluble complex double salt,
[Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O(1),
had the smallest impact on the VERO cells, whilst water-
insoluble [Mn(ph)(phen)(H2O)2] (5) was the least cytotoxic
against A549 cells.

Activity Against G. mellonella Larvae
G. mellonella larvae possess an immune system which is
analogous to the human innate immune system and are now
commonly employed as a convenient, inexpensive, and less
ethically sensitive screening model to ascertain the in vivo
systemic toxicity of potential drugs, the results of which are
comparable to those derived from murine studies (Krishnan
et al., 2010; Gandra et al., 2017). Larvae were dosed with
varying concentrations of phen and the metal complexes and
the percentage of dead larvae was recorded (Table 2). At the
highest administered concentration of 0.1mg (333 mg/kg) of
test compound per larvae, 10% of the larvae treated with the
metal complexes survived, whilst all of the larvae injected at
this concentration with phen died. The Mn(II) complexes, 1,
3, and 7, and the Cu(II) complex, 2, all showed a marked
improvement in survival observed upon decreasing the inoculant
concentration to 0.02mg (67 mg/kg). There were no fatalities
when 0.01mg (33 mg/kg) of the test compounds were dispensed.
When assessing the relative toxicity of the test complexes an
important consideration is the number of phen ligands each
complex contains. From Table 3 it is apparent that the toxicity
order, when normalized to the number of phen ligands per
complex, is essentially unaltered.

DISCUSSION

Although the two mycobacterial strains, H37Rv and CDC1551,
are equally virulent (Manca et al., 1999) the latter strain is
known to induce a more rapid and robust host response in
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TABLE 1 | In vitro MIC values against two strains of M. tuberculosis (H37Rv and CDC1551), IC50 values for VERO and A549 epithelial cells and calculated SI values for

the test complexes and uncoordinated phen.

Compound M. tuberculosis H37Rv M. tuberculosis CDC1551 Cytotoxicity

MIC90

mg/L (µM)

SI

VERO

SI

A549

MIC100

mg/L (µM)

SI

VERO

SI

A549

IC50

mg/L (µM) VERO

cells

IC50

mg/L (µM) A549

cells

Isoniazid (INH) 0.06 (0.44) 5513 5284 0.06 (0.44) 5513 5284 332.7 (2426) 318.9 (2325)

1,10-phenanthroline (phen) 11.16 (61.93) 1 0.39 3.0 (16.65) 3 1.43 >10 (>55.49) 4.30 (23.9)

[Mn2(oda)(phen)4(H2O)2]

[Mn2(oda)(phen)4
(oda)2]·4H2O (1)

1.15 (0.47) 325 445 0.38 (0.15) 1017 1347 375 (152.55) >512 (>208.3)

[Cu2(oda)(phen)4](ClO4)2·

2.76H2O·EtOH (2)

16.60 (12.68) 0.71 0.06 1.50 (1.15) 8 0.65 11.7 (8.94) 0.98 (74.9)

{[Mn(3,6,9-tdda)(phen)2]

·3H2O·EtOH}n (3)

0.56 (0.76) 112 467 0.75 (1.02) 83 349 62.5 (84.96) 261.67 (355.70)

{[Cu(3,6,9-

tdda)(phen)2]·3H2O·EtOH}n (4)

10.03 (13.48) 0.58 0.11 0.75 (1.01) 8 1.41 5.85 (7.86) 1.06 (1.42)

[Mn(ph)(phen)(H2O)2] (5) 0.57 (1.31) 27 411 <0.19 (<0.44) >82 1234 15.6 (35.84) 234.51 (538.73)

[Mn(ph)(phen)2(H2O)]·4H2O (6) 1.42 (2.12) 8 183 0.38 (0.57) 31 682 11.7 (17.47) 259.34 (387.33)

[Mn2(isoph)2(phen)3]·4H2O (7) 1.56 (1.48) 80 164 <0.19 (<0.18) >661 1347 125 (118.95) 255.87 (243.50)

{[Mn(phen)2(H2O)2]}2(isoph)2
(phen)·12H2O (8)

