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Abstract 

The tripeptides, Ile-Pro-Pro (IPP) and Leu-Lys-Pro (LKP), inhibit angiotensin-converting 

enzyme (ACE) resulting in lowered blood pressure. Our hypothesis was that the medium 

chain fatty acid permeation enhancer, sodium caprate (C10), may prevent the decrease in 

permeability of the tripeptides when PepT1 is inhibited by glycyl-sarcosine (Gly-Sar), a 

situation that may occur in the presence of food hydrolysates. Using Caco-2 monolayers and 

isolated rat jejunal tissue, the apparent permeability coefficients (Papp) of [3H]-IPP and [3H]-

LKP were assessed in the presence of Gly-Sar with and without C10. Gly-Sar decreased the 

Papp of both tripeptides across monolayers and isolated jejunal tissue, but C10 restored it. C10 

likely increased the paracellular permeability of the tripeptides, as indicated by 

immunofluorescence changes in tight junction proteins in Caco-2 monolayers accompanied 

by a concentration-dependent decrease in transepithelial electrical resistance (TEER). [3H]-

IPP and [3H]-LKP were orally-gavaged to normal rats with Gly-Sar, C10, or with a mixture. 

Plasma levels of both peptides were reduced by Gly-Sar to less than half that of the levels 

detected in its absence, but were restored when C10 was co-administered. In spontaneously 

hypertensive rats (SHRs), unlabelled IPP and LKP lowered blood pressure when delivered 

either by i.v. or oral routes. Oral gavage of Gly-Sar reduced the hypotensive action of 

peptides in SHRs, but the effect was restored in the presence of C10. In conclusion, there was 

a reduction in the hypotensive effects of IPP and LKP in SHRs when intestinal PepT1 was 

inhibited by Gly-Sar, but C10 may circumvent this by enhancing paracellular permeability. 

Key words: Intestinal peptide transport, PepT1, nutraceuticals, antihypertensive agents, 

intestinal permeation enhancers, sodium caprate. 
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1. Introduction 

Current numbers of hypertension cases are estimated to be  ̴1 billion worldwide due to 

increased sedentary behaviour and widespread adoption of  Western diets [1]. A meta-

analysis of “Dietary Approaches to Stop Hypertension” (DASH) diets suggested that 

effective adherence could lead to a reduction in the risk of cardiovascular disease by 20% [2]. 

To date, dietary interventions have achieved only modest reductions in systolic blood 

pressure (SBP). To improve upon the relatively weak hypotensive actions of peptides 

currently presented in foodstuffs, use of purified bioactive molecules could be more effective 

if administered in higher doses in optimised oral formulations [3]. Bioactive di- and tri-

peptides are cleaved from food-derived proteins and polypeptides by intestinal peptidases and 

several seem to possess anti-inflammatory [4], anti-oxidative [5] and anti-hypertensive [6, 7] 

characteristics. Antihypertensive tripeptides discovered in food include Ile-Pro-Pro (IPP) 

(molecular weight, MW 325 Da) and Leu-Lys-Pro (LKP) (MW 389 Da). At least part of the 

blood-pressure lowering mechanism of action of IPP is thought to be due to competitive 

inhibition of angiotensin-converting enzyme (ACE), thereby preventing conversion of 

angiotensin I to the potent vasoconstrictor, angiotensin II [8]. This is a similar mechanism of 

action to the oral small molecule antihypertensive ACE inhibitors, captopril and enalaprilat 

[9].  

 

IPP and LKP are present in hydrolysates of milk β-casein and fish/chicken muscle 

respectively. In the Spontaneously Hypertensive Rat (SHR) model blood pressure was 

reduced by oral administration of IPP [10, 11]. In particular, IPP has been tested as a 

potential hypotensive agent in human studies as a component of milk [12], yogurt [13], 

cheese [14], dairy spreads [15], and also when formulated in tablets [16], but results have 

generally been variable. A meta-analysis of 19 human trials indicated however, that a 
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combination of IPP and VPP induced an overall decrease in SBP of  ̴ 4 mm Hg over a 

minimum of 8 weeks following doses of 2 – 10 mg peptide /day in a range of food products, a 

result that might be clinically significant [17]. Previously we have demonstrated that IPP and 

LKP are substrates for small intestinal epithelial cell uptake via the apical membrane-located 

intestinal Peptide Transporter 1 , PepT1(SLC15A1) in vitro [18], a high affinity pathway that 

can also be accessed by other food-derived peptides [19-23].  Involvement of PepT1 in 

mediating di- and tri-peptide transport is indicated by decreased small intestinal epithelial 

permeation in the presence of the PepT1 inhibitor, glycyl-sarcosine (Gly-Sar). PepT1 

substrates typically have good oral bioavailability (e.g. valacyclovir, 50-70%  [24]), but there 

is potential for uptake to be inhibited by PepT1-competing pharmaceutical substrates or ones 

present in foodstuffs. For example, the fish muscle hydrolysate di-peptide derivative,  Val-

Tyr (VY), does not reduce blood pressure in SHRs to the same degree when co-administered 

with captopril due to competition for PepT1; both molecules were more efficacious in the 

absence of the other [25]. Similarly, the increased apparent permeability coefficient (Papp) of 

the PepT1 substrate, cephalexin, across isolated rat jejunal mucosae induced by Labrasol ®, 

(comprising acylglycerol- and PEG esters of the medium chain fatty acids, sodium caprate 

(C10) and sodium caprylate (C8)), was hindered in the presence of the PepT1 substrates, Gly-

Leu and Ala-Ala [26], suggesting competition for PepT1 between cephalexin and dipeptides.  

