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Infectious diseases remain one of the leading causes of morbidity and mortality

worldwide. The WHO and CDC have expressed serious concern regarding the

continued increase in the development of multidrug resistance among bacteria.

Therefore, the antibiotic resistance crisis is one of the most pressing issues in global

public health. Associated with the rise in antibiotic resistance is the lack of new

antimicrobials. This has triggered initiatives worldwide to develop novel and more

effective antimicrobial compounds as well as to develop novel delivery and targeting

strategies. Bacteria have developed many ways by which they become resistant to

antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target

protection, target overproduction, altered target site/enzyme, increased efflux due to

over-expression of efflux pumps, among others. Other more complex phenotypes,

such as biofilm formation and quorum sensing do not appear as a result of the

exposure of bacteria to antibiotics although, it is known that biofilm formation can

be induced by antibiotics. These phenotypes are related to tolerance to antibiotics

in bacteria. Different strategies, such as the use of nanostructured materials, are

being developed to overcome these and other types of resistance. Nanostructured

materials can be used to convey antimicrobials, to assist in the delivery of novel drugs

or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles

(e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance

mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm

formation or other important processes. Other strategies, including the combined

use of plant-based antimicrobials and nanoparticles to overcome toxicity issues,

are also being investigated. Coupling nanoparticles and natural-based antimicrobials

(or other repurposed compounds) to inhibit the activity of bacterial efflux pumps;

formation of biofilms; interference of quorum sensing; and possibly plasmid curing,

are just some of the strategies to combat multidrug resistant bacteria. However,

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2018.01441
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2018.01441&domain=pdf&date_stamp=2018-07-02
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pmvb@fct.unl.pt
mailto:mmartins@tcd.ie
mailto:ma.fernandes@fct.unl.pt
https://doi.org/10.3389/fmicb.2018.01441
https://www.frontiersin.org/articles/10.3389/fmicb.2018.01441/full
http://loop.frontiersin.org/people/112262/overview
http://loop.frontiersin.org/people/105323/overview
http://loop.frontiersin.org/people/546858/overview
http://loop.frontiersin.org/people/437078/overview
http://loop.frontiersin.org/people/577582/overview
http://loop.frontiersin.org/people/84791/overview
http://loop.frontiersin.org/people/464205/overview


Baptista et al. Nanoparticle Strategies Against MDR Bacteria

the use of nanoparticles still presents a challenge to therapy and much more research is

needed in order to overcome this. In this review, we will summarize the current research

on nanoparticles and other nanomaterials and how these are or can be applied in the

future to fight multidrug resistant bacteria.

Keywords: antimicrobial resistance, multidrug resistance, nanomaterials, nanoparticles, plant-based compounds,

novel antimicrobial agents, nanotheranostics

INTRODUCTION

Multidrug resistant (MDR) bacteria remain the greatest challenge
in public health care. The numbers of infections produced
by such resistant strains are increasing globally. This acquired
resistance of pathogens presents a key challenge for many
antimicrobial drugs. Recent advances in nanotechnology offer
new prospects to develop novel formulations based on distinct
types of nanoparticles (NPs) with different sizes and shapes and
flexible antimicrobial properties.

NPs may offer a promising solution as they can not only
combat bacteria themselves but can also act as carriers for
antibiotics and natural antimicrobial compounds (Wang et al.,
2017a). While various materials have been explored from
liposomal to polymer based nano-drug carriers, metallic vectors,
such as gold NPs, are attractive as core materials due to their
essentially inert and nontoxic nature (Burygin et al., 2009).
Arguably the most attractive aspect of NPs drug delivery systems
is their ability to introduce a wide range of therapeutics,
either bound to their large surface area or contained within
the structure, to the site of infection effectively and safely by
having a controlled rate of targeted delivery (Pissuwan et al.,
2011; Gholipourmalekabadi et al., 2017). By improving the
pharmacokinetic profile and therapeutic index of encapsulated
drugs compared to free drug equivalents, the dose required to
achieve clinical effects can be dramatically decreased (Gao et al.,
2018). This in turn, can reduce the toxicity and the adverse side
effects associated with high systemic drug concentrations and
frequent dosing (Liu et al., 2009).

This review covers the latest approaches in the development
of new nanobiotechnology approaches that may challenge the
medical practice to fight bacteria and particularly MDR bacteria.

NANOMATERIALS AGAINST BACTERIA

Nanomaterials have at least one dimension in the nanometer
scale range (1–100 nm) that convey particular physical and
chemical properties considerably different from those of bulk
materials (Wang et al., 2017a). Among the wide range of
nanomaterials, particular interest has been directed toward NPs.
NPs have a number of features, which make them favorable as
vectors for drugs to combat disease-causing pathogens. These
include their enhancement of drug solubility and stability (Huh
and Kwon, 2011); their ease of synthesis (Gholipourmalekabadi
et al., 2017); their biocompatibility with target agents; and their
modulated release, which can be controlled by stimuli, such
as light, pH and heat (Wang Z. et al., 2017). Their distinctive

functionality in drug delivery is achieved by their ultra-small
size and vast surface to volume ratios. This is a key competitive
advantage over conventional therapies in the treatment of
infections caused by intracellular pathogens and MDR strains.
Their functionalization with different (bio)molecules is another
important feature. These comprise NPs containing Ag, Au, Al,
Cu, Ce, Cd, Mg, Ni, Se, Pd, Ti, Zn, and super-paramagnetic Fe
(Hemeg, 2017; Slavin et al., 2017). AgNPs are considered the
most effective nanomaterial against bacteria but other metallic
NPs, such as CuONPs, TiONPs, AuNPs, and Fe3O2NPs, have
also demonstrated bactericidal effects (Dakal et al., 2016; Hemeg,
2017; Slavin et al., 2017).

While poor membrane transport limits the potency of many
antibiotics (Andrade et al., 2013), drug loaded NPs vehicles can
enter host cells via endocytosis, facilitating their intracellular
entry (Wang Z. et al., 2017). Membrane penetration can also be
achieved through interactions with surface lipids, for example,
using gold NPs in the co-administration of protein-based drugs
(Huang et al., 2010). The therapeutic appeal of NPs is enhanced
by their ability to confer physical protection against bacterial
resistance mechanisms (Huh and Kwon, 2011). Furthermore,
the potential to load multiple drug combinations into NPs
presents a highly complex antimicrobial mechanism of action,
to which, bacteria are unlikely to develop resistance (Huh
and Kwon, 2011). Although, this is usually believed to be the
case, there are some studies reporting development of bacterial
resistance against silver NPs (Panáček et al., 2018). There is
also evidence that exposure of bacteria to this type of NPs
may increase its antibiotic tolerance (Kaweeteerawat et al.,
2017).

NPs can exert their antibacterial activity via a multitude of
mechanisms, such as: (1) direct interaction with the bacterial cell
wall; (2) inhibition of biofilm formation; (3) triggering of innate
as well as adaptive host immune responses; (4) generation of
reactive oxygen species (ROS); and (5) induction of intracellular
effects (e.g., interactions with DNA and/or proteins). Because
they do not present the same mechanisms of action of standard
antibiotics (Figure 1), they can be of extreme use against MDR
bacteria (Singh K. et al., 2014; Aderibigbe, 2017; AlMatar et al.,
2017; Hemeg, 2017; Natan and Banin, 2017; Rai et al., 2017; Slavin
et al., 2017; Zaidi et al., 2017; Bassegoda et al., 2018; Katva et al.,
2018; Siddiqi et al., 2018).

Besides the broad-spectrum antibacterial properties that NPs
have against Gram-positive and -negative bacteria, NPs have
been used as vectors for the delivery of antimicrobial moieties
that greatly improve their biocidal properties (Beyth et al., 2015;
Rai A. et al., 2016; Singh J. et al., 2016; Esmaeillou et al.,
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FIGURE 1 | Different mechanisms of action of NPs in bacterial cells. The combination in a single nanomaterial of a multitude of cellular effects may have a tremendous

impact in fighting MDR bacteria. DNA, deoxyribonucleic acid; ROS, Reactive oxygen species; AuNPs, gold NPs; CuONPs, Copper oxide NPs; AgNPs, silver NPs;

Fe3O4NPs, iron oxide NPs; ZnONPs, zinc oxide NPs.

2017; Wang et al., 2017a; Zaidi et al., 2017; Hadiya et al.,
2018). Some of the advantages of using NPs as vectors are
due to their small and controllable size; their protective action
against enzymes that would otherwise destroy antimicrobial
compounds; their ability to actively deliver antibiotics; and
their capability to combine several therapeutic modalities onto
a single nanomaterial (e.g., several antibiotics/compounds onto
the same NPs for combined action; combining silencing agents
and drugs, etc.) (Turos et al., 2007; Huh and Kwon, 2011;
Mohammed Fayaz et al., 2011; Liu et al., 2013; Qi et al., 2013;
Li et al., 2014; Ranghar et al., 2014; Thomas et al., 2014;
Wang et al., 2014; Payne et al., 2016; Rai A. et al., 2016;
Singh J. et al., 2016; Yeom et al., 2016; Esmaeillou et al.,
2017; Zaidi et al., 2017; Zong et al., 2017; Hadiya et al.,
2018).

NPs carriers can tackle bacterial threats “passively,” through
prolonged drug retention at the specific infection site, or
“actively,” through surface conjugation with active molecules
that bind a certain target (Wang Z. et al., 2017). The balance
between the surface modification interaction strength, the
compound release rate and the stability of the conjugate
should be carefully considered for the design of an effective
“active” delivery strategy (Burygin et al., 2009; Pissuwan et al.,
2011). In an attempt to overcome their therapeutic limitations,
various research groups have investigated the conjugation of

antibiotics to NPs (Tiwari et al., 2011). For example, Saha
et al. describe the direct conjugation of ampicillin, streptomycin
and kanamycin to gold NPs (Saha et al., 2007). The resulting
complexes were shown to have lower minimum inhibitory
concentration (MIC) than the free drug counterparts against
both Gram -negative and -positive bacteria. While the detailed
mechanism of these effects are not explained by the authors
in the above case, Fayaz et al. has attempted to uncover
how their vancomycin functionalized gold NPs demonstrated
activity against strains which are usually vancomycin resistant
based either on mutations (vancomycin resistant Staphylococcus
aureus), or membrane structure (Escherichia coli) (Mohammed
Fayaz et al., 2011). They propose that only when the antibiotic
was complexed with the NPs could this result in nonspecific,
multivalent interactions and anchoring of the carrier to the cell
wall synthesis proteins. Based on the presence of pits in the cells,
which was observed using transmission electron microscopy,
the authors concluded that the consequence of the non-specific
binding was compromised membrane integrity, and subsequent
cell death (Mohammed Fayaz et al., 2011; Gao et al., 2018).