3.01 (1.85) 16 84 <0.19 (<0.12) >240 1325 46.9 (28.82) 251.76 (154.70)

[Mn(tereph)(phen)2]·5H2O (9) 3.41 (5.09) 14 74 0.38 (0.57) 123 663 46.9 (70.05) 251.94 (376.28)

MnCl2·2H2O (Oliveira et al.,

2014)

>50 (>154) <3.7 <6.2 Nt NA NA 92.1 (568.7) 153.4 (947.3)

Included are the MIC values for MnCl2·2H2O (Oliveira et al., 2014). Selectivity Index (SI) = (CC50/MIC); Nt, not tested; NA, not applicable.

a mouse-infected model. The seven Mn(II) complexes were
more active against the H37Rv strain than the two Cu(II)
samples, but this inequality was less pronounced against
the CDC1551 strain, probably due to difference at media
culture. Previous studies involving the fungal pathogen, Candida
albicans, revealed that the dicarboxylic acids alone were not
bioactive (Devereux et al., 2000). This finding, coupled with
the fact that the current Mn(II) phen/dicarboxylate complexes
are 30–328 times more active against H37Rv than MnCl2·2H2O
and also show 12–132 times greater activity than phen alone
(Table 1), suggests the existence of a positive synergism between
the Mn(II) dication and its original phen/dicarboxylate ligand
set.

The low MIC values for [Mn2(oda)(phen)4(H2O)2]
[Mn2(oda)(phen)4(oda)2]·4H2O (1) and {[Mn(3,6,9-
tdda)(phen)2]·3H2O·EtOH}n (3) against H37Rv translated
to strikingly large selectivity index (SI) values as shown in
Table 1 (325/445 and 112/467, respectively, for VERO/A549
cells). Furthermore, the 3-fold increase in activity against
CDC1551 over H37Rv for 1 elevated the SI values to 1017/1347.
As the Cu(II) complexes, 2 and 4, were relatively more
toxic than the Mn(II) complexes toward the two types of
mammalian cells, this severely reduced the SI values of the
Cu(II) complexes. The highly cytotoxic nature of 2 and 4 toward
A549 cells parallels our previous findings for Cu(II)phen/diacid
complexes against cancer cells (Kellett et al., 2011). The
isophthalate/phen complexes, [Mn2(isoph)2(phen)3]·4H2O (7)
and {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8), showed
highly favorable SI values for CDC1551 when referenced against

VERO/A549 cells (>661/1347 and >240/1325, respectively),
and this is mainly attributable to their very low MIC100 values
(<0.18, <0.12µM) against the CDC1551 strain.

Dwyer et al. (1969) reported that the Mn(II), Cu(II), Zn(II)
and Cd(II) phen dicationic complexes, [M(phen)2](CH3CO2)2
and [M(R-phen)2](CH3CO2)2, all had similar activities against
H37Rv with MIC values ranging from approximately 30µM
for [M(phen)2]

2+ to 0.1µM for [M(5-NO2-phen)2]
2+. This

uniformity in activity between Mn(II) and Cu(II) contrasts
somewhat to our findings, which clearly show that in the
case of the phen/oda and phen/tdda ligand combinations the
Mn(II) complexes were 27- and 18-fold more active, respectively,
against H37Rv than their Cu(II) analogs. Against CDC1551, the
difference between the Mn(II) phen/oda and Cu(II) complexes
was less marked (10-fold), whilst the two phen/tdda samples
showed the same activity. It is primarily the high tolerance of
the mammalian cells toward the Mn(II) complexes, in contrast
to their Cu(II) analogs, that accounts for the remarkably high SI
values of the Mn(II) complexes. Also of relevance to the present
work is a recent publication (Oliveira et al., 2014) describing
the activity of a collection of water-insoluble, octahedral
Mn(II) complexes of formula, [Mn(atc-R)2] (atc-R = tridentate
2-acetylpyridine-N(4)-R-thiosemicarbazone anion), against M.
tuberculosis H37Rv. MIC values, which were dependent on the
nature of the pendant R group, ranged from 50.69 to 1.31µM,
with a corresponding SI range (measured against VERO cells)
of 5.3->641 (for [Mn(atc-Me)2] to [Mn(atc-Ph)2], respectively).
On comparing the excellent and somewhat similar SI values
of hydrophobic [Mn(atc-Ph)2] with relatively hydrophilic
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TABLE 2 | Percentage mortality of G. mellonella larvae 72 h post-injection with various dosages of test compounds.