 

The intestinal permeation enhancer, C10, is found in mM concentrations in milk [27] and also 

as a methyl ester ethoxylate in coconut oil and palm kernel oil [28, 29]. C10 is well-known to 

increase oral absorption of large MW peptides and reached Phase II trials for an oral insulin 

as a component of Merrion Pharmaceutical’s (Dublin, Ireland)  GIPET™ solid dosage form 

[30]. Despite this, less studied is its potential to increase oral absorption of food-derived 

bioactives.  In one example however, the poorly absorbed soy-derived isoflavone, diadzein, 
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was entrapped in nanoparticles and co-administered with C10 to rats, resulting in a 2-fold 

increase in plasma levels [31]. Previously, we reported that C10 increased the permeation of 

fluorescein isothiocyanate (FITC)-labelled IPP and LKP  by 1.4 to 3.6-fold respectively 

across isolated rat jejunal tissue mucosae [32]. The in vitro membrane perturbation 

mechanism that C10 uses to increase paracellular permeability is due to a combination of 

elevation of intracellular Ca2+ [33], epithelial membrane fluidisation [34], relocation of the 

tight junction-associated proteins, tricellulin and claudin 5 [35], activation of phospholipase 

C [27], and increased phosphorylation of myosin light chain kinase (MLCK) [36].  

 

The hypothesis of this study was that C10 might overcome a reduction in the in vitro and in 

vivo intestinal permeability of IPP and LKP in rats seen in the presence of Gly-Sar. Gly-Sar 

was used in an attempt to mimic the inhibition of PepT1 that may occur in the presence of 

peptides generated by lipases from food hydrolysates.  First, the effects of Gly-Sar and C10 

co-administration on the permeability of [3H]-IPP and [3H]-LKP were determined across 

Caco-2 monolayers and isolated rat jejunal mucosae mounted in Ussing chambers. Secondly, 

we examined the pharmacodynamics (PD) of IPP and LKP in SHRs in the presence and 

absence of Gly-Sar and C10. Finally, in initial studies we examined the effects of Gly-Sar and 

C10 on [3H]-IPP and [3H]-LKP absorption following oral gavage to normal rats over a short 

time frame and compared these data to the PD outputs. All in vitro and in vivo studies 

suggested that PepT1 plays a key role in the intestinal permeability of the tripeptides and that 

C10 can overcome inhibition of flux by Gly-Sar. 
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2. Materials and methods 

2.1 Reagents and chemicals 

IPP (PubChem CID: 9949212) and LKP (PubChem CID: 24978508) were obtained from 

China Peptides (China). [3H]-IPP (specific activity 30 Ci/mmol) and [3H]-LKP (specific 

activity 21 Ci/mmol) were obtained from Cambridge Research Biochemicals (UK). The 

Alexa Fluor® 494 mouse monoclonal antibodies for occludin, and ZO-1, and the Alexa 

Fluor® 488 mouse monoclonal antibody for claudin-5 were sourced from Thermo Fisher 

Scientific (USA). Dako fluorescence-mounting media was obtained from Dako Diagnostics 

(Ireland). Isoflurane (Iso-Vet®) was obtained from Piramal Healthcare (UK). Pentobarbital 

sodium (EUTHANAL™) was from Merial Animal Health (UK). Caco-2 cells (passage 48-

58) were obtained from European Collection of Cell Cultures (UK). C10 (PubChem CID: 

4457968) and all other reagents were purchased as analytical grade from Sigma-Aldrich 

(UK).  

 

2.2 Caco-2 monolayer trans-epithelial transport studies 

Caco-2 cells were grown in Dulbecco’s Modified Eagle Medium (DMEM) with L-glutamine 

(2 mM), 1% non-essential amino acids, penicillin (100 U)/streptomycin (100 μg/ml), and 

10% foetal bovine serum (Biosciences Ltd, Ireland) in 75 cm2 tissue culture flasks at 95% 

O2/5% CO2 at 37°C in a humidified environment. Cells were seeded at a density of 3 x 105 

cells/ Transwell®  on 1.12 cm2  diameter  polycarbonate filters with a pore size of 0.4 μm 

(Corning Costar Corp., USA) and grown for  ̴ 21 days in DMEM [37]. Cells were seeded at a 

density of 1.5 x 105 cells/well in 8 well Nunc™ Lab-Tek II chamber slides and grown for 21 

days in DMEM for immunofluorescence experiments. Transepithelial electrical resistance 

(TEER, Ω.cm2) was measured across the monolayers using an EVOM® voltohmmeter with a 
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chopstick electrode (EVOM®, WPI, UK). TEER measurements were made prior to transport 

studies and then every 30 min for 120 min to confirm monolayer integrity.  