ANTIBACTERIAL MECHANISM OF NPS

The antibacterial activity of NPs against MDR bacteria and
biofilms depends on a number of factors, namely, their large
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surface area in contact with bacteria through electrostatic
attraction, van der walls forces or hydrophobic interactions;
on the nanoparticle size and stability; together with the drug
concentration (Chen et al., 2014; Gao et al., 2014; Li et al., 2015).
The interaction of NPs with bacteria generally triggers oxidative
stress mechanisms, enzymatic inhibition, protein deactivation
and changes in gene expression. Still, the most common
antibacterial mechanisms are related to oxidative stress, metal ion
release, and non-oxidative mechanisms (Wang et al., 2017a; Zaidi
et al., 2017 see Figure 1).

Oxidative stress induced by ROS is one of the most important
mechanisms assisting the antibacterial activity of NPs (Dwivedi
et al., 2014; Rudramurthy et al., 2016). ROS are natural
byproducts of cellular oxidative metabolism and have significant
important roles in the modulation of cell survival and death,
differentiation and cell signaling. In bacteria, ROS are formed
from aerobic respiration, and their production is balanced by
the cell antioxidant machinery but upon an additional ROS
insult, oxidation of biomolecules, and cell components result
in severe cellular damage (Li et al., 2012b). The excessive
production of ROS leads to a disturbed redox homeostasis
resulting in oxidative stress, affecting membrane lipids and
altering the structure of DNA and proteins (Dwivedi et al., 2014).
It has been shown that while O−

2 and H2O2 can be neutralized
by endogenous antioxidants, ·OH and singlet oxygen (1[O2])
lead to acute microbial death (Zaidi et al., 2017). Different
NPs may generate distinctive ROS, such as superoxide (O−

2 )
or hydroxyl radical (·OH), hydrogen peroxide (H2O2), and
1[O2]) (Wang et al., 2017a). In this manner, the level of ROS
generated by NPs is dependent on the chemical nature of
the NPs themselves. Application of metallic NPs is currently
being considered to overcome bacterial infections since they
have shown antimicrobial efficacy due to their high surface-
to-volume ratio. An increase ratio is usually accompanied by
increased production of ROS, including free radicals. Zhang
et al. (2013) demonstrated that ROS generation and metal
ion release significantly enhanced the antibacterial activity
through uncoated AuNPs in aqueous suspension under UV
irradiation (365 nm). Umamaheswari (Umamaheswari et al.,
2014) demonstrated that the antibacterial activity of AuNPs
against E. coli, Salmonella Typhi, Pseudomonas aeruginosa and
Klebsiella pneumoniae were due to oxidative stress caused by
increased intracellular ROS. A recent study (Zhang et al., 2013)
evaluated AuNPs and AuNPs -laser combined therapy against
C. pseudotuberculosis and suggested that the mechanism of
action is related with ROS production, that causes an increase
of oxidative stress of microbial cells in the form of vacuole
formation as an indication of potent activity. This effect was
higher with AuNPs-laser, causing a rapid loss of bacterial cell
membrane integrity due to the fact that laser light enhances
at least one fold antimicrobial activity of AuNPs. Several other
studies have addressed the role of metal NPs to induce MDR
bacteria death via oxidative stress (Table 1) (Foster et al., 2011;
Li et al., 2012b; Rai et al., 2012; Zhang et al., 2013; Reddy L.
S. et al., 2014; Singh R. et al., 2014; Pan et al., 2016; Courtney
et al., 2017; Ulloa-Ogaz et al., 2017; Zaidi et al., 2017). Indeed,
titanium dioxide NPs were shown to adhere to the surface of

the bacterial cell and trigger the production of ROS, which in
turns lead to damage of the structure of cellular components
and consequent cell death (Foster et al., 2011). In another
important study using different metal NPs, AgNPs were shown
to generate superoxide radicals and hydroxyl radicals, whereas
Au, Ni, and Si NPs generated only singlet oxygen, which upon
entering the cell produced an antibacterial effect (Zhang et al.,
2013). More recently, Reddy and co-workers demonstrated that
ZnONPs alone can also act as an effective antibacterial agent
via the generation of ROS (Reddy L. S. et al., 2014). Exposure
to UV irradiation may also potentiate the action of NPs. Li
et al. (2012b) reported the augmented antibacterial effects of
zinc oxide (ZnO) and titanium oxide (TiO) NPs triggered by
UV irradiation as the results of the increased production of
superoxide, hydroxyl and singlet oxygen radicals that potentiated
bacteria mortality by severe oxidative stress. Graphene oxide–
iron oxide NPs have also demonstrated maximum antibacterial
activity due to the generation of hydroxyl radicals and diffusion
into bacterial cells (Pan et al., 2016). More recently, Ulloa-Ogaz
and collaborators demonstrated that copper oxide NPs interact
with bacteria, generating an intracellular signaling cascade that
trigger oxidative stress and, thus, an antibacterial effect (Ulloa-
Ogaz et al., 2017).

Metal oxides slowly release metal ions that are up taken
by the cell, reaching the intracellular compartment where they
can interact with functional groups of proteins and nucleic
acids, such as amino (–NH), mercapto (–SH), and carboxyl (–
COOH) groups (Wang et al., 2017a). This interaction alters
the cell structure, hampers enzymatic activity and interferes
with the normal physiological processes in the bacterial cell.
It has been shown that copper oxide (CuO) NPs cause a
significant alteration of the expression of key proteins and may
inhibit denitrification. Proteomic analysis showed that CuONPs
cause an alteration of proteins involved in nitrogen metabolism,
electron transfer and transport (Su et al., 2015). Also, the
interaction of gold–superparamagnetic iron oxide NPs with
bacterial proteins via disulfide bonds affects the metabolism and
redox system of bacterial cells (Niemirowicz et al., 2014). NPs
may also enter bacteria through absorption, releasing metal ions
to the surrounding medium and/or binding to the negatively
charged functional groups of the bacterial cell membrane. For
example, silver ions (from silver NPs) are adsorbed on the cell
membrane, leading to protein coagulation (Jung et al., 2008).
Jankauskaitl and collaborators described the bactericidal effect
of graphene oxide/Cu/Ag NPs against E. coli, P. aeruginosa,
K. pneumoniae, S. aureus, and Methicillin-resistant S. aureus
(MRSA) through a possible synergy between multiple toxic
mechanisms (Jankauskaite et al., 2016).

Non-oxidative mechanisms involve interaction of the NPs
with the cell wall. In bacteria, the cell wall and membrane
behave as defensive barriers that protect against environmental
insults. Cell membrane components provide different adsorption
pathways for the NPs (Lesniak et al., 2013). The cell wall of Gram-
negative bacteria is composed of lipoproteins, phospholipids and
lipid polysaccharides (LPS), which form a barrier only allowing
the entry of certain macromolecules (Zaidi et al., 2017). In Gram-
positive bacteria, the cell wall is composed of a thin layer of
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TABLE 1 | Nanoparticles against MDR pathogens and their mechanisms of action.

Type of

nanoparticles

Targeted bacteria Antibiotic resistance

type

Mechanisms of

antibacterial action

References

AgNPs Enterococcus faecalis,

S. aureus

Vancomycin-resistant Combination with

vancomycin. Bacterial cell

death.

Saeb et al., 2014;

Esmaeillou et al., 2017

Enterococcus On-going investigations. Percival et al., 2007

S. aureus Methicillin-resistant Combination with

antibiotics.

Brown et al., 2012;

Saeb et al., 2014;

Esmaeillou et al., 2017

Physical adhesion to the

bacterial cell.

Su et al., 2011

On-going investigations. Percival et al., 2007

E. coli, P. aeruginosa Ampicillin- resistant Combination with ampicillin

leads to entry into the

bacterial cell. Inhibition of

cell wall synthesis, protein

synthesis and nucleic acid

synthesis.

Lara et al., 2010;

Brown et al., 2012

S. aureus, E. coli,

P. aeruginosa,

K. pneumoniae, E.

faecalis, Salmonella

Typhimurium, Bacillus

cereus

Erythromycin-resistant Cell surface damage and

loss of the chain integrity.

Otari et al., 2013

S. pneumoniae Teicoplanin-resistant ROS generation, cellular

uptake of silver ions,

cascade of intracellular

reaction.

Thapa et al., 2017

E. coli, S. aureus Ampicillin- resistant

E. coli, S. aureus Tetracycline-resistant Combination with

tetracycline.

Djafari et al., 2016

P. aeruginosa Ofloxacin-resistant Evade multidrug efflux

pumps.

Ding et al., 2018

P. aeruginosa, MRSA,

VRE, Serratia

marcescens

Biofilm formation Ongoing investigations. Percival et al., 2007

Enterobacter cloacae,

S. mutans

ROS production and

membrane disruption.

Kulshrestha et al., 2017

S. epidermidis,

S. aureus

Penetration in the bacterial

biofilm using an external

magnetic field.

Mahmoudi and

Serpooshan, 2012

E. coli MDR ROS generation. Zhang et al., 2013;

Siddiqi et al., 2018

E. coli, P. aeruginosa Ramalingam et al.,

2016

S. aureus, Enterococcus

spp., P. aeruginosa, A.

baumannii,

Enterobacteriaceae

Interaction with components

of the cells where chemical

and physical properties are

modified.

Cavassin et al., 2015

E. coli Lok et al., 2007

S. aureus, E. coli,

P. aeruginosa,

K. pneumoniae, B.

subtilis

Penetration in the bacterial

cell wall.

Acharya et al., 2018

P. aeruginosa Combined therapy, using

blue light.

El Din et al., 2016

E. coli, Pseudomonas

fluorescens,

Pseudomonas putida,

P. aeruginosa, B.

subtilis, S. aureus

Disruption of the bacterial

cell wall.

Bondarenko et al.,

2013

(Continued)
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TABLE 1 | Continued

Type of

nanoparticles

Targeted bacteria Antibiotic resistance

type

Mechanisms of

antibacterial action

References

A. baumannii Attach to the cell wall

leading to structural

changes in the permeability

of the cell membrane.

