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State Acquisition in Computer Networks
Ruairí de Fréin

School of Electrical and Electronic Engineering
Dublin Institute of Technology, Ireland

Abstract—We establish that State Acquisition should be per-
formed in networks at a rate which is consistent with the
rate-of-change of the element or service being observed. We
demonstrate that many existing monitoring and service-level
prediction tools do not acquire network state in an appropriate
manner. To address this challenge: (1) we define the rate-of-
change of different applications; (2) we use methods for analysis
of unevenly spaced time series, specifically, time series arising
from video and voice applications, to estimate the rate-of-change
of these services; and finally, (3) we demonstrate how to acquire
network state accurately for a number of real-world traces
using Greedy Acquisition. The accuracy of State Acquisition is
improved when it is performed at a rate which is consistent with
its rate-of-change. An improvement in representation accuracy of
one order of magnitude is achieved for voice and video streaming
applications; this improvement does not incur any additional
bandwidth or storage cost.

Index Terms—State Acquisition; Network monitoring; Spectral
analysis; Period detection.

I. INTRODUCTION

MANY network management tools use Linux tools for
State Acquisition to acquire inputs for higher-level

functions such as network monitoring algorithms [1], service
level prediction algorithms [2], [3] and resource allocation
routines [4]. Some examples of these acquisition tools include
the System Activity Report (SAR) [5], Nagios [6] and top
[7] (in association with tools such as netstat and dropwatch).
Monitoring tools that use these acquisition methods promise
to deliver notifications to the user if the aggregate of some
metric is above a threshold across an entire infrastructure
or on a per machine basis [6]. With respect to a cluster
of machines, aggregates in terms of the average, maximum,
minimum or sum are computed [1] as a function of time
and/or across machines or instances [8]. These types of
notifications are given for a number of different metrics, for
example, revenue or data center temperature. Statistics are
then absorbed by tools such as StatsD [9] and representative
charts are generated every 10s for example (using tools such
as Graphite). This paper considers the validity of current State
Acquisition approaches, which acquire the data for higher-
level functions such as monitoring, learning, graphing and
problem diagnosis. In particular, we examine methods for
acquiring and aggregating network metrics in voice and video
applications [10].

To fix ideas, State Acquisition is defined as a function that
measures the state of a network or service and converts this

state into a numeric value; its role is different to monitoring,
which is a means for making the acquired state available to the
network manager. Fig. 1 demonstrates a generic acquisition-
monitoring set-up, which is representative of many scenarios.
An acquisition function observes an element’s state every
Ta seconds; a monitoring agent submits a report to the
network manager every Tm seconds based on the acquisition
agent’s observations. In many applications, the acquisition and
monitoring functions use the same time-step, Ta = Tm; the
acquisition agent and monitoring agent are one and the same.

The design of network monitoring algorithms (such as [1])
does not focus on the role of metric acquisition. Linux comes
with widely used metric acquisition routines. The assumption
is that existing tools can be relied upon to acquire metrics;
the role of the monitoring protocol is to determine when
to aggregate the metrics and to deliver them to the network
manager. The confidence the monitoring and learning commu-
nities have in these acquisition routines is unwarranted – these
routines may not be sufficiently accurate for modern network
monitoring and learning protocols [11]. The performance of
a monitoring function depends on the quality of the data that
it consumes. The increase in dynamicity and heterogeneity
of modern networks [12], which makes networks harder to
manage, exacerbates this problem.

The problem with off-the-shelf metric acquisition routines
is that many of them are periodic with a default resolution of
1 second, for example SAR [5]. Consequently, many network
monitoring routines monitor the network with this temporal
precision limitation [13]. This was one of the reasons (scalabil-
ity issues contributed also) why SoundCloud developers devel-
oped their own monitoring solution, Prometheus [8]. Similar
in spirit to our approach, Prometheus stores all data that is pe-
riodically pulled from SoundCloud’s [14] instrumented micro-
services architecture as time series, where time-stamps have
a millisecond resolution and values are 64-bit floats. In order
to save disk space, Nagios XI stores performance data in a
Round Robin Database, which consists of performance metrics
periodically averaged over 1, 5, 30 and 360 minute time-steps.
We examine if these periodic acquisition approaches yield
sufficient accuracy.