Apical-to-basolateral (A to B) transport of [3H]-IPP and [3H]-LKP were examined across 

filter-grown monolayers. Transport buffers consisted of calcium-free HBSS supplemented 

with 12.5 mM glucose and either 10 mM 2-(N-morpholino)ethanesulfonic acid (MES, pH 

6.5; the apical buffer) or 25 mM HEPES with 2.5mM calcium (pH 7.4; the basolateral buffer) 

[37, 38]. Buffers were equilibrated with monolayers for 30 min in the presence or absence of 

apical-side Gly-Sar (10 mM) in HBSS. At time zero, either [3H]-IPP or [3H]-LKP (both 1 

μCi/ml) was added to the apical side in the presence or absence of C10 (1, 2.5, or 5 mM). 

Basolateral samples were taken every 30 min for 120 min and apical samples were taken at 0 

and 120 min in order to calculate Papp. Withdrawn apical and basolateral side samples were 

replaced with equal volumes of fresh calcium-free HBSS (pH 6.5) or regular HBSS (pH 7.4) 

respectively. Basolateral and apical samples of 100 μl were mixed with 5 ml Ecoscint A 

scintillation cocktail (Biosciences Ireland) and measured in a liquid scintillation counter 

(Packard Tricarb 2900 TR). The Papp for each [3H]-IPP and [3H]-LKP were calculated with 

the following equation: 

                                                                                             (Eq.1) 

where dQ/dt is the slope of the line (linearity required to be > 0.95 for inclusion), A is the 

surface area (1.12 cm2) and C0 is the starting concentration of flux marker on the apical side 

[37]. Basal TEER values were required to be > 1400 Ω.cm2 in order for monolayers to be 

included for analysis [39]. Transport experiments were run in triplicate with three 

independent replicates. 
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2.3 Immunofluorescence of tight junction proteins in monolayers exposed to C10 

Confluent Caco-2 cells grown on 8 well Nunc™ Lab-Tek II chamber slides were exposed to 

C10 (1.0 and 5.0 mM) in calcium-free HBSS for 120 min. Untreated control cells were 

incubated in HBSS. Following exposure, HBSS was removed and cells were washed gently 

with ice cold PBS. Cells were fixed in ice-cold methanol for 30 min and washed with PBS. 

Non-specific background was blocked by incubation with 5% bovine serum albumin in PBS 

overnight at 4°C. Cells were washed with PBS and permeabilized with 0.1% Triton™ X-100 

in PBS for 10 min. Cells were probed with Alexa Fluor® 494 mouse monoclonal antibody 

against occludin (1:400), Alexa Fluor® 494 mouse monoclonal antibody against ZO-1 

(1:400), and Alexa Fluor® 488 mouse monoclonal antibody against claudin-5 (1:400). The 

slides were washed with PBS and mounted in Dako fluorescence mounting media. Images 

were captured with an Axioplan Epi-fluorescence microscope (Zeiss, Germany).  

 

2.4   Isolated rat jejunal mucosae transport studies in Ussing chambers 

Rat studies were carried out in accordance with the UCD Animal Research Ethics Committee 

protocol (AREC 14-28-Brayden) and in adherence with European Union Directive 

2010/63/EU in relation to the 3Rs and use of post mortem tissue.  Male Wistar rats (250-350 

g; Charles River Labs, UK, and the UCD Biomedical Facility) were euthanized by stunning 

and cervical dislocation. Jejunal mucosae with intact underlying circular and longitudinal 

muscle were mounted in Ussing chambers with a circular window areas of 0.63 cm2 [40].  

Mucosae were bathed apically with 5 ml calcium-free Krebs Henseleit buffer (KH), 

basolaterally with KH buffer, and both sides were continuously gassed with 95% CO2/5% O2 

with the temperature maintained at 37°C with a heated glass water jacket. The transepithelial 
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potential difference (PD; mV) and short circuit current (Isc, μA.cm-2) were measured across 

tissue using a DVC-4000 voltage clamp (WPI, UK). After an initial 30 min equilibration, PD 

and Isc were used to calculate the TEER over 120 min. Tissues were equilibrated for 30 min 

in the presence or absence of apical side 10 mM Gly-Sar in KH. At time zero, [3H]-IPP (1 

μCi/ml) or [3H]-LKP (1 μCi/ml) was added to the apical side in the presence or absence of 

C10 (10, 20, or 30 mM). Basolateral samples were taken every 30 min for 120 min and apical 

samples were taken at 0 and 120 min in order to calculate the Papp for the apical-to-basolateral 

(A-B) direction. Withdrawn samples were replaced with an equal volume of fresh calcium-

free KH (apical) and KH (basolateral) and they were analysed by on a Liquid Scintillation 

Counter (Beckman/Perkin-Elmer, USA). Papp values of [3H]-IPP and [3H]-LKP were 

calculated according to equation 1.  Basal jejunal TEER values were required to be > 30 Ω 

cm2 or were otherwise excluded [40]. Jejunal mucosae transport experiments were carried out 

with a minimum of five independent replicates. 