Chang et al., 2017

P. aeruginosa Singh K. et al., 2014;

Salomoni et al., 2017

S. aureus, E. coli Jung et al., 2008;

Muniyan et al., 2017

P. aeruginosa, E. coli Combination with

antibiotics.

Esmaeillou et al., 2017

E. coli Karimi et al., 2016

E. faecalis Katva et al., 2018

Salmonella Typhimurium McShan et al., 2015

Enterobacteriaceae Panáček et al., 2016b

S. aureus,

P. aeruginosa, E. coli

Panáček et al., 2016a

S. aureus, E. coli Upregulation of the

expression of antioxidant

genes and ATP pumps.

Nagy et al., 2011

S. epidermidis MDR/Biofilm formation Conjugation with AMP. Jaiswal et al., 2015

Mycobacterium

smegmatis

Mohanty et al., 2013

Vibrio fluvialis,

P. aeruginosa

Lambadi et al., 2015

B. subtilis, E. coli Liu et al., 2013

E. coli Pal et al., 2016

E. coli, Acinetobacter

calcoaceticus,

Aeromonas bestiarum,

B. Subtili, P. fluorescens,

Kocuria rhizophila,

Micrococcus luteus

Ruden et al., 2009

AuNPs S. aureus Vancomycin-resistant Combination with

vancomycin.

Mohammed Fayaz

et al., 2011

E. faecalis Lai et al., 2015

S. aureus Methicillin-resistant Photothermal therapy with

ROS generation.

Kuo et al., 2009;

Millenbaugh et al.,

2015; Mocan et al.,

2016; Hu et al., 2017;

Ocsoy et al., 2017

Combination with

vancomycin.

Lai et al., 2015

E. coli, K. pneumoniae Cefotaxime-resistant Disruption of the bacterial

cell wall, DNA damage.

Shaikh et al., 2017

S. aureus, E. coli,

P. aeruginosa,

Enterobacter aerogenes

Ampicillin-resistant Combination with ampicillin.

Lead to entry into the

bacterial cell.

Brown et al., 2012

Streptococcus bovis, S.

epidermidis, E.

Aerogenes

Kanamycin-resistant Disruption of the bacterial

cell wall.

Payne et al., 2016

K. 45ellular45, Proteus

mirabilis, A. baumannii

Carbapenems-resistant Disturb of osmotic balance

and disrupt the integrity of

cell bacterial cell wall.

Shaker and Shaaban,

2017

P. aeruginosa Biofilm formation Interaction with cell surface. Yu et al., 2016

S. aureus Laser excitation of the near

IR LSPR lead to an efficient

photothermal response with

efficient killing of bacteria

biofilms.

Pallavicini et al., 2014

(Continued)
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TABLE 1 | Continued

Type of

nanoparticles

Targeted bacteria Antibiotic resistance

type

Mechanisms of

antibacterial action

References

E. coli, P. aeruginosa,

S. aureus

Penetration through biofilm

layers and interaction with

cellular components.

Ramasamy et al.,

2017a,b

S. epidermidis, S.

haemolyticus

Combination with

antibiotics.

Roshmi et al., 2015

Proteus species Interaction between proteins

and NPs.

Vinoj et al., 2015

E. coli, P. aeruginosa,

S. aureus, B. Subtilis

ROS generation. Wang Z. et al., 2017

Gram-negative bacteria MDR Automated

microarray-based system

that identifies

Gram-negative pathogens

from positive blood cultures

and resistance mechanism.

Walker et al., 2016

S. aureus Photoacoustic detection

and photothermal therapy

Galanzha et al., 2012

E. coli ROS generation Zhang et al., 2013

E. coli Change of membrane

potential and inhibition of

ATP synthase; inhibition of

the subunit of the ribosome

for tRNA binding.

Cui et al., 2012

E. coli, K. pneumoniae,

S. aureus, B. subtilis

Shamaila et al., 2016

E. coli, K. pneumoniae,

E. cloacae

Photodynamic Therapy/

Photothermal therapy.

Khan et al., 2017

S. aureus, E. coli, E.

cloacae, P. aeruginosa

Mocan et al., 2017

Salmonella Typhimurium Lin and Hamme, 2015

S. aureus Gil-Tomás et al., 2007

E. coli, S. aureus Interaction with

biomolecules.

Kim D. et al., 2017

E. coli, K. pneumoniae Not revealed. Bresee et al., 2014

S. aureus, E. coli,

P. aeruginosa

Disruption of bacterial cell

wall.

Li et al., 2014; Yang

et al., 2017

E. coli Interaction between

lysozyme microbubbles and

cell wall.

Mahalingam et al.,

2015

E. coli, S. aureus,

Salmonella Typhimurium

Depend of co-existing

chemicals that were not

removed from AuNPs.

Shareena Dasari et al.,

2015; Zhang et al.,

2015a

E. coli, S. aureus,

K. pneumoniae

Combination with

antibiotics.

Pradeepa et al., 2016

P. aeruginosa MDR/Biofilm formation Conjugation with AMP. Casciaro et al., 2017

Staphylococci,

Enterococci and other

bacterial strain

Kuo et al., 2016

E. coli, S. aureus,

K. pneumoniae,

P. aeruginosa

Rai A. et al., 2016

Salmonella Typhimurium Yeom et al., 2016

ZnONPs K. pneumoniae Ampicillin-

carbenicillin-resistant

ROS generation and

disruption of bacterial cell

wall.

Reddy L. S. et al., 2014

(Continued)
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TABLE 1 | Continued

Type of

nanoparticles

Targeted bacteria Antibiotic resistance

type

Mechanisms of

antibacterial action

References

S. aureus Methicillin-resistant Enzyme inhibition. Cha et al., 2015

E. coli MDR ROS generation and

disruption of bacterial cell

wall.

Li et al., 2012b; Tong

et al., 2013;

Chakraborti et al.,

2014; Gelabert et al.,

2016; Nagvenkar et al.,

2016

B. subtilis Hsueh et al., 2015

S. aureus Lakshmi Prasanna and

Vijayaraghavan, 2015;

Nagvenkar et al., 2016

Vibrio cholerae Sarwar et al., 2016

S. aureus, E. coli,

Proteus, Acinetobacter,

P. aeruginosa

Combination with

antibiotics.

Ehsan and Sajjad, 2017

S. aureus, E. coli, S.

mutants

Depend on components

and structure of the bacteria

cell wall.

Yu et al., 2014

S. aureus, P. aeruginosa Biofilms formation ROS generation. Aswathanarayan and

Vittal, 2017

Streptococcus sobrinus Aydin Sevinç and

Hanley, 2010

CuONPs E. coli, S. aureus MDR ROS generation. Singh R. et al., 2014;

Chakraborty et al.,

2015

S. aureus, P. aeruginosa Ulloa-Ogaz et al., 2017

Paracoccus denitrificans Modulation of nitrogen

metabolism.

Su et al., 2015

S. aureus Biofilm formation Ongoing investigations. Chen et al., 2014

CuNPs S. aureus Methicillin-resistant Copper ions release and

subsequently bind with DNA

leading to disorder of helical

structure.

Kruk et al., 2015

P. aeruginosa Biofilm formation Penetrate the cell wall and

damage the nucleic acid.

LewisOscar et al., 2015

P. aeruginosa MDR Generation of Cu hydrosols. Zhang et al., 2015b

Fe3O4NPs E. coli MDR Radiofrequency (RF)

coupled with magnetic core

shell nanoparticles lead to

RF-mediated physical

perturbation of cell

membranes and bacterial

membrane dysfunction.

Chaurasia et al., 2016

S. aureus,

P. aeruginosa, E. coli

Penetrate the membrane

and interference in the

electron transfer.

El-Zowalaty et al., 2015

Gram-positive and

-negative bacteria

ROS generation. Behera et al., 2012

Gram-positive and

-negative bacteria

Nanotechnology to capture

Gram- positive and

-negative bacteria.

Reddy P. M. et al.,

2014

S. aureus Biofilm formation ROS generation. Leuba et al., 2013

Al2O3NPs S. aureus Methicillin-resistant Disruption of bacterial cell

wall and ROS generation.

Ansari et al., 2013

E. coli MDR Penetration and

accumulation inside

bacterial cell wall.

Ansari et al., 2014

(Continued)
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TABLE 1 | Continued

Type of

nanoparticles

Targeted bacteria Antibiotic resistance

type

Mechanisms of

antibacterial action

References

TiO2NPs S. aureus Methicillin-resistant Release ions and react with

thiol group of proteins

present on bacteria surface.

Roy et al., 2010

E. coli MDR ROS generation and

disruption of bacterial cell

wall.

Li et al., 2012b

E. coli and

Gram-positive bacteria

Photocatalytic disinfection. Foster et al., 2011

E. coli Peroxidation and

decomposition of

membrane fatty acids.

Joost et al., 2015

Cu/Zn bimetal

NPs

S. aureus Methicillin-resistant Membrane disruption, DNA

damage, inhibition of protein

synthesis.

Ashfaq et al., 2016

Au/Ag

bimetallic NPs

Enterococcus Vancomycin-resistant Theranostic system for

SERS and aPDT.

Zhou et al., 2018

E. coli, S. aureus, E.

faecalis, P. aeruginosa

Biofilm formation Disruption of bacterial cell

wall and inactivate the

proteins and enzymes for

ATP production.

Ramasamy et al., 2016

B. subtilis E. coli,

K. pneumoniae,

S. aureus

MDR Combination with

antibiotics.

Baker et al., 2017

P. aeruginosa, E. coli,

S. aureus, Micrococcus

luteus

Fakhri et al., 2017

E. coli, S. aureus dos Santos et al., 2012

Au/Pt

bimetallic NPS

E. coli MDR Damage of the inner

membrane, increase

intracellular ATP level.

Zhao et al., 2014

Au/ Fe3O4NPs P. aeruginosa MDR Disruption of bacterial cell

wall.

Niemirowicz et al.,

2014

Cu/Ni

bimetallic NPs

S. aureus, E. coli, S.

mutans

MDR Adsorption of ions to the

bacteria cells.

Argueta-Figueroa et al.,

2014

MgF2NPs S. aureus Biofilm formation Attach and penetrate cell

surface leading to disruption

in membrane potential,

promotes the lipid

peroxidation and DNA

binding.

Lellouche et al., 2009;

Chen et al., 2014

Graphene

Oxide NPs

S. aureus Methicillin-resistant Combine antibiotics with

exposure to NIR.

Pan et al., 2016

E. coli, E. faecalis MDR UV irradiation lead to

generation of ROS.