Compound Administered amount/% Mortality µg per larvae (mg/kg)

100 (333.33) 40 (133.33) 20 (66.67) 10 (33.33)

1,10-phenanthroline (phen)24 µmol 0.55 0.22 0.11 0.06

% Mortality 100% 80% 80% 0%

[Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O

(1)24
µmol 0.041 0.016 0.008 0.004

% Mortality 90% 90% 40% 0%

[Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2)24 µmol 0.076 0.030 0.015 0.008

% Mortality 90% 90% 50% 0%

{[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3) µmol 0.136 0.056 0.028 0.014

% Mortality 90% 80% 50% 0%

{[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4) µmol 0.134 0.054 0.027 0.013

% Mortality 90% 90% 80% 0%

[Mn(ph)(phen)(H2O)2] (5) µmol 0.230 0.092 0.046 0.023

% Mortality 90% 90% 80% 0%

[Mn(ph)(phen)2(H2O)]·4H2O (6) µmol 0.149 0.060 0.030 0.015

% Mortality 90% 90% 80% 0%

[Mn2(isoph)2(phen)3]·4H2O (7) µmol 0.095 0.040 0.020 0.010

% Mortality 90% 80% 60% 0%

{[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8) µmol 0.061 0.025 0.012 0.006

% Mortality 90% 90% 80% 0%

[Mn(tereph)(phen)2]·5H2O (9) µmol 0.149 0.060 0.030 0.015

% Mortality 90% 90% 80% 0%

TABLE 3 | Toxicity ordering of the compounds against G. mellonella larvae when the results from Table 2 are normalized with respect to phen content.

In vivo G. mellonella tolerance order in

µmol

No. of phens In vivo G. mellonella tolerance order in

µmol (Normalized against no. of phens)

No. of

phens

1st [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·

4H2O (1)

8 1st [Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·

4H2O (1)

8

2nd {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3) 2 2nd {[Mn(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (3) 2

3rd [Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH (2) 4 2nd [Cu2(oda)(phen)4](ClO4)2·2.76H2O·EtOH

(2)

4

4th [Mn2(isoph)2(phen)3]·4H2O (7) 3 3rd [Mn2(isoph)2(phen)3]·4H2O (7) 3

5th 1,10-phenanthroline (phen) 1 4th 1,10-phenanthroline (phen) 1

6th [Mn(ph)(phen)(H2O)2] (5) 1 5th [Mn(ph)(phen)2(H2O)]·4H2O (6) 2

7th [Mn(ph)(phen)2(H2O)]·4H2O (6) 2 5th {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O

(8)

5

7th [Mn(tereph)(phen)2]·5H2O (9) 2 5th [Mn(tereph)(phen)2]·5H2O (9) 2

8th {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4) 2 6th {[Cu(3,6,9-tdda)(phen)2]·3H2O·EtOH}n (4) 2

9th {[Mn(phen)2(H2O)2]}2(isoph)2(phen)·12H2O (8) 5 6th [Mn(ph)(phen)(H2O)2] (5) 1

[Mn2(oda)(phen)4(H2O)2][Mn2(oda)(phen)4(oda)2]·4H2O (1),
it is the very high IC50 value for [Mn(atc-Ph)2] that is the
dominant feature, whilst for 1 the major contributing factor is
the extremely low MIC value.