 

2.5   In vivo rat studies 

All live animal procedures adhered to EU Directive 2010/63/EU and were performed in 

compliance with the Irish Health Products Regulatory Authority animal licence number 

AE18982/P037. Male Wistar rats (Charles River, UK) weighing 280-350 g and male SHRs 

(16-wk old, Charles River, Germany) weighing 260-320 g were used. Animals were housed 

under controlled environmental conditions regarding humidity and temperature with a 12:12 

h light/dark cycle. Rats received filtered water and standard laboratory chow ad lib and were 

fasted for 16-20 h prior to procedure with free access to water. Animals were euthanized at 

the end of the experiment by an intra-cardiac injection of 0.4 ml pentobarbital sodium 

(EUTHATAL™, Merial Animal Health Ltd.,UK). 
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2.6   PD studies in SHRs 

Male SHRs (16-wk old, 260-320 g) with SBP over 170 mm Hg were randomised into test 

groups with 6 rats per treatment. Oral gavage and i.v. administration was carried out with 

captopril (5mg/kg both routes), and IPP and LKP (1 mg/kg and 5 mg/kg by i.v.; 10mg/kg 

oral). Oral gavage was carried out using a curved 16 gauge needle to deliver 300 μl to the 

stomach. The effects of treatments on SBP were compared to that of  PBS solution, the 

vehicle for all test agents. PepT1 inhibition studies compared responses following oral 

gavage to both IPP and LKP (both 5mg/kg) in the presence of Gly-Sar (100 mM; 16 mg/kg), 

or in the presence of both Gly-Sar and C10 (180 mM; 35 mg/kg).  SBP was measured by tail-

cuff plethysmography using the CODA® Mouse Rat Tail Cuff Blood Pressure System (Kent 

Scientific, U.S.A.) at 0, 1, 2, 3, 4, 6, and 8 h post administration after warming the rats in a 

chamber at 34°C for 5 min. Δ SBP changes were calculated by setting untreated basal 

readings to zero using GraphPad Prism-5® software. 

 

2.7    Oral absorption of [3H]-IPP (8 μCi/kg; 7.6 mg/kg) and [3H]-LKP in normal rats 

Normal Male Wistar rats were administered treatments in PBS by oral gavage as described 

above. PBS. [3H]-IPP (8 μCi/kg; 7.6 mg/kg) or [3H]-LKP (8 μCi/kg; 8.9 mg/kg) were 

administered by gavage alone, in the presence of Gly-Sar (100 mM; 16 mg/kg), or in the 

presence of both Gly-Sar and C10 (180 mM; 35 mg/kg). After oral gavage, the rats were 

anaesthetised with isoflurane (Iso-Vet, 1000 mg/g isoflurane liquid for inhalation, Piramal 

Healthcare, U.K.) at a rate of 4000 ml/min mixed with 4000 ml/min O2 in an induction 

chamber. Anaesthesia was maintained with isoflurane 2500 ml/min mixed with 1500 ml/min 

O2 using a delivery mask (Blease Medical Equipment Ltd., U.K.). Blood samples (~ 400 μl) 

were taken via the retro-orbital route at selected time points up to 180 min into 1 ml 
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Eppendorf tubes and stored on ice at 2-8°C prior to centrifugation (6500g, 5 min) and serum 

collection. 100 μl serum was mixed with 5 ml scintillation fluid (Ecoscint A scintillation 

cocktail) and concentrations were read in a Packard Tricarb 2900 TR scintillation counter. 

 

2.9 Histology 

Following the studies using isolated jejunal tissue in Ussing chambers and oral gavage 

studies in normotensive rats, jejunal mucosae were immersed in 10% (v/v) buffered formalin 

for 48 h. Tissues were prepared, paraffin-embedded, cut with a microtome, and dried 

overnight at 60°C. Tissues were stained with Alcian blue and neutral red. Slides were 

visualised under a light microscope (NanoZoomer 2.0-HT light microscopy, Hamamatsu) and 

images were taken with a high-resolution camera (Micropublisher 3.3 RTV, QImaging) and 

Image-Pro® Plus version 7.1 (Media Cybernetics Inc., USA) acquisition software.  

 

2.10 Statistical testing of group comparisons and PK-PD analysis 

Statistical analysis was carried out using GraphPad® Prism-5 software using one-way and 

two-way ANOVA with Dunnett’s and Bonferroni’s post hoc tests as appropriate. Results are 

presented as the mean ± standard deviation (SD). A significant difference was designated for 

all P values < 0.05 but without further denomination into multiple levels, as recently 

recommended by the Editors of the British Journal of Pharmacology [41]. 
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3. Results 

3.1 C10 increases the Papp of [3H]-IPP and [3H]-LKP across Caco-2 monolayers 

The mean basal TEER for Caco-2 monolayers grown on Transwells® was 1984 ± 570 Ω.cm2 

(n=48), within an acceptable range for differentiated monolayers for use in transport studies 

[39]. Apical addition of 10 mM Gly-Sar had no effect on TEER over 120 min, with values 

similar to those of untreated monolayers (Fig. 1A). Apical addition of C10 (1.0, 2.5, and 5.0 

mM) decreased TEER to 49%, 31%, and 15% of basal values respectively over 120 min (Fig. 

1A). The basal Papp obtained across monolayers for [3H]-IPP in the A-B direction was 6.2 ± 

2.9 x 10-6 cm.s-1, whereas for [3H]-LKP it was almost 2-fold higher at 11.4 ± 1.7 x 10-6 cm.s-1 

(Table 1). Pre-incubation of monolayers with 10 mM Gly-Sar on the apical side for 30 min 

caused a decrease in the Papp values by 47% for [3H]-IPP (to 3.3 x 10-6 cm.s-1), and by 44% 

for [3H]-LKP (to 6.4 x 10-6 cm.s-1). Apical addition of a low concentration of C10 (1 mM) did 

not  statistically increase the Papp of either peptide in the absence of Gly-Sar, although there 

was a trend in the case of [3H]-IPP, where the Papp increased from 6.2 to 10.1 x 10-6 cm.s-1. 