Govindaraju et al.,

2016

E. coli, P. aeruginosa,

K. pneumoniae,

S. aureus

Multiple toxic mechanisms. Jankauskaite et al.,

2016

E. cloacae, S. mutans Biofilm formation ROS generation, release of

ions.

Kulshrestha et al., 2017

SeNPs S. aureus, E. coli MDR Theranostic nanoplatform

for selective imaging and

targeted therapy: Disruption

of the bacteria cell wall.

Huang et al., 2017

SiNPs S. aureus Methicillin-resistant Theranostics nanoprobe for

near-infrared fluorescence

imaging and photothermal

therapy: Disruption of the

bacteria cell wall.

Zhao et al., 2017
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peptidoglycans and abundant pores that allow the penetration
of foreign molecules, leading to covalent binding with proteins
and cellular components, interrupting the proper functioning
of the bacterial cell (Sarwar et al., 2015). In addition, Gram-
positive bacteria have a highly negative charge on the surface
of the cell wall. For example, LPS provides negatively charged
regions on the cell wall of Gram-negative bacteria that attracts
NPs; and, since teichoic acid is only expressed in Gram-positive
bacteria, the NPs are distributed along the phosphate chain. As
such, the antimicrobial effect is more foreshadowed in Gram-
positive than -negative bacteria (Wang et al., 2017a). Indeed,
Yu and colleagues synthesized a novel hydroxyapatite whisker
(HAPw)/zinc oxide (ZnO) NPs and evaluated the antimicrobial
effect against S. aureus, E. coli, and Streptococcus mutans. The
authors demonstrate that the antibacterial effect depends on
the components and structure of the bacterial cell wall. The
antibacterial action of these NPs could be improved for Gram-
positive bacteria and certain components could prevent the
adhesion of ZnO NPs to the bacterial cell barrier (Yu et al.,
2014). Ansari et al. reported that the accumulation on NPs in
the bacterial cell wall causes irregularly shaped pit, perforation
and disturbs metabolic processes (Ansari et al., 2014). In a study
carried out by Joost and co-workers, it was demonstrated that
a treatment with TiO2 NPs increased the bacterial cell volume,
resulting in membrane leakage (Joost et al., 2015).

BIOFILM FORMATION AND
QUORUM-SENSING

Biofilm formation plays an important role in bacterial resistance
protecting bacteria and allowing then to evade the action of
antibiotics (Lebeaux et al., 2014; Khameneh et al., 2016). The
most active fractions of bacteria are now recognized to occur as
biofilms, where cells are adhered to each other on surfaces within
a self-produced matrix of extracellular polymeric substance
(EPS). EPS provide a barrier allowing to inhibit the penetration
of antibiotics and further promote antibiotic resistance leading
to a serious health threat worldwide since biofilms are resistant
to antibiotics penetration and escape innate immune system
by phagocytes (Hall-Stoodley et al., 2004; Bjarnsholt, 2013).
Numerous experimental evidence show that NPs are capable
of disrupting the bacterial membranes and can hinder biofilm
formation thus reducing the survival of the microorganism
(Peulen and Wilkinson, 2011; Leuba et al., 2013; Pelgrift and
Friedman, 2013; Slomberg et al., 2013; Chen et al., 2014; Miao
et al., 2016; Yu et al., 2016; Kulshrestha et al., 2017). This way,
NPs provide an alternative strategy to target bacterial biofilms
with potential to use both antibiotic-free and antibiotic-coated
approaches (Gu et al., 2003; Li et al., 2012a; Sathyanarayanan
et al., 2013). Earlier reports demonstrated that NPs are able
to interfere with biofilm integrity by interacting with EPS and
with the bacterial communication - quorum sensing (QS). The
properties of NPs must be designed to be able to inhibit biofilm
formation namely through size and surface chemistry. The size
of NPs is important to it since they must be able to penetrate the
EPS matrix and surface chemistry will command the amount of

interactions with the EPS (Lundqvist et al., 2008). The majority
of the strategies to achieve inhibition of biofilm formation are to
target and interfere with QS molecules (Singh et al., 2017).

QS systems in bacterial populations act as major regulatory
mechanisms of pathogenesis, namely in the formation of
biofilm structures. These systems help bacteria to “communicate”
with each other, through the production and detection of
signal molecules (Rutherford and Bassler, 2012; Papenfort and
Bassler, 2016). Using this cell-to-cell communication, bacterial
populations are able to synchronize the expression of their
genes, acquiring competitive advantage to respond to changes
in the environment (Rutherford and Bassler, 2012). Therefore,
QS systems are known to promote the formation of antibiotic
tolerant biofilm communities. It is known that biofilm structures
are a recalcitrant mode of bacterial growth that increases
bacterial resistance to conventional antibiotics (Reen et al., 2018).
This way, bacterial biofilms pose a significant challenge to the
efficacy of conventional antibiotics being considered an essential
platform for antibiotic resistance (Høiby et al., 2011). Taking
this into account, it isn’t surprising that the targeting and
disruption of QS signaling systems and consequently, of the
biofilm production, set the pillar for future next-generation anti-
virulence therapies to be developed (LaSarre and Federle, 2013;
Venkatesan et al., 2015; Jakobsen et al., 2017).

Surface-functionalized NPs with β-cyclodextrin (β-CD) or
N-acylated homoserine lactonase proteins (AiiA) are able to
interfere with signaling molecules preventing these molecules
from reaching its cognate receptor, therefore inhibiting the
signal/receptor interaction. This process will “turn off” QS and
obstructing the bacterial communication (Kato et al., 2006; Ortíz-
Castro et al., 2008). Several papers reported inhibition of biofilm
formation namely by gold NPs (AuNPs). Acyl homoserine
lactones (AHL) are signaling molecules with a role in bacterial
QS and bind directly to transcription factors to regulate gene
expression Recently, Gopalakrishnan and colleges synthesized
(Vinoj et al., 2015) AuNPs coated AiiA purified from Bacillus
licheniformis. These AiiA AuNPs inhibited EPs production
and demonstrated potent antibiofilm activity against Proteus
species at 2–8µM concentrations without being harmful for
the host cells at the 2µM concentration. Sathyanarayanan et al.
(2013) demonstrated that using AuNPs there is a significant
reduction of S. aureus and P. aeruginosa biofilms applied in high
concentration (exceeding 50 mg/L). A recent study by Yu et al.
(2016) demonstrated that AuNPs were able to strongly attenuate
biofilm formation of P. aeruginosa. The inhibition observed in
this study was related with interruption of adhesin- mediated
interaction between the bacteria and the substrate surface due
to electrostatic attractions between the AuNPs and cell wall
surface of P. aeruginosa, instead of QS-relatedmolecules. Positive
charge AuNPs inhibited significantly S. aureus and P. aeruginosa
biofilm formation (while minimizing mammalian cytotoxicity)
(Ramasamy et al., 2016). The use of NPs demonstrates an
exclusive approach to penetrate infectious biofilms and target
bacterial communication, overcoming this major health issue
related with biofilm infections.

Because most of these NPs-based platforms exert their
action via distinct mechanisms/structures/pathways of those
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used by traditional antibiotics, combined therapeutic regimens
are promising strategies to tackle the surge of multidrug resistant
(MDR) bacteria bypassing their defense mechanisms (Pelgrift
and Friedman, 2013; Singh K. et al., 2014; Hemeg, 2017; Zaidi
et al., 2017). Additionally, NPs have been shown to activate
macrophages in a dose dependentmanner (Patel and Janjic, 2015)
which promotes the host defenses (Hemeg, 2017; Jagtap et al.,
2017).

This multi-target action of NPs may overcome multidrug
resistance by circumventing several obstacles encountered by
traditional antibiotics (Pelgrift and Friedman, 2013; Chen et al.,
2014; Singh K. et al., 2014; Hemeg, 2017; Jagtap et al., 2017;
Rai et al., 2017; Zaidi et al., 2017). Table 1 highlights several
types of NPs that have shown effective bactericidal activity
when administered isolated; combined with standard antibiotics;
and/or radiation or as vectors for biocidal delivery allowing
killing of MDR bacteria, and in some cases also inhibiting biofilm
production.

We will now focus on the different types of metal NPs
highlighting their most relevant mechanism/effects against MDR
bacteria and/or biofilms structures.

SILVER NANOPARTICLES (AGNPS)

Since the ancient times, silver has been recognized as having
antimicrobial effects (Rai et al., 2009; Reidy et al., 2013). Based
on all the evidence to date, AgNPs are probably one of the most
promising inorganic NPs that can be used for the treatment of
bacterial infections (Natan and Banin, 2017). These NPs may
be synthesized by traditional chemical reduction or via “green”
chemistry approaches using plant and/or microbial extracts
(Iravani et al., 2014; Ribeiro et al., 2018).

Several mechanisms have been proposed to understand
how AgNPs mediate cell death, including cell wall disruption
(Lok et al., 2007; Bondarenko et al., 2013), oxidation of
cellular components, inactivation of the respiratory chain
enzymes, production of ROS, and decomposition of the cellular
components (Chen et al., 2014; Rizzello and Pompa, 2014;
Dakal et al., 2016). The permeability of the membrane increases
after incorporation of AgNPs into the cell membrane. The
adsorption of the NPs leads to the depolarization of the cell
wall, altering the negative charge of the cell wall to become
more permeable. It was demonstrated disruption of the cell
wall with subsequent penetration of the NPs. The entry of
AgNPs induces ROS that will inhibit ATP production and
DNA replication (Zhang et al., 2013; Dakal et al., 2016;
Durán et al., 2016; Ramalingam et al., 2016). However, there
is evidence that AgNPs can release Ag+, known to exhibit
antimicrobial activity, when interacting with thiol-containing
proteins, which weaken their functions (Durán et al., 2010). The
precise method of the antibacterial mechanism of AgNPs is still
not completely understood (Franci et al., 2015; Durán et al.,
2016). All the existing data indicates that AgNPs exert several
bactericidal mechanisms in parallel, which may explain why
bacterial resistance to silver is rare (Karimi et al., 2016). Concerns
regarding the cytotoxicity and genotoxicity of AgNPs have

been raised (Chopra, 2007) but various authors have conducted
clinical trials based on AgNPs and no important clinical
alterations have been detected (Munger et al., 2014a,b; Smock
et al., 2014). Interestingly, AgNPs have been found to exhibit
higher antimicrobial activity than antibiotics like gentamicin or
vancomycin against P. aeruginosa and MRSA (Saeb et al., 2014).
Lara et al. showed the potential bactericidal effect of AgNPs
against MDR P. aeruginosa, ampicillin-resistant E. coli O157:H7
and erythromycin-resistant Streptococcus pyogenes (Lara et al.,
2010). Nagy et al., reported that AgNPs were capable of inhibiting
the growth of S. aureus and E. coli via the up-regulation
of the expression of several antioxidant genes and ATPase
pumps (Nagy et al., 2011). Dolman et al. also showed that
the Ag-containing Hydrofiber R© dressing and nanocrystalline
Ag-containing dressing are effective agents against antibiotic
sensitive Gram-negative and -positive bacteria as well as
antibiotic resistant bacteria, such as MRSA, Vancomycin-
resistant Enterococci (VRE) and Serratia marcescens, avoiding
the formation of biofilms on biomaterials (Percival et al., 2007).
Su and collaborators showed that AgNPs immobilized on the
surface of nanoscale silicate platelets (AgNP/NSPs) have strong
antibacterial activity against MRSA and silver-resistant E. coli
via generation of ROS (Su et al., 2011). Singh and collaborators
showed that AgNPs from P. amarus extract exhibited excellent
antibacterial potential against MDR strains of P. aeruginosa
(Singh K. et al., 2014). Recently, two different shaped AgNPs
(spheres and rods) were used against Gram-positive and -
negative bacteria, both showing promising antibacterial activity
against different strains (Acharya et al., 2018).