In the case of event-based monitoring and learning routines
using SAR [5], there may be a lag of up to 1 second between
the occurrence of an event and the time a monitoring report
is sent in response to it [3]. The descriptor, “event-based”, is
inappropriate. The authors of [2] and [3] use SAR to acquire
kernel metrics from a video server once per second in order
to perform client service level prediction, dealing with load-ISBN 978-3-903176-08-9 © 2018 IFIP



Fig. 1. The role of state acquisition in the monitoring ecosystem: metrics
are pushed every Ta seconds to a periodic monitoring gateway, with period
Tm , from instrumented systems delivering either long or short lived jobs.
Periodically acquired observations are stored locally, rules are applied to
them to generate new time series; alerts are triggered; they contribute to
monitoring or querying dashboards; or they are supplied to learning APIs.
The performance of these higher-order functions depends on quality of the
acquired data.

effects in particular in [15]. For a video and voice resource al-
location application the authors of [4] acquired measurements
of resource parameters (CPU, RAM, latency and call drops)
every 15s from a Clearwater cloud ISM test-bed, using SNMP
and Cacti [16] to determine how physical resources could be
dynamically allocated to virtualized network functions. More
generally, RTCP [17] is commonly used to provide out-of-band
statistics for RTP sessions by periodically reporting on packet
counts, packet loss, packet delay variation, and round-trip de-
lay time to participants in a streaming multimedia session [18].
The recommended minimum RTCP report interval per station
is 5 seconds. Nagios’ Remote Plugin Executor periodically
polls the agent on the remote system for disk usage and
system-load statistics. Now that we have established the central
role periodic acquisition and monitoring plays in networks, we
examine the efficacy of periodic State Acquisition.

We query the acquisition resolution required to monitor the
quality of service received by the client in a video and in a
voice session. Minimizing network bandwidth usage plays a
role in determining the acquisition periods of Ta = 1, 5 and 15
seconds used in the approaches above. Consuming bandwidth
with monitoring reports is undesirable; however, reporting the
system state inaccurately is perhaps even more undesirable
than not reporting at all. We examine this trade-off between
accuracy and bandwidth usage, but also consider whether
crucial characteristics of each trace have been preserved by
State Acquisition at different points of this trade-off.

This paper is organized as follows. In Section II, we provide
a framework for describing state acquisition methods. In
Section III, we consider periodic acquisition and the effects
of performing faster acquisition empirically and motivate
Greedy Acquisition. In Section IV, we discuss rate of change
estimation. In Section V, we describe a Greedy Acquisition
algorithm which performs acquisition in a manner which is
consistent with the rate of change of the observed process.
In Section VI, we perform a numerical evaluation of current
acquisition methods, and the Greedy Acquisition method.

II. STATE ACQUISITION: UNEVENLY SPACED SAMPLES

The time series observed in networks are unevenly spaced.
They consist of a sequence of observation time and value pairs
(tn, xn) with strictly increasing observation times. When audio

or video frames (that are streamed from a SoundCloud or
Youtube server) are observed at a client machine, the time-
stamps of frame arrivals and the frame-sizes, (tn, xn), can
be useful for service outage detection. Fig. 2 illustrates a
frame-arrival time-series at a client machine when a podcast is
streamed. When the network is sufficiently well provisioned,
this process has a periodic component. The server periodically
sends the client a segment of data, which the client then plays-
out to the user at the sampling rate of the original recording
[19]. Important statistics such as jitter and packet loss rates
may be computed from this time-series [18]; however, net-
work anomaly diagnosis may be performed, or service-level
prediction [3], if these time-series are gathered from multiple
network elements at one monitoring/learning gateway [10].
This motivates the question: do the acquisition methods that
currently operate at clients allow us to determine (1) the rate
of change of the observed process and (2) the period of this
process illustrated in Fig. 2? Knowledge of these parameters is
crucial for building a learning function that can predict future
network behaviour (cf. [3]).