Co-administration of Gly-Sar with 1mM C10 restored the Papp values of both peptides to 

similar values seen in the absence of the inhibitor (Table 1). When concentrations of C10 were 

increased to 2.5 mM and 5 mM however, the Papp values of both peptides were increased 

several fold over those seen in either the presence or absence of Gly-Sar.  

 

3.2 Effect of C10 on tight junction-associated proteins in Caco-2 monolayers 

Apical addition of 1 mM C10 for 120 min induced no overt perturbation or interference with 

the tight junction proteins probed (data not shown). Compared to untreated control 

monolayers however, 5 mM C10 induced some cell sloughing and ZO-1 was internalised 

leaving poor membrane definition, indicative of membrane perturbation (Fig. 1B). Claudin-5 
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and occludin were also relocated and internalised in the presence of 5 mM C10, suggestive of 

some loss of cell membrane integrity, likely accompanied by an increase in tight junction 

openings. This data indicates that increasing concentrations of C10 led to reorganisation of TJ 

proteins and is consistent with the reciprocal reductions in TEER and increases in the Papp of 

[3H]-IPP and [3H]-LKP. Overall, C10 increased transepithelial flux of the peptides across 

Caco-2 monolayers due to the internalisation and re-organisation of TJ proteins and is likely 

to be predominantly a paracellular effect in vitro, initiated by membrane fluidisation and 

perturbation. 

 

3.3 C10 enhances flux of [3H]-IPP and [3H]-LKP across isolated rat jejunal mucosae 

The basal TEER for isolated jejunal tissue mounted in Ussing chambers was 46 ± 9 Ω.cm2 

(n=48), within the range of TEER values typically reported for this tissue in vitro [40]. 

Jejunal TEER values decreased in untreated controls by 12% on average over 120 min (Fig. 

2A). In mucosae pre-incubated with Gly-Sar (10 mM) for 20 min, TEER subsequently 

decreased by 17% over 120 min, but this was not different to untreated controls. Apical 

addition of C10 decreased TEER to 67%, 52%, and 42% of basal values at 10, 20, and 30 mM 

concentrations respectively. The Papp of [3H]-IPP in the A-B direction was 2.6 ± 0.6 x 10-6 

cm.s-1 and for [3H]-LKP, it was similar at 2.1 ± 0.4 x 10-6 cm.s-1 (Table 2). When tissue was 

pre-incubated with apical addition of 10 mM Gly-Sar, a reduction in the Papp values were 

recorded for both peptides: the Papp of [3H]-IPP decreased by 42% (to 1.5 x 10-6 cm.s-1), while 

that of [3H]-LKP decreased by 41% (to 1.4 x 10-6 cm.s-1). Apical addition of 10 mM C10 had 

no effect on the Papp values of either peptide alone. However in the presence of Gly-Sar, C10 

increased the Papp of both peptides back up to basal levels (Table 2).  When jejunal tissues 

were exposed to 20 and 30 mM C10, the Papp increased for both peptides above the levels seen 

in either the presence or absence of Gly-Sar. Histological analysis of jejunal tissue was 
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carried out following 120 min exposure to increasing concentrations of C10 (Fig. 2B). 

Untreated tissue and tissue pre-incubated with Gly-Sar showed no major morphological 

changes. Apical addition of 10 mM C10 however, induced cellular sloughing of the jejunal 

villi and increased mucus secretion after 120 min (Fig. 2B.iii). Depth of villi perturbation and 

damage was more evident at the 20 mM and 30 mM C10 concentrations. Overall, the jejunal 

structure was maintained and the crypts remained mostly unaffected in control tissues and 

exposed to Gly-Sar, but C10 caused concentration-dependent damage at values >10 mM,  

consistent with the TEER reductions. 

 

3.4 Effects of Gly-Sar and C10 on the anti-hypertensive action of the peptides in SHRs 
 

The hypotensive effects of unlabelled IPP and LKP were assessed in SHRs by the i.v. (Fig. 

3A) and oral gavage routes (Fig. 3B, C). Captopril (5 mg/kg) statistically lowered SBP by 

both delivery routes compared to PBS, with no effects of PBS seen by both routes. Both IPP 

and LKP statistically decreased SBP by the i.v. route at 1 h and 2 h with doses of 1 mg/kg (P 

versus control, and also at each time point up to 6 h at a dose of 5 mg/kg IPP, and at time 

points up to 3 h only for 5mg/kg LKP. 5 mg/kg captopril tended to be more effective than 

either peptide at later time points at the same dose level by the i.v. route, but this was not 

significant.  Concerning oral administration of the two peptides and captopril to SHRs, there 

was a slower onset of hypotensive action compared to the i.v. route (Fig. 3B, C). Oral doses 

of 5 and 10 mg/kg of IPP and LKP induced a statistical reduction in SBP from 2-4 h with 

respect to PBS controls, whereas 1mg/kg doses were ineffective. For the three dose levels of 

the peptides administered orally, there were dose-dependent blood pressure reductions for 

each. Captopril (5 mg/kg) statistically reduced SBP at each time point up to 6 h and also at 8 

h. It was more efficacious then the two peptides following oral gavage at the 5mg/kg dose 

level at the 6h and 8h time points. At these later time points  there was no statistical reduction 
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in SBP induced by the two peptides versus PBS in contrast to captopril.   The effects of Gly-