An emerging practice is to combine AgNPs with antibiotics
to enhance antimicrobial potency. Recently, Katya and
collaborators showed that the combination of gentamicin
and chloramphenicol with AgNPs has a better antibacterial
effect in MDR E. faecalis than both antibiotics alone (Katva
et al., 2018). McShan et al. described that AgNPs combined
with either one of two-different class of antibiotics (tetracycline
and neomycin) can exhibit a synergistic effect, showing an
enhanced antibacterial activity at concentrations below the
MIC of either the NPs or the antibiotic (McShan et al., 2015).
Other authors also reported similar results (Thomas et al.,
2014; Panáček et al., 2016a,b; Salomoni et al., 2017). Djafari and
collaborators described the synthesis of water-soluble AgNPs
using the antibiotic tetracycline as co-reducing and stabilizing
agent (AgNPs@TC) and demonstrated their effectiveness against
tetracycline-resistant bacteria (Djafari et al., 2016).

Antimicrobial peptides (AMPs) represent one of the forms
of defense strategy against infections in living organisms and
are emerging as essential tools to kill pathogenic bacteria,
since they exhibit broad-spectrum activity and low resistance
development (Yeaman, 2003). Lytic peptides are AMPs produced
by all organisms. In mammals, they are an innate host defense
mechanism against pathogens (Bahar and Ren, 2013). The
mechanism of action of AMPs relies on the ability to interact
with bacterial membranes or the cell wall, thus inhibiting cellular
biochemical pathways and ultimately killing the bacteria (Zhang
and Gallo, 2016). Defensins and cathelicidin are two of the larger
families of lytic peptides that kill bacteria by disrupting the

Frontiers in Microbiology | www.frontiersin.org 11 July 2018 | Volume 9 | Article 1441

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Baptista et al. Nanoparticle Strategies Against MDR Bacteria

membrane. Unfortunately, AMPs have poor enzymatic stability,
low permeability across biological barriers and may be rapidly
degraded in the human body by proteases, which greatly limits
their application (Wang, 2014). Immobilization of the peptides
onto NPs can increase their stability, enhancing the antimicrobial
properties of the NPs and therefore, has the potential to be used as
a new tool to tackle antibiotic resistant bacteria (Brandelli, 2012;
Rai A. et al., 2016). Indeed, the first author to demonstrate that
functionalized AgNPs with peptides increased their antibacterial
activity was Ruden and co-workers (Ruden et al., 2009). Based
on this strategy several researchers functionalized AgNPs with
AMPs (AgNP@AMP) with increases in the antimicrobial activity
compared with free AMPs (Ruden et al., 2009; Liu et al.,
2013; Mohanty et al., 2013). Polymyxin B is the most used
AMP and exhibits antibacterial activity via interaction with
the endotoxin LPS in the outer membrane of Gram-negative
bacteria (Morrison and Jacobs, 1976; Lambadi et al., 2015).
It was proved that AgNPs functionalized with polymyxin-B
removed almost completely endotoxins from solutions and
hindered the formation of biofilm onto surgical blades (Jaiswal
et al., 2015; Lambadi et al., 2015). Liu et al., demonstrated
that the immobilization of peptides with AgNPs enhanced their
antimicrobial activity compared to an unbound peptide and also
minimized toxicity of AgNPs compared to using the AgNPs
alone (Liu et al., 2013). A recent study by Pal et al. describes
a system consisting of a cysteine containing AMP conjugated
with AgNPs, which demonstrated that the Ag-S bonds increased
stability and enhanced antimicrobial activity than conjugation
using electrostatic interactions (Pal et al., 2016).

Other methods have been used to improve the antibacterial
activity of AgNPs. One of these methods relies on the use
of visible blue light, which was previously shown to exhibit
strong antibacterial activity (Dai T. et al., 2013; Maclean
et al., 2014). El Din and collaborators demonstrated that
blue light combined with AgNPs exhibits therapeutic potential
to treat MDR infections and can represent an alternative
to conventional antibiotic therapy, since the antimicrobial
activity of the combination was greater than the components
alone. Moreover, this approach proved to be synergistic in
the treatment of an unresponsive antibiotic-resistant bacteria
responsible for a wound in a horse (El Din et al., 2016).
Spherical shaped thioglycolic acid-stabilized AgNPs (TGA-
AgNPs) conjugated with vancomycin were used as drug delivery
systems and demonstrated to possess increased antimicrobial
activity against MDR bacteria such as MRSA and VRE
(Esmaeillou et al., 2017).

GOLD NANOPARTICLES (AuNPs)

Metallic gold is considered inert and non-toxic, which may vary
when it shifts form metallic bulk to oxidation states (I and
II) (Merchant, 1998). Gold NPs (AuNPs) may be synthesized
by traditional chemical reduction of a gold salt or via “green”
chemistry approaches using plant and/or microbial extracts
(Shah et al., 2014). The most used and described method is
the chemical synthesis based on the reduction of chloroauric

acid by citrate (Lee and Meisel, 1982; Fernandes and Baptista,
2017). Some studies have addressed the potential of using AuNPs
as antibacterial agents, but some controversy still exists (Cui
et al., 2012; Bresee et al., 2014; Shah et al., 2014; Shareena
Dasari et al., 2015; Zhang et al., 2015a; Shamaila et al.,
2016).

According to Yu H and collaborators, AuNPs are usually not
bactericidal at low concentrations and weakly bactericidal at high
concentrations (Shareena Dasari et al., 2015; Zhang et al., 2015a).
This is possibly due to the effect of co-existing chemicals, such
as gold ions, surface coating agents, and chemicals involved in
the synthesis that were not completely removed (Shareena Dasari
et al., 2015; Zhang et al., 2015a). However, other authors describe
that the antibacterial mechanism of AuNPs is associated to (i) the
collapse in the membrane potential, hindering ATPase activity
causing a deterioration of the cell metabolism; (ii) hindering of
the binding subunit of the ribosome to tRNA (Cui et al., 2012);
and (iii) Shamaila and co-workers showed that AuNPs may
affect the bacterial respiratory chain by attacking nicotinamide
(Shamaila et al., 2016). Since AuNPs are non-toxic to the host
(Conde et al., 2014; Li et al., 2014; Rajchakit and Sarojini, 2017),
the possibility of fine tuning their conjugation chemistry to act
as carriers or delivery vehicles of antibiotics or other antibacterial
moieties may enhance their bactericidal effect and potentiate the
effect of antibiotics (Zhao and Jiang, 2013; Conde et al., 2014;
Li et al., 2014; Uma Suganya et al., 2015; Zhang et al., 2015a;
Fernandes et al., 2017).

Cationic and hydrophobic functionalized AuNPs were
shown to be effective against both Gram-negative and -
positive uropathogens, including MRSA. These AuNPs exhibited
low toxicity to mammalian cells (biocompatibility) and the
development of resistance to these NPs was very low (Li
et al., 2014). Vinoj et al. demonstrated that coating AuNPs
with N-acylated homoserine lactonase proteins (AiiA AuNPs)
resulted in a nanocomposite with activity against MDR species
compared with AiiA proteins alone (Vinoj et al., 2015). Other
approaches were also studied, as adsorbing AuNPs to PVA-
lysozyme micro bubbles potentiate the antibacterial activity due
to the interaction of AuNPs with cells membranes causing
bacterial lysis (Mahalingam et al., 2015). Galic acid capped
AuNPs have also been found to be active against Gram-negative
and -positive bacteria (Kim D. et al., 2017). Recently, Ramasamy
and collaborators described the direct one-pot synthesis of
cinnamaldehyde immobilized on gold nanoparticles (CGNPs)
with effective biofilm inhibition of more than 80% against Gram-
positive bacteria (methicillin-sensitive and -resistant strains of
S. aureus, MSSA and MRSA, respectively) and Gram-negative
(E. coli and P. aeruginosa) in vitro and in vivo (Ramasamy
et al., 2017a,b). Also, the integration of AuNPs with ultrathin
graphitic carbon nitride was described as having high bactericidal
performance against both MDR Gram-negative and -positive
bacteria, and a high effectiveness in eliminating existing MDR-
biofilms and preventing the formation of new biofilms in vitro
(Wang Z. et al., 2017). Also, conjugation of antibiotics to AuNPs,
such as vancomycin, methicillin, etc., increases their intrinsic
activity against MDR strains (Mohammed Fayaz et al., 2011; Lai
et al., 2015; Roshmi et al., 2015; Payne et al., 2016). Recently Payne
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and collaborators develop a single-step synthesis of kanamycin-
capped AuNPs (Kan-AuNPs) with high antibacterial activity
against both Gram-positive and -negative bacteria, including
kanamycin resistant bacteria. The authors observed a significant
reduction in the MIC against all the bacterial strains tested
for Kan-AuNPs when compared to the free drug. This higher
efficacy was due to the disruption of the bacterial envelope,
resulting in leakage of the cytoplasmic content and consequent
cell death (Payne et al., 2016). Pradeepa and collaborators
synthesized AuNPs with bacterial exopolysaccharide (EPS) and
functionalized them with antibiotics (levofloxacin, cefotaxime,
ceftriaxone and ciprofloxacin). They observed that these AuNPs
exhibited excellent bactericidal activity against MDR Gram-
positive and -negative bacteria compared to free drugs.
E. coli was the most susceptible MDR bacteria followed by
K. pneumoniae and S. aureus (Pradeepa et al., 2016). Recently,
Yang and collaborators described the effect of small molecule
(6-aminopenicillanic acid, APA)-coated AuNPs to inhibit MDR
bacteria (Yang et al., 2017). They doped AuNPs into electrospun
fibers of poly(ε-caprolactone) (PCL)/gelatin to produce materials
that avoid wound infection by MDR bacteria and demonstrated
in vitro and in vivo that APA-AuNPs reduced MDR bacterial
infections (Yang et al., 2017). Shaker and Shaaban evaluated
the surface functionalization of AuNPs with carbapenems
[imipenem (Ipm) and meropenem (Mem)] as a delivering
strategy against carbapenem resistant Gram-negative bacteria
isolated from an infected human. Both Ipm-AuNPs and Mem-
AuNPs, with 35 nm diameter showed a significant increase in
antibacterial activity against all the tested isolates (Shaker and
Shaaban, 2017). Also, Shaikh and collaborators described recently
the synthesis and characterization of cefotaxime conjugated
AuNPs to target drug-resistant CTX-M-producing bacteria. The
authors could invert resistance in cefotaxime resistant bacterial
strains (i.e., E. coli and K. pneumoniae) by using cefotaxime-
AuNPs. Their results reinforce the efficacy of conjugating
an unresponsive antibiotic with AuNPs to restore its efficacy
against otherwise resistant bacterial pathogens (Shaikh et al.,
2017).