Whilst relatively small quantities of transition metal ions
(primarily Mn, Fe, Co, Ni, Cu, Zn) are essential micronutrients
for sustaining microbial growth and homeostasis (Braymer
and Giedroc, 2014; Neyrolles et al., 2015), exposure to high
concentrations can be devastating as they can bind to and disable

important biomolecules and/or promote oxidative stress through
Fenton chemistry. It is important to note that Mn(II) and Cu(II)
complexes are kinetically labile, meaning that they can rapidly
exchange their original ligands (phen and dicarboxylate in the
present cases) for other donor ligands present in a biological
milieu which includes the bacterium itself. Thus, it is anticipated
that a dynamic equilibrium is rapidly established between the
original M(II)-phen/dicarboxylate and the newly formed various
M(II)-bioligand complexes.
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There are several potential explanations for the superior
activity of the Mn(II) phen/dicarboxylates 1 and 3 against
M. tuberculosis H37Rv relative to their Cu(II) equivalents, 2
and 4. Various metal dication transporter proteins have been
identified for M. tuberculosis, which includes CTR1 for Cu(II),
[(Manca et al., 1999) multimetal Mramp (Mn(II), Fe(II), Cu(II)
and Zn(II)] (Agranoff et al., 1999) and a fleet of P1B-ATPases
for Mn(II), Cu(II) and some other metals (Padilla-Benavides
et al., 2013). It is known that Cu(II) must be reduced to Cu(I),
possibly by membrane associated copper reductases (Hassett and
Kosman, 1995), before being recruited by the Cu(I) importer
protein, CTR1. On the other hand, metallothioneins present
in the bacterial cytosol prevent copper overload and toxicity
by sequestering surplus copper ions (Wang et al., 2011). In
addition, the copper transporter protein, ATP7A, can translocate
to the plasma membrane and pump excess copper out of the
cell (Petris and Mercer, 1999). The outer membrane channel
protein, Rv1698, ofM. tuberculosis is also reported to efflux excess
Cu(II) from the mycobacterial cell envelope, a process which is
necessary for its survival (Wolschendorf et al., 2011). Likewise,
the membrane protein, MctB, reduces intracellular copper levels
and is required for full M. tuberculosis copper resistance and
virulence in mice and guinea pigs (Wolschendorf et al., 2011). It
may be an inability to reduce administered Cu(II) to Cu(I) and/or
sequestration and efflux that is managing to buffer the amount
of Cu(II) to the relatively non-hazardous levels observed for the
current Cu(II) complexes against H37Rv in comparison to their
Mn(II) analogs.

Recent research has shown that M. tuberculosis may be
highly susceptible to specific types of reactive oxygen species
(ROS) and reactive nitrogen species (RNS) (Cirillo et al., 2009;
Voskuil et al., 2011; Roca and Ramakrishnan, 2013; Vilcheze
et al., 2013), and the bacteria releases a defensive brigade of
enzymes/proteins to counteract the oxidative and nitrosative
onslaught by mammalian host cells (Kim et al., 2012). Whilst
nitric oxide (NO) has a bacteriostatic effect on M. tuberculosis
H2O2 is not bacteriostatic at concentrations below 50mM, but
above this concentration the peroxide is bactericidal (Voskuil
et al., 2011). Thus, it would appear that M. tuberculosis cells
are not equally or universally susceptibility to ROS or RNS and
that this may help explain the superior growth inhibitory effects
exhibited by the Mn(II)-based test complexes over the Cu(II)
complexes, especially against the H37Rv strain. Complex 1 is an
avid generator of intracellular ROS (Kellett et al., 2011) and its
strong anti-mycobacterial activity may be due to the type and
quantity of free radicals or ROS/RNS (superoxide O2·

−, hydroxyl
radical ·OH, ·NO) that the Mn(II) complexes produce. It is
conceivable that 1 is generating higher levels of O2·