Sar and C10 were then determined in relation to the hypotensive actions of IPP and LKP. Gly-

Sar co-administration statistically inhibited the SBP decreases induced by IPP (Fig. 4A) and 

LKP (Fig. 4B) at 120 min, however the inhibitory effects of Gly-Sar were partially reversed 

for both peptides to a statistical level in the presence of C10.  The data suggest that the IPP- 

and LKP induced decrease in SBP in the presence of oral Gly-Sar in SHRs could be partially 

reversed by C10.  

 

3.5   Effects of C10 and Gly-Sar on the serum levels of orally-gavaged [3H]-IPP and [3H]-

LKP in normal rats 

The effects of Gly-Sar and C10 on the serum levels of [3H]-IPP and [3H]-LKP were 

determined over 180 min following oral gavage to normal rats (Fig. 5A). A high 

concentration of 100 mM Gly-Sar was used in oral gavage studies instead of the 10mM used 

in vitro  in order to account for possible dilution in the GI tract [42]. In the presence of Gly-

Sar, there was a significant decrease in serum levels both [3H]-IPP (57% reduction) and [3H]-

LKP (56% reduction) following gavage (Fig. 5A). When 180 mM C10 [43] was co-

administered  with Gly-Sar and the peptides however, serum levels of [3H]-IPP returned to 

84% of levels attained in the absence of Gly-Sar, and that of [3H]-LKP returned to 93%. 

Surprisingly, C10 co-administration with the peptides was without effect on serum levels even 

at a high concentration of 180 mM; values were similar for both peptides in its presence and 

absence. Co-administration of C10 therefore circumvented the reduction in peptide flux 

caused by Gly-Sar inhibition of the PepT1-mediated pathway, but C10 had no effect on serum 

levels  per se. This indicates that C10 may reverse the inhibition of absorption of the two 

peptides by Gly-Sar in vivo.   Histological analysis of jejunal tissue after oral gavage was 
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carried out after exposure to treatments and showed no pathological damage from the rats 

dosed with Gly-Sar, C10, or the combination thereof (Fig. 5 B). There were no differences in 

histological damage, epithelial perturbation, cell sloughing, or increased mucus production 

between treated and untreated rats. It was notable that the jejunal histology from gavage 

studies in rats was in general better preserved than jejunal mucosae from Ussing chamber 

studies. 

 

4. Discussion 

The relatively high Papp values [3H]-IPP and [3H]-LKP obtained across Caco-2 monolayers 

suggest that both molecules have higher permeability across the model than was anticipated 

for peptides. Examples of well-absorbed small molecules with a similar range of Papp values 

across Caco-2 include (x 10-6 cm.s-1): atenolol, 2.2; talinolol, 1.8 [44], and valacyclovir, 4.5 

[45], the latter being a substrate of PepT1. Furthermore, the Caco-2 Papp values reported here 

are similar to the Papp values of other short chain peptides determined across Caco-2:  (x 10-6 

cm.s-1): e.g. Ile-Phe, 2.4 [46], Thr-Vap-Pro-Ser-Leu, 6.9 [20], and Gly-Pro-His, 1.1 [22], as 

well as Gly-Sar itself, 9.2 [44]. In addition, the Papp values of [3H]-IPP and [3H]-LKP across 

isolated rat jejunal mucosae the are also in line with values obtained for established small 

molecule PepT1 substrates across human and rat small intestinal tissue mucosae  (x 10-6 cm.s-

1): oseltamivir, 4.6 [47], captopril, 0.5 [25], and cephalexin, 3.8 [26].  Foltz et al. [48] used 

LC-MS to assay permeated unlabelled IPP and reported Papp values of 1.0 x 10-8 cm.s-1 across 

Caco-2 monolayers and 9 x 10-8 cm.s-1 across isolated rat jejunal mucosae, 100-fold lower 

than the values we report here for tritiated IPP in each model. The discrepancy with our data 

is unlikely to be due to an artefact of tritium breaking off from the tripeptides during 

permeation for the following reasons: the radiolabel bond is covalently-linked; the Papp values 

of [3H]-IPP and [3H]-LKP are in line with most other in vitro epithelial permeability studies 
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of PepT1 substrates, and finally Gly-Sar inhibition of [3H]-IPP and [3H]-LKP flux was still 

present across three bioassays. Thus, although it is unlikely that detachment of the label 

occurred, this was not directly assessed by column chromatography or LC-MS. Similarly, 

while Caco-2 permeability values differ between laboratories may be are related to the clone 

source, differences in basal TEER, passage number, and serum lot, this does not explain the 

lack of similarity between the two studies for the rat jejunal Papp data.   