Combination of AuNPs with other approaches has also
been demonstrated. Indeed, one of the most extraordinary
properties of AuNPs is the capability to transform light into
heat under laser irradiation (Mendes et al., 2017; Mocan
et al., 2017). This property is extremely important because
it can be exploited to develop photothermal nanovectors to
destroy MDR bacteria at a molecular level (for a complete
review see Mocan et al., 2017). For example, Khan and
collaborators showed that the combination of Concanavalin-A
(ConA) directed dextran capped AuNPs (GNPDEX-ConA)
conjugated with methylene blue (MB) (MB@GNPDEX-ConA)
and photodynamic therapy (PDT) enhanced the efficacy and
selectivity of MB induced killing of MDR clinical isolates,
including E. coli, K. pneumoniae, and E. cloacae (Khan
et al., 2017). Gil-Tomas and collaborators described that the
functionalization of AuNPs covalently with toluidine blue O–
tiopronin forms an enhanced, exceptionally potent antimicrobial
agent when activated by white light or 632 nm laser light
(Gil-Tomás et al., 2007). Hu and collaborators prepared a

mixed charged zwitterion-modified AuNPs consisting of a weak
electrolytic 11-mercaptoundecanoic acid (HS-C10-COOH) and
a strong electrolytic (10-mercaptodecyl)trimethylammonium
bromide (HS-C10-N4) that exhibited in vivo and under near-
infrared (NIR) light irradiation an enhanced photothermal
ablation of MRSA biofilm with no damage to the healthy tissues
around the biofilm (Hu et al., 2017). Also, the antibacterial
activity of glucosamine-gold nanoparticle-graphene oxide
(GlcN-AuNP-GO) and UV-irradiated GlcN-AuNP-GO was
evaluated against E. coli and E. faecalis. Results show that UV
irradiation of GlcN-AuNP-GO results in higher antibacterial
activity than the standard drug kanamycin (Govindaraju et al.,
2016). Ocsoy et al. reported the development of DNA aptamer-
functionalized AuNPs (Apt@AuNPs) and gold nanorods
(Apt@AuNRs) for inactivation of MRSA with targeted PTT
(Ocsoy et al., 2017). The authors showed that although both
NPs could specifically bind to MRSA cells, Apt@AuNPs and
Apt@AuNRs increased resistant cell death for 5% and for more
than 95%, respectively through PTT. This difference in induction
of cell death was based on the relatively high longitudinal
absorption of NIR radiation and strong photothermal conversion
capability for the Apt@AuNRs compared to the Apt@AuNPs.
However, with the new developments of using AuNPs for
hyperthermia in the visible light (Mendes et al., 2017) might
additionally potentiate the Apt@AuNPs results observed for
these authors (Ocsoy et al., 2017). Recently, Mocan et al. also
described the synthesis of AuNPs by wet chemistry, their
functionalization with IgG molecules following laser irradiation.
Their results indicate that administration of IgG-AuNPs
following laser irradiation provided an extended and selective
bacterial death in a dose dependent manner (Mocan et al.,
2016).

In recent years, a new approach relying on the conjugation of
AuNPs with AMPs has shown interesting results (Rajchakit and
Sarojini, 2017). Indeed, Kuo and collaborators mixed synthetic-
peptides containing arginine, tryptophan and cysteine termini
[(DVFLG)2REEW4C and (DVFLG)2REEW2C], with aqueous
tetrachloroauric acid to generate peptide-immobilized AuNPs
[i.e., (DVFLG)2REEW4C-AuNPs and (DVFLG)2REEW2C-
AuNPs] that were effective antibacterial agents against
Staphylococci, Enterococci, and antibiotic-resistant bacterial
strains (Kuo et al., 2016). Rai and co-workers demonstrated
that the use of cecropin-melittin (CM-SH) a known peptide
with antibacterial properties (Boman et al., 1989), functionalized
in the surface of AuNPs through Au-S bond, showed higher
antimicrobial activity and higher stability in media compared
with an in vitro and in vivo infection animal model with the
MIC of CM-SH AuNPs four times lower than free CM-SH
(Rai A. et al., 2016). Conjugation of AMP with AuNPs usually
involves the formation of the Au-S coordinate covalent bond,
relying on the amine or thiol groups in peptides or conjugating
specific linkers to AMPs with a terminal (N- or C-terminal)
cysteine which helps conjugation with gold (Tielens and
Santos, 2010; Xue et al., 2014). However, there is one example
where covalent conjugation of an AMP to AuNPs has been
achieved via Au-O bond (Lai et al., 2015). Other approaches
use a linker for the conjugation to AuNPs, Poly(ethylene
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glycol) carboxylic acid (PEGCOOH) covalently bound to AMP
showed a significantly increase of the antibacterial and anti-
biofilm activity for resistant Gram-negative bacteria (Casciaro
et al., 2017). Yeom and co-workers demonstrated the most
advanced in vivo clinical application for AuNPs@AMP using
infected mice and resulting in the inhibition of Salmonella
Typhimurium colonization in the organs of the animals (Yeom
et al., 2016). The reason behind the increased antimicrobial
activity of AuNPs@AMP over the free components is that
AuNPs can get a higher concentration of the antibiotic at the
site of action. These NPs can interact with LPS, proteins in
the membrane of the bacteria and in some cases, penetrate
the bacterial membrane through the porin channel. This
way they can interact with the inner membrane making the
AuNPs@AMP conjugate more efficient than the non-conjugated
form (Katz and Willner, 2004; Wangoo et al., 2008; Chen J. et al.,
2009).

BIMETALLIC NPS

Ag and Au may be used in a single NP to enhance the effects
of a drug and reduce the required dose. Alternatively, they
can be used alone since they possess antimicrobial properties
that are enhanced when combined in the form of bimetallic
NPs (Arvizo et al., 2010; Singh R. et al., 2016). The role of
Ag against MDR pathogens has been previously described.
However, AgNPs are difficult to functionalize with biomolecules
and drugs. Such limitation may be circumvented by means of
alloy/bimetallic NPs that excel their monometallic counterparts
providing improved electronic, optical and catalytic properties
(Cho et al., 2005; Shah et al., 2012). As reported above,
AuNPs constitute good vectors to the delivery of pharmacologic
compounds. Gold(Au)-silver(Ag) alloys are an optimal solution
since they combine the antimicrobial effect of silver with the
ease of functionalization and improved stability in complex
biological media provided by gold (Doria et al., 2010; dos
Santos et al., 2012). Fakhri and co-workers synthetized and
functionalized AgAuNPs with a tetracycline and concluded
that there exists a synergetic effect of the antibiotic with the
bimetallic nanoparticle, with greater bactericidal activity of
this form in detriment of its free forms. The mechanism of
action was established as being the generation of ROS (Fakhri
et al., 2017). Also recently, Baker and collaborators described
the synthesis and antimicrobial activity of bimetallic AgAuNPs
from the cell free supernatant of Pseudomonas veronii strain
AS41G inhabiting Annona squamosa L. The authors showed
their synergistic effect with standard antibiotics with 87.5,
18.5, 11.15, 10, 9.7, and 9.4% fold increased activity with
bacitracin, kanamycin, gentamicin, streptomycin, erythromycin
and chloramphenicol, respectively, against bacitracin resistant
strains of Bacillus subtilis, E. coli, and K. pneumoniae (Baker
et al., 2017). Zhao and collaborators have demonstrated the
antibacterial activity of AuPtNPs bimetallic NPs against sensitive
and drug-resistant bacteria via the dissipation of the bacterial
membrane potential and the elevation of adenosine triphosphate
(ATP) levels (Zhao et al., 2014).

Other types of bimetallic NPs have been studied and their
antibacterial activity explored, but in most cases as coating
agents and not as a delivery approach and antibacterial activity
(Argueta-Figueroa et al., 2014).

METAL OXIDES

Metal oxides NPs are among one of the most explored and
studied family of NPs and are known to effectively inhibit
the growth of a wide range of sensitive and resistant Gram-
positive and -negative bacteria, emerging as hopeful candidates
to challenge antimicrobial resistance (Raghunath and Perumal,
2017; Reshma et al., 2017; Kadiyala et al., 2018). Iron oxide
(Fe3O4), Zinc oxide (ZnO), and Copper oxide (CuO) possess
antimicrobial properties and can be applied in clinical care
(Sinha et al., 2011). Due to the intrinsic photocatalytic activity
of the metal oxides they generate ROS and become powerful
agents against bacteria (Tong et al., 2013; Singh R. et al.,
2014). These will be described in more detail on the following
sections.