−, ·NO and
H2O2 than its Cu(II)-based analog, 2. In addition, the production
of extremely destructive ·OH radicals by 1 may also account for
its high anti-mycobacterial activity, as well as that of all of the test
Mn(II) complexes. If this is indeed the mode of action of these
Mn(II) complexes, then they could possibly overwhelm any strain
with acquired resistance to INH. INH is a prodrug and is oxidized
by a bacterial catalase-peroxidase enzyme (KatG) present in M.
tuberculosis, forming an isonicotinic acyl moiety (either an acyl
radical or acyl anion). The acyl moiety forms a strong covalent

bond to the nicotinamide ring of the nicotinamide adenine
dinucleotide cation (NAD+), and this acyl-NAD entity docks
into the active site of the enoyl-acyl carrier protein reductase,
InhA, the enzyme which mediates fatty acid synthesis (Dessen
et al., 1995; Zabinski and Blanchard, 1997; Rozwarski et al., 1998;
Oliveira et al., 2014). Fatty acids are required for the subsequent
production of mycolic acid, which is a key component of the
mycobacterial cell wall. Thus, INH indirectly blocks bacterial
cell wall construction, leading to the demise of the organism.
INH resistance is frequently associated with KatG structural
gene alterations, resulting in KatG mutant enzymes with reduced
ability to form activated INH compounds (Jagielski et al., 2014).
Both KatG and Mn complexes/ions are able to oxidize INH
and form the active isonicotinoyl–NAD adduct (Magliozzo and
Marcinkeviciene, 1997; Oliveira et al., 2014; Viganor et al., 2015).
Also of note is that M. smegmatis, a closely related but non-
pathogenic bacterium, contains a variant of KatG which has been
shown to require Mn(II) ions for activation of INH, possibly
via oxidation of Mn(II) to Mn(III) which in turn oxidizes INH
(Magliozzo and Marcinkeviciene, 1997). Conversely, Mn(II) ions
are not essential for M. tuberculosis KatG-mediated oxidative
activation of INH although the addition of exogenous Mn(II)
ions has been shown to enhance the activation of INH by wild-
type and various mutants ofM. tuberculosisKatG (Lei et al., 2000;
Wei et al., 2003). Interestingly, INH-resistant clinical isolates of
M. tuberculosis have a high incidence of a mutant variant of the
KatG enzyme, namely KatG S315, in which the replacement of a
serine residue at position 315 in the catalytic domain results in
the inability to oxidize INH to isonicotinic acid (Wei et al., 2003;
Jagielski et al., 2014). The ability to oxidize INH can be restored to
wild-type KatG S315 mutants and other KatG variants (obtained
via site directed mutagenesis) by the addition of Mn(II) ions (Lei
et al., 2000; Wei et al., 2003). M. smegmatis cells, unlike most
strains ofM. tuberculosis, are intrinsically highly resistant to INH
(MIC >30 mg/mL; >218.76mM), a feature which may be due,
in part, to the low levels of Mn(II) ions present in M. smegmatis
cells in vivo (Wei et al., 2003). Therefore, co-administration of
INHwith the current Mn(II)-based complexes could result in the
metal complex acting as an alternative oxidant, mimicking the
activity of KatG and thus providing a non-enzymatic oxidation
and consequent activation of INH, whilst also independently
expressing its ROS-mediated growth inhibitory effect on the
bacteria. Investigating a possible positive synergism between
the Mn(II) complexes and INH will be the focus of a future
investigation by our research network.

Encouragingly, all of the metal complexes appear to be well-
tolerated, in vivo, by G. mellonella larvae (Tables 2 3). These
data suggest that the relative in vivo toxicity profile of the metal
complexes is not dependent on the number of coordinated phen
ligands present per complex. In addition, regarding the nuclearity
(mononuclear, binuclear, tetranuclear) of the metal complexes,
there does not appear to be an increase in toxicity upon
increasing the metal content of the complex. For example, the
tetra-Mn(II) complex 1 is much less toxic toward G. mellonella
than themono-Mn(II) complex 9. Similarly, the di-Cu(II) species
2 is better tolerated than mono-Cu(II) 4. Although Mn(II) and
Cu(II) complexes are inherently liable, comparisons based on
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phen and metal content of the complexes suggest that it is the
complex as a whole, rather than the individual components of
the complexes, that are responsible for the observed effects on
the larvae.

CONCLUSION

In conclusion, Mn(II) phen/dicarboxylate complexes, which
can be synthesized efficiently, utilizing economical and readily
available starting materials, offer realistic promise as effective,
selective and safe lead candidates in the search for new drugs for
the treatment of TB.
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