We define a framework for analyzing unevenly spaced time
series to answer this question. For N ≥ 1, the space of strictly
increasing time sequences of length N is denoted: TN = {(t1 <
t2 < . . . < tN ) : tn ∈ R, 1 ≤ n ≤ N }. More generally, the
space of strictly increasing time sequences is denoted, T =
∪∞
N=1TN . The observation values, x, in computer networks

are real-valued, RN . Bringing these ideas together, the space
of real-valued, unevenly spaced time series of length N , is
TN = TN × R

N . Finally, the space of real-valued unevenly
spaced time series is T = ∪∞

N=1TN . We often need to quantify
the number of observations in some sequence x, e.g. N =
|x |. The sequence of observation times is denoted, T x(x) =
(t1, . . . , tN ), and the sequence of observation values of x is
V (x) = (x1, . . . , xN ).

Time series acquisition methods (used by [5],[6] and [7])
are used to summarize the performance of network entities,
so that at times t = nTa, performance can be quantified. Here
n is an integer that denotes the acquisition time index. There
are a number of different acquisition methods. The extracted
metrics are passed to a monitoring protocol. Many methods
do not yield data which is of sufficient quality. In this paper
we address the problem of how to extract a suitable metric
from unevenly spaced system events. In short, if we observe
some process at times T (x), we investigate what value we
should use to represent this process at time t < T (x), which
is typically not an observation time.

Observation methods: Firstly, we take the previous obser-
vation as our estimate. Secondly, we take the next observation
as our estimate; and thirdly, we interpolate between the two.
For a time series x ∈ T and a point in time t ∈ R, typically
not an observation time, the most recent observation time is

p(t) =:



max(s : s < t, s ∈ T (x)), if t ≥ min(T (x))
min(T (x)), otherwise.

(1)



The next available observation time is

n(t) =:



min(s : s ≥ t, s ∈ T (x), if t ≤ max(T (x)),
+∞, otherwise.

(2)

For x ∈ T and t ∈ R, x(p(t)) is the previous observation
value of x at time t, x(n(t)) is the next observation value of
x at t, and xl (t) = (1 − ω(t))x(p(t)) + ω(t)x(n(t)) where

ω(t) =



t−p(t)
n(t)−p(t) , if 0 < n(t) − p(t) < ∞
0, otherwise,

(3)

is the linearly interpolated value of x at time t. These acquisi-
tion schemes are called last-observation, next-observation and
linear interpolation, respectively. We adopt the convention that
x(t) = x(n(t)) = xl (t) when t ∈ T (x). The interpolated signal
xl (t) is a continuous piece-wise-linear function.

Local-in-time statistics: It is convenient to consider short-
time observations of these time series in order to generate
local-in-time statistics of network behaviour. The time series
generated in networks over a closed interval, which starts at
time s and ends at time t, [s, t], where s < t is

x{s, t} = ((tn, xn) : s ≤ tn < t, 1 ≤ n ≤ N ). (4)

One acquisition approach (cf. [1]) is to apply the max
operator to the values in a closed interval [s, t] and to slide
this interval, by some step-size, over the entire signal. The
maximum signal value in the closed interval [s, t] is denoted

as (t) = max V (x{s, t}) (5)

The minimum value in this interval

ms (t) = min V (x{s, t}) (6)

The average value in a closed interval is commonly used to
summarize system performance [5],[6] and [7].

µs (t) =
1

|X {s, t}|

p(t)∑
n=n(s)

xn (7)

The maximum, minimum and average statistics are reported
by [20]. Other higher-order statistics are computed in a similar
manner, and may be of use to network monitoring applications.
The time duration between consecutive observations of x is
useful for determining the rate of change of the time series

∆t(x) = ((tn+1, tn+1 − tn) : 1 ≤ n ≤ N − 1). (8)

III. ACQUIRE FASTER: PERIODIC ACQUISITION

How representative are x(p(t)), xl (t) and µx (t) of the data
they summarize? The acquisition methods used in [1], [2], [3]
and [4], are periodic, and use one of the approaches above, at
a rate of 1Hz or greater to quantify network behaviour. Given
the increased dynamicity and complexity of modern networks
this warrants further inspection. Is a periodic approach good
enough? Is an acquisition rate of 1Hz appropriate? To de-
termine the rate of change of unevenly spaced signals, we
examine their spectral content by computing a Power Spectral
Density (PSD) estimate of x.

The Lomb-Scargle method [21] generates a PSD estimate
of unevenly spaced time series, P : xn ∈ R 7→ x̂(ω) ∈ R+,
without the need to invent otherwise non-existent, evenly
spaced data. The underpinning assumption is that the signals
are periodic. The approximate periodicity of unevenly spaced
time series assumption is realistic when we consider the rate
of arrival of audio or video frames during a streaming session
(Fig. 2).