 

Apical addition of C10 in the presence of Gly-Sar increased the Papp of both peptides to levels 

similar to those obtained in the absence of Gly-Sar in both Caco-2 monolayers and rat jejunal 

mucosae. It is known that C10 fluidises the plasma membrane consistent with detergent-like 

perturbation [34]. Therefore, it is possible that the effect of C10 on the apical membrane 

indirectly nullifies the effect of PepT1 inhibition by Gly-Sar. We speculate that C10 allows 

the Papp of the peptides to revert to basal levels by increasing their paracellular flux as a 

consequence of diverting them from the inhibited transcellular PepT1 pathway through 

initiating enzymatic and intracellular calcium-mediated events that modulate the tight 

junction [33]. PepT1-mediated uptake relies on H+-coupled co-transport, which is supported 

by an acid microclimate in the small intestine [49]. Alkalinisation of the microclimate can 

inhibit PepT1-mediated uptake [38], and a lack of pH gradient will reduce the capacity for 

PepT1 to translocate substrates. The bile salt, sodium deoxycholate, is also a permeation 

enhancer, but it does not alter the pH of the microclimate in rat jejunum [50], however we 

have not yet tested whether C10 behaves similarly. Therefore in vitro, the evidence suggests 

that C10 is acting predominantly by opening the paracellular route through indirect 

membrane-initiated intracellular mechanisms that lead to alterations in tight junction protein 

location and function. A model of this interpretation is presented (Fig. 6). In support of this 

interpretation, increasing concentrations of C10 resulted in both a re-distribution of TJ 



18 
 

proteins in Caco-2 monolayers as well as causing cell sloughing from the tips of villi, as 

expected from a surfactant. C10 has a long history of use in man and causes rapidly reversible 

membrane perturbations in more physiological-relevant models.  Therefore the damage 

caused by C10 in vitro is likely due to direct exposure to the intestinal epithelia for 120 min 

without the normal epithelial protective mechanisms available in vivo. Further studies in a 

larger animal model such as oral gavage in pigs would allow for dose-dependent assessment 

of the contribution of C10 to the increase in plasma peptide levels. Unlike larger peptides, IPP 

and LKP have relatively low molecular weights (325 Da and 356 Da respectively) and are 

hydrophilic, thus making them suitable candidates for permeation via an enabled paracellular 

route in the event of PepT1 inhibition. Paracellular permeability typically requires a molecule 

to be < 500 Da and hydrophilic in order to pass tight junctions. As TJ proteins are transiently 

relocated and perturbed by permeation enhancers, tissue TEER reduces and the paracellular 

permeability of tracer molecules (e.g. FITC) increases across intestinal epithelia [51, 52]. 

However, concerns are often raised when the intestinal barrier is perturbed due to the possible 

translocation of bacteria, toxins, and bacterial lipopolysaccharide [53]. Previous studies with 

PEs have shown that the intestinal barrier repaired within 1-3 hours [54-56], and that the 

molecular diameter of molecules which can cross when the barrier is opened in a temporary 

fashion is quite low [52]. 

 

After co-administration of [3H]-IPP with Gly-Sar or [3H]-LKP with Gly-Sar to normal rats by 

oral gavage, the plasma levels of the peptides were reduced by 56% and 57% at 180 min 

respectively compared to values in the absence of Gly-Sar, thereby implicating a role for  

PepT1 in mediating as least part of their flux pathway in vivo. Oral gavage of C10 with [3H]-

IPP or [3H]-LKP in the presence of Gly-Sar restored serum values at the 180 min time point 

to the levels obtained with either [3H]-IPP or [3H]-LKP alone and this was consistent with the 
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in vitro data. Restoring the oral absorption of a PepT1 substrate using an amphiphilic 

permeation enhancer, Labrasol®, was also previously reported in isolated rat jejunal mucosae 

for cephalexin [57]. Cephalexin permeability was reduced by 18% in the presence of Gly-Leu 

and Ala-Ala, but addition of Labrasol® restored permeability to basal levels. Similarly, oral 

absorption of oseltamivir, an antiviral prodrug and substrate for PepT1, was reduced when 

co-administered with either Gly-Sar or bovine milk in rats [58]. The authors argued that the 

inhibition of PepT1 by components of milk is due to intestinal hydrolysis of milk proteins 

leading to di-and tri-peptide competition for uptake via PepT1 of oseltamivir. On the other 

hand, a clinical trial showed an increase in oseltamivir plasma AUC0-24 h after administration 

with a high fat high calorie meal including milk compared to fasted state [42]. Perhaps the 

high fat content of the meal perturbed the intestinal epithelium, thereby acting in part as an 

emulsion-based permeation enhancer(s) to overcome the effect of PepT1 competition by the 

milk-derived peptides [59]. Furthermore, Matsui et al. reported that co-administration of VY 

with captopril nullified the individual hypotensive effect of both agents when administered to 

SHRs, and cautioned against simultaneous intake of ACE inhibitors and foods high in di- and 

tripeptides [25]. We note that there is some controversy over whether captopril is a true 

substrate for PepT1, as it has relatively weak affinity for PepT1 in transfected cells and there 

is speculation by the group of Brandsch that its high oral bioavailability may possibly be 

accounted for by passive diffusion or the influence of other transporters [60]. Nonetheless, 

the inhibition of flux of IPP and LKP by Gly-Sar across two in vitro bioassays, the inhibition 

of the blood-pressure lowering effects of the peptides in SHRs by Gly-Sar, along with a 

reduction in serum levels of the peptides by Gly-Sar in normal rats suggests that the two 

peptides are indeed substrates for PepT1. 