IRON OXIDE (FE3O4)

The synthesis of iron oxide NPs may be achieved via different
routes (Babes et al., 1999; Berry and Curtis, 2003). The
antibacterial mechanism of these NPs is mainly attributed to
dissolved metal ions and the generation of ROS (Wang et al.,
2017a). It was shown that superparamagnetic iron oxide NPs
interact with microbial cells by penetrating the membrane and
interfering with the electron transfer (Behera et al., 2012; El-
Zowalaty et al., 2015). Additionally, it has been described that
iron oxide NPs can damage macromolecules, including DNA
and proteins, through the formation of ROS (Leuba et al.,
2013). Pan et al. developed a system of reduced graphene oxide
(rGO)-iron oxide nanoparticles (rGO-IONP) by the chemical
deposition of Fe2+/Fe3+ ions on nanosheets of rGO in aqueous
ammonia. The in vivo results showed maximum antibacterial
activity due to the generation of hydroxyl radicals that can
cause physical and chemical damage, which inactivated MRSA
(Pan et al., 2016).

ZINC OXIDE (ZnO)

ZnO NPs are often used to restrict microorganism growth,
being effective against planktonic bacteria, and also inhibiting
the formation of biofilms (Hsueh et al., 2015; Sarwar et al.,
2016) (Espitia et al., 2012). These NPs can be synthesized
by various methods, from green chemistry to sonochemistry
(Salem et al., 2015; Ali et al., 2016; Nagvenkar et al., 2016).
The antibacterial mechanism of the NPs is partially attributed
to two principal factors, the dissolution of metal ion and the
generation of ROS (Gelabert et al., 2016; Nagvenkar et al., 2016;
Sarwar et al., 2016). ZnO releases Zn2+ in liquid medium and
is adsorbed on the surface of bacteria or may entry the cell,
where it interacts with functional groups in proteins and nucleic
acids, hindering enzyme activity and the normal physiological
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processes (Yu et al., 2014). However, some authors demonstrated
that Zn ions have little antimicrobial activity, implying that
dissolution of Zn2+ might not be the main mechanism of
action (Aydin Sevinç and Hanley, 2010). Sarwar and co-
workers demonstrated that nanosized ZnO caused significant
oxidative stress to Vibrio cholera, the damage inflicted was
DNA degradation, protein leakage, membrane depolarization
and fluidity (Sarwar et al., 2016). Ehsan and Sajjad, described
that ZnO NPs impregnated with antibiotics showed good
antibacterial activities against S. aureus, Proteus, Acinetobacter,
P. aeruginosa, and E. coli, being that these were resistant to
antibiotics but became sensitive in the presence of these NPs with
antibiotics (Ehsan and Sajjad, 2017). It was also discovered that
these NPs induce the production of ROS even in the dark, and
this happens due to the surface defects on the NPs. The different
shapes function as enzyme inhibitors, where nanopyramids are
the most effective (Cha et al., 2015; Lakshmi Prasanna and
Vijayaraghavan, 2015). Recently, Aswathanarayan and Vittal
described the antimicrobial effect of ZnO NPs against MDR
Gram-positive and -negative pathogens in comparison to gold
and iron NPs and these could be used at concentrations less toxic
to mammalian cells (Aswathanarayan and Vittal, 2017). ZnONPs
are also known for inhibiting biofilm formation and production
of quorum-sensing-dependent virulence factors in P. aeruginosa
(Lee et al., 2014; García-Lara et al., 2015).

COPPER OXIDE (CuO)

Copper containing NPs have been shown effective against
animal and plant pathogens (LewisOscar et al., 2015), impeding
formation of MDR biofilms, and showing the potential to serve
as antimicrobial coating agents (LewisOscar et al., 2015). Kruk
et al. and Zhang et al. showed that copper NPs are capable of
inhibiting the growth of MDR bacteria, namely, P. aeruginosa
and MRSA (Zhang et al., 2014, 2015b; Kruk et al., 2015). The
antimicrobial activity of these NPs is comparable to that of
AgNPs but at a lower cost (Kruk et al., 2015). Copper oxide NPs
generate ROS that often leads to chromosomal DNA degradation,
which seems to highlight a “particle-specific” action rather than
resulting from the release of metallic ions (Chakraborty et al.,
2015). Su and collaborators investigated the effects of CuONPs on
bacterial denitrification and explored the effect on the expression
of intracellular proteins. When CuONPs entry into bacteria
metabolic functions are affected, such as active transport, electron
transfer, and nitrogen metabolism (Su et al., 2015).

NPs can also be complexed with other metals, like gallium.
Gallium NPs have been described to facilitate phagosome
maturation of macrophages infected with virulentM. tuberculosis
and therefore being able to inhibit growth of this pathogen (Choi
et al., 2017).

THE POTENTIAL FOR
NANOTHERANOSTICS

NPs applications in biodetection is huge and more insights on
pathogen detection using NPs platforms can be seen in Veigas

et al. (2013, 2014, 2015); Costa et al. (2014); Weng et al. (2015);
Kim J. et al. (2017); Wang et al. (2017b); Galvan and Yu (2018),
and Yang et al. (2018).

Theranostics is a combination of diagnosis and therapy onto
a single platform, which allow for timely biodetection and/or
real-time monitoring of therapy. By using NPs, this can be
translated to the nanoscale—Nanotheranostics. NPs have been
applied for multiplex high-throughput diagnostics to assist
precision therapy. For example, Verigene R© is an AuNPs test
commercialized for diagnosis. It is an automated microarray-
based system that identifies Gram-negative pathogens from
positive blood cultures. Verigene R© BC-GN also detects
key resistance mechanisms (Walker et al., 2016; Claeys
et al., 2018). Others have used, magnetic and functionalized
magnetic iron oxide NPs as affinity probes to capture Gram-
positive and -negative bacteria. The analyses of captured
bacteria using matrix-assisted laser desorption/ionization
mass spectrometry was <1 h (Reddy P. M. et al., 2014). One
pioneer work on nanotheranostics against bacterial infection
was the development of a method for in vivo photoacoustic
detection and photothermal eradication of S. aureus. Two-
color gold and multilayer magnetic nanoparticles were
functionalized with an antibody cocktail for the targeting
of S. aureus. These platform demonstrated ultrasensitive
detections for circulating bacterial cells (CBCs), in vivomagnetic
enrichment and PT eradication of CBCs (Galanzha et al.,
2012). Recently, Zhou and collaborators developed a silicon
2,3-naphthalocyanine dihydroxide (Nc) and Vancomycin
functionalized silica-encapsulated, silver-coated gold NPs
(Au@AgNP@SiO2@Nc-Van) as a novel theranostic system
for surface-enhanced Raman scattering (SERS) detection and
antimicrobial photodynamic therapy (aPDT) of vancomycin
(Van)-resistant enterococci (VRE) strains (Zhou et al., 2018).
These authors observed a 4–5 logs reduction of bacteria upon
in vitro aPDT of VRE treated with a nanomolar concentration of
the Au@AgNP@SiO2@Nc-Van and an infection regression and
even complete eradication of VRE in vivo using infected mice
(Zhou et al., 2018).

A selenium nanoplatform (Se@PEP-Ru) was designed with
excellent fluorescent properties for imaging bacteria and with
high antimicrobial properties (Huang et al., 2017). Zhao and
co-workers developed an activated theranostics nanoprobe
for near-infrared fluorescence imaging and photothermal
therapy of MRSA infections, based on SiO2/PAH-cypate
nanosystems modified with PEG and Vancomycin-conjugated
poly(acrylic acid) molecules (PAAPEG-Van). This probe is
activated by bacteria-responsive polyelectrolyte dissociation
from silica NPs. The authors believe that this concept can
be used as an approach to design and for production of
bacteria responsive multifunctional nanomaterials and constitute
their ultimate functions in the treatment of drug-resistant
bacterial infections (Zhao et al., 2017). Kuo and collaborators
developed a nanotheranostics system using Au nanorods
conjugated with a hydrophilic photosensitizer, toluidine blue
O, that acted as dual-function agents in photodynamic
inactivation and hyperthermia against MRSA (Kuo et al.,
2009).
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CLINICAL TRANSLATION

At present, there are a few metal NPs-based strategies
against bacterial infections undergoing clinical trials. The costs
associated to the use of nanotechnology platforms are very high,
and therefore conventional treatments are preferred. However,
these platforms might be preferable in specific situations, with
direct impact on the quality of patients life (Caster et al., 2017).

Bio-kil R© [3-(Trimethoxysilyl) propyloctadecyldimethyl
ammonium chloride] (Cargico Group, Taiwan) is a patented
technology that is based on affixing nano-sized antimicrobials
onto a large surface area through covalent chemical bonding to
form a durable polymer. Bio-kil R© eliminates microorganism
through a physical biocide process. This type of nanomaterial
consists in inorganic metal components and organic quaternary
ammonium components. Recently, Bio-Kil R© has been shown to
reduce the environmental bacterial burden and MDR organisms
(Lee et al., 2017).

AgTive (NCT00337714) is a silver-impregnated central
venous catheter and has been marketed with the claim to
improved bactericidal activity. AgTive catheters are made of
polyurethanes impregnated with silver NPs, and their interaction
with body fluids and intravenous solutions results in the release
of significantly larger amounts of silver ions from the catheter
reducing bloodstream infection (Antonelli et al., 2012).

Acticoat is a nanocrystalline silver dressing that acts as an
antimicrobial topical, releasing silver into the wound. This
nanoformulation has been shown to inhibit in vitro biofilms
formation in P. aeruginosa andAcinetobacter baumannii bymore
than 90% (Potgieter andMeidany, 2017). Madigan ArmyMedical
Center is studying the efficacy of a silver NPs gel SilvaSorb
(NCT00659204) and currently is in phase III of the clinical
trials. The aim of this study is to compare the antimicrobial
efficacy of a one-time application of SilverSorb (AcryMed, Inc.,
Portland) against the standard antibacterial hand gel Purell (GoJo
Industries, Akron), in reducing transient bacterial counts isolated
from the hands of 40 patients seeded with S. marcescens.

Nano Silver Fluoride is a new formulation that combines
silver NPs, chitosan and fluoride and was developed with
antimicrobial properties. This nanoformulation has excellent
results as antibacterial agent against S. mutans and Lactobacilli.
Currently, is used to prevent dental caries in children (Dos Santos
et al., 2014).

Despite this review do not concern liposomal formulations
since it refers to clinical translation other formulations involving
NPs, such as liposomal formulations, have been also identified
as antimicrobial agents. Most of these formulations rely on
the incorporation of traditional antibiotics into nanoliposomes
to improve distribution and circulation times (Caster et al.,
2017). Table 2 summarizes antimicrobial liposomes, which
are undergoing clinical trials. For example, Amikacin
(NCT01315691) is a potent aminoglycoside antibiotic that
is useful for the treatment of MDR Gram-negative bacteria.
Arikace is an inhaled liposomal formulation that encapsulates
amikacin composed of dipalmitoyl-phosphatidylcholine (DPPC)
and cholesterol (Meers et al., 2008). These formulation have
high drug loading and stability when administrated and in phase

II trial, there was no notable difference in toxicity between
liposomal drug treatment and placebo (Clancy et al., 2013).
Another two-inhaled liposomal formulation are currently
in clinical trials. Linhaliq (NCT02104245) is a combination
of liposomal and aqueous phase ciprofloxacin, whereas
Lipoquin (NCT00889967) is a liposomal ciprofloxacin that
allows prolonged drug release. Both of these nanoformulation
were developed for the treatment of non-cystic fibrosis
bronchiectasis (NCFBE) patients with chronic lung infections
with P. aeruginosa. Phase II in patients with both CF and
non-CF bronchiectasis have been completed. After analysis
of clinical data from the two different formulations, Linhaliq
showed better performance. The Food and Drug Administration
(FDA) has designated Linhaliq as a qualified infection disease
product and made it eligible for Fast track designation. In
2016, Pulmanic completed two phases III clinical trials, but
has not yet been approved by the FDA. The Hadassah Medical
Organization (Jerusalem, Israel) has incorporated quaternary
ammonium polyethyleneimine (QA-PEI) based polymers into
dental composites. The bacterial membrane may be disturbed by
the charged quaternary moiety, it also has potent activity against
a series of Gram-positive and -negative pathogens (Ortega et al.,
2015). In 2013, these nanoformulation completed phase II trials
but no data on outcome have been released to date.

MAT2501 is designed to targeted delivery of the antibiotic
amikacin while providing an improved safety and tolerability
profile. Currently, Matinas Biopharma has reported positive data
from the Phase I study in healthy volunteers for the treatment
of MDR Gram-negative bacterial infections and is in preparation
for a phase II in patients.

OTHER POTENTIAL APPLICATIONS OF
NPS

In the case of non-antibiotic therapy, combinations of NPs
with essential oils, peptides and other natural compounds have
featured as promising antimicrobial strategies. The therapeutic
applications of these substances are often limited by their
toxicity and volatility (Chen F. et al., 2009; Allahverdiyev et al.,
2011). A recent study has shown that chitosan NPs vectors,
modified with eugenol and carvacrol essential oils on their
surface, were active against E. coli and S. aureus at concentrations
better or equal to unmodified NPs versions (Chen F. et al.,
2009). Furthermore, the toxicity of the conjugates toward mouse
fibroblasts was significantly less than the pure oils alone. With
regards to peptides, the active sequences can be vulnerable to
denaturation, aggregation or hydrolysis within end products
or in the human body. Colloidal systems containing NPs are
at the forefront of peptide research, as they can be designed
to encapsulate and protect peptides during biological transit.
Water in oil micelles have been successfully used to increase
the potency of antimicrobial peptides against E. coli (Gontsarik
et al., 2016). In another example, liposomes have been used
to improve the stability of encapsulated nisin against pH and
temperature extremes thereby increasing its potential in food
processing (Taylor et al., 2007). Popular NPs vehicle materials
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TABLE 2 | Antimicrobial liposomal nanoformulation in clinical development.

Name Antimicrobial Clinical trial phase Target pathogens ClinicalTrials.gov Identifier

Arikace Amikacin III Gram-negative bacteria NCT01315691

Lipoquin Ciprofloxacin II Gram-negative bacteria NCT00889967

Pulmaquin Ciprofloxacin III Gram-negative bacteria NCT02104245

Silvasorb Silver III Gram-negative bacteria NCT00659204

MAT2501 Amikacin – Gram-negative bacteria –

QA-PEI Ammonium Polyehtyleneimine I-II Gram-negative and -positive bacteria NCT01167985

for peptides include phytoglycogen NPs (Bi et al., 2011), chitosan
(Wu et al., 2017), pectin (Krivorotova et al., 2017), and alginate
(Khaksar et al., 2014).

NPs have also been applied with tremendous success
in biodetection systems, namely as sensors and diagnostics
platforms with increased sensitivity and selectivity. Due to the
decrease in size of the transduction mechanisms provided by
NPs, most of these platforms have found applications at point-
of-need and/or point-of-care (Costa et al., 2014; Veigas et al.,
2014; Weng et al., 2015; Kim J. et al., 2017; Wang et al.,
2017b; Galvan and Yu, 2018; Yang et al., 2018). In some
cases, diagnostics/sensing and therapeutic properties have been
combined onto single NPs, providing for innovative tools –
Nanotheranostics. Recently, several nanotheranostics strategies
against bacteria have been described (Kuo et al., 2009; DeGrasse,
2012; Dai X. et al., 2013; Khlebtsov et al., 2013; Kim et al., 2013;
Gamella et al., 2014; Pei et al., 2014; Setyawati et al., 2014; Patel
and Janjic, 2015; Thompson et al., 2015; Jagtap et al., 2017;Mocan
et al., 2017; Zhao et al., 2017).

BOTTLENECKS AND FUTURE
CHALLENGES OF NPS

Despite the foreseen potential of NPs for medical applications,
there are still several bottlenecks related with their acute and
long-term exposure in humans. Several routes of exposure
must be considered when evaluating NPs exposure, such as
oral and gastrointestinal tract, dermal, respiratory system, and
endovenous administration directly to the bloodstream (De
Matteis, 2017). It is well known also that the physicochemical
properties of NPs (e.g., size, shape and surface chemistry) affect
their interaction with biological systems, influencing cellular
uptake, pharmacokinetics, biodistribution, all of themwith direct
impact on final biological effects (for recent reviews see Bakand
and Hayes, 2016; Xia et al., 2016; De Matteis, 2017; Warheit,
2018). These aspects have been addressed over the past years via
the evaluation of the in vitro and in vivo toxicity of metal and
metal oxide NPs (Dobrovolskaia et al., 2007; Asharani et al., 2010;
Li et al., 2010; Baek and An, 2011; Hackenberg et al., 2011; Conde
et al., 2012, 2014; Bondarenko et al., 2013; Ivask et al., 2014;
Larsen et al., 2016; Sukwong et al., 2016; Rai et al., 2017), whose
conclusions concerning their nanosafety differ depending on the
type of assessment. This poses a major concern to effectively
draw critical conclusions on NPs safety due to the vast number
of different types/shapes/surface modified nanoparticles, the

differentmethods used to evaluate their safety and environmental
effects, and also by the fact most of these in vitro/in vivo studies
present acute studies rather than long-term exposure (Bakand
and Hayes, 2016; Xia et al., 2016; De Matteis, 2017; Warheit,
2018). Nevertheless, these in vivo and in vitro studies have
been providing clues to the specific mechanisms by which NPs
trigger an adverse effect enabling future surface modification
of NPs to make them safer and less toxic (De Matteis, 2017).
These concerns relating to nanosafety have been addressed
and implemented via European Commission FP7 and H2020-
sponsored programs followed by some relevant conclusions
issued by the US National Academy of Science Committee on
Research Progress of Environmental Health and Safety Aspects
of Engineered Nanomaterials (Warheit, 2018).

Due to the 3Rs (Replacement, Reduction and Refinement)
policies of in vivo studies, the future challenge of Regulatory
Agencies is the standardization of the in vitro methodologies to
establish the toxicology profile of NPs based on good laboratory
practice (GLP) and the construction of flexible and reliable
databases in which NPs are classified according to the data
derived from these toxicological investigations. Together, these
efforts might provide information on the dosage at which a
particular NP can be considered safe and thus appropriate for
medical use.

CHALLENGES OF CURRENT RESEARCH

As mentioned above, nanomaterials have great potential to
prevent and treat bacterial infection, but several challenges
remain for the translation to the clinics. Some of these
include assessing the interactions of nanoantibiotics with cells,
tissues and organs, for dose recalibration and identification of
appropriate routes of administration (Sandhiya et al., 2009). The
biocompatibility of NPs is generally evaluated through in vitro
assays, using cell culture. Because NPs, used as antimicrobial
agents can enter through skin contact, ingestion, inhalation, oral
and intravenous injection, in vivo models must also be applied
to better understand their effects, including potential toxicity,
clearance and metabolism (Beyth et al., 2015). Several studies
have shown that intravenously injected NPs accumulate in the
colon, lung, bone marrow, liver, spleen and lymphatics (Hagens
et al., 2007). Inhalation has also been shown to cause cytotoxicity
at the lung, and in the liver, heart and spleen through systemic
circulation (Poma and Di Giorgio, 2008; Leucuta, 2013). This is
of particular relevance for small NPs because of efficient cellular
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uptake and transcytosis across epithelial and endothelial cells
into the blood and lymphatic circulation. Several NPs systems
have demonstrated toxicity in multiple organs, such as free
radical-mediated oxidative stress generated by the interaction
of antimicrobial NPs with cell components that can result in
hepatotoxicity and nephrotoxicity (De Jong and Borm, 2008; Lei
et al., 2008).

The effective translation to the clinics will require appropriate
guidelines for production and scale-up of manufacturing
these nanomaterials, for characterization of the physico-
chemical properties and their impact on biocompatibility, for
standardization of nanotoxicology assays and protocols to assist
easy comparison of data originating from in vitro and in vivo
studies, for the evaluation of theirmetabolism andmode of action
(Duncan and Gaspar, 2011; Bertrand and Leroux, 2012; Beyth
et al., 2015; Cordeiro et al., 2016; Rai M. et al., 2016; Zazo et al.,
2016). Finally, the community still needs to address the economic
impact of translation of these nanomaterials to the clinics.

CONCLUSIONS

Given their vast therapeutic potential, it is becoming increasingly
important to understand the mechanisms by which NPs
complexes can impact bacterial viability. While one of the
beneficial aspects of NPs drug carriers involves “macro-
targeting,” i.e., specific delivery to the site of infection,
understanding the “micro-targeting” of bacterial mechanisms
is imperative for the widespread future use of these vectors.
Their impact of cell functions such as cell wall permeability,

efflux activity, formation of reactive species, and inhibition of
essential cellular metabolism and reproduction is of utmost
importance.
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