 

The present study demonstrated that Gly-Sar co-administration partly reversed the 
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hypotensive effect of both IPP and LKP in SHRs, but that addition of C10 restored it. This is 

the first demonstration that a food-grade agent can enhance in vivo effects of bioactive 

peptides derived from food. Application of pharmaceutical technologies such as food-grade 

permeation enhancers and delivery systems to food bioactive peptides is an emerging area 

[61, 62]. Recently, Val-Leu-Pro-Val-Pro was encapsulated in a pol-(lactic-co-glycolic) acid-

based nanoparticle, and exhibited sustained attenuation of hypertension compared to free 

peptide after oral administration to SHRs [63]. The European Food Safety Authority (EFSA) 

regulates health claims for foods, however both IPP and LKP were rejected due to lack of  

sufficient evidence of reducing blood pressure levels in the general population with foods 

enriched with IPP and LKP] [64, 65]. However, it should be noted these peptides appear to be 

more effective in pre-hypertensive and hypertensive subjects compared to normotensive 

subjects [66]. Use of appropriate delivery systems may therefore yield a food-grade 

formulation to deliver an efficacious dose of these antihypertensive peptides to attenuate 

hypertension in pre-hypertensive subjects prior to the requirement for pharmaceutical 

intervention.  

 

5. Conclusions 

C10 enhanced the permeability of [3H]-IPP and [3H]-LKP in the presence of Gly-Sar in Caco-

2 monolayers and in isolated rat jejunal tissue. Antihypertensive effects of IPP and LKP were 

confirmed when reduction in blood pressure was seen after both i.v. and oral administration 

in SHRs. Co-administration of the peptides with Gly-Sar resulted in a decrease in their 

hypotensive effects,  however co-administration with C10 in the presence of Gly-Sar reversed 

the loss of the hypotensive effects of IPP and LKP in the SHRs.  The serum levels of [3H]-

IPP and [3H]-LKP in normal rats were reduced by ~50% in the presence of Gly-Sar in normal 

rats following oral gavage, suggesting involvement of PepT1 in the permeation pathway. C10 
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was able to prevent the reduced serum levels of the peptides when co-administered with Gly-

Sar, thereby returning values near to basal levels. C10 may overcome PepT1 inhibition 

indirectly by enhancing paracellular permeability of IPP and LKP. 
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Table 1. Papp of [3H]-IPP and [3H]-LKP across Caco-2 monolayers exposed to C10  
and/or 10 mM Gly-Sar over 120 min 

[3H]-IPP Papp (x 10-6 cm.s-1) 
 Control C10 (1 mM) C10 (2.5 mM) C10 (5 mM) 
0 mM Gly-Sar 
 

6.2 ± 2.9 
 

10.1 ± 0.7 12.2 ± 2.7 * 
 

15.7 ± 5.2 * 
 

10 mM Gly-Sar 
 

3.3 ± 1.8a 
 

9.6 ± 1.1 * 
 

11.5 ± 3.9 * 
 

20.7 ± 5.3 * 
 

 
[3H]-LKP Papp (x 10-6 cm.s-1) 

0 mM Gly-Sar 
 

11.4 ± 1.7 
 

12.4 ± 2.4 
 

16.8 ± 3.2 * 
 

22.6 ± 2.1 * 
 

10 mM Gly-Sar 
 

 6.4 ± 1.6 a 

 
12.1 ± 2.8 * 

 
17.9 ± 1 * 

 
21.2 ± 0.9 * 

 
* P < 0.05, C10-exposed monolayers compared with untreated control monolayers. a P < 0.05, 
for Gly-Sar exposed monolayers compared with untreated control monolayers. One-way 
ANOVA with Dunnett’s multiple comparison. Mean ± SD, n = 3 independent replicates. 

 

 

 

 

 

Table 2. Papp values of [3H]-IPP and [3H]-LKP across rat jejunal tissue exposed to  
C10 and/or 10mM Gly-Sar over 120 min 

[3H]-IPP Papp (x 10-6 cm.s-1) 
Gly-Sar Control  C10 (10 mM) C10 (20 mM) C10 (30 mM) 

(-) 2.6 ± 0.6 
 

3.4 ± 0.6 4.2 ± 0.8 * 5.3 ± 1.2 * 

(+) 1.4 ± 0.3 a 
 

3.1 ± 0.8 * 
 

4.1 ± 0.4 * 5.2 ± 0.6 * 

 
[3H]-LKP Papp (x 10-6 cm.s-1) 

(-) 2.1 ± 0.4 
 

2.6 ± 0.7 
 

4.0 ± 0.6 * 5.4 ± 0.8 * 

(+) 1.5 ± 0.3 a 
 

2.9 ± 0.9 * 3.9 ± 0.4 * 5.2 ± 0.6 * 

* P < 0.05, C10-exposed mucosae compared with untreated controls; a P < 0.05, for 
Gly-Sar exposed mucosae compared with untreated control mucosae. One-way 
ANOVA with Dunnett’s multiple comparison. Mean ± SD, n = 5 independent 
replicates. 
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