To reduce notation we subtract the mean from the signal x,
and then determine the normalized spectral content of x ∈ T

x̂(ω) = P(x){ω} =
1

2σ2 ×



[∑
n xn cos(ω(tn − τ))

]2∑
n cos2(ω(tn − τ))

+

[∑
n xn sin(ω(tn − τ))

]2∑
n sin2(ω(tn − τ))




(9)

at the frequencies ω, where σ2 = 1
N−1

∑N
n=1(xn − µ)2. The

following time offset is used to guarantee the time in-variance
of the computed spectrum

tan(2ωτ) =
∑N

n=1 sin(2ωtn)∑N
n=1 cos(2ωtn)

. (10)

We assume that network-generated time-series are base-
band or low-pass signals. Empirical evidence in Section VI
supports this assumption. To fix ideas, we stream a podcast
from SoundCloud [14]. The average received bit-rate of the
podcast is 104, 991kbps. We capture an unevenly spaced
time series which consists of the time-stamps and sizes (in
bits) of each frame, (tn, xn) respectively, in the stream using
TCPDUMP [22]. We filter out the time-stamp and frame sizes
and plot this unevenly spaced time series in Fig. 2. This trace
has a periodic component – every approximately 10 seconds,
a number of 12kbits frames are delivered.

In Fig. 3 we plot the PSD estimate of this unevenly spaced
time series. The component with the highest PSD is ≈ .7Hz.
By inspection of Fig. 2, we determine that the fundamental
frequency of this trace is < 1Hz. The upper envelope of the
PSD falls to 0dB/Hz at ≈ 100Hz. There are other higher-
frequency components in Fig. 2. Consequently, in Fig. 3 we
illustrate where the PSD of the trace has fallen by 50dB from
its peak value – this occurs at ≈ 108 Hz – to demonstrate a
range of frequencies of interest to monitoring applications.

Do current time series acquisition approaches preserve this
important information about the rate of change and the period
of frame delivery? To answer this question, we acquire state
values every Ta = 1s, at times t ∈ N and examine the
PSD of the resulting traces. The time period Ta = 1s is
representative of the period used in [1], [2], [3] and [4]. The
set of non-negative integers is N. The underlying process we
want to acquire an accurate representation for, is acquired
by taking (1) the last sample closest to some sampling time,
x(p(t)) | t ∈ N; (2) the average value over the last sampling
period, µt−1(t) | t ∈ N \ 0, where t is in the set of
positive integers; and finally, (3) the linear interpolated value
xl (t) | t ∈ N. We use a stem to denote the position and height



Fig. 2. Unevenly spaced time series observed when streaming audio to a
client. The time and value pairs illustrated consist of frame arrival time-stamps
and frame sizes. Every ≈ 10s a number of frames of size ≈ 12kbits are
received. This time-series has a clear periodic component.

Fig. 3. PSD of unevenly spaced time-series observed when receiving a
streamed podcast from SoundCloud. The 50dB bandwidth is 108Hz. The
upper envelope of the PSD falls to 0dB at 100Hz.

Fig. 4. Using periodic acquisition (time-step of 1 second), we illustrate
the effect of using the last sample, average value and interpolated values
at acquisition times t ∈ N.

of each state acquisition value in Fig. 4; each trace should be
compared with the original time series in Fig. 2.
Analysis: The PSD allows us to estimate the rate of change of
the network/service – a parameter which is of crucial interest
to service providers. For example, unusually high rates of
change may indicate anomalies; periodic components may
indicate that the network is healthy. The acquisition methods
in Fig. 4 do not allow the network manager to estimate the

Fig. 5. PSD of current acquisition approaches: x(p(t)), µt−1 (t) and xl (t).
Important information such as the rate of change of the underlying time
series and the period is lost. The flat PSDs illustrated demonstrate that higher
frequency information has been lost.

maximum rate of change of the network. The information in
the frequency band 0 < f < 108Hz is lost by the acquisition
methods used in Fig. 4. One reason for this is that they create
an estimate for data that does not exist.

(1) Information about the period of the trace is lost.
This is a serious shortcoming. For example an artifact of
x(p(t)) is that its period is approximately 20 seconds and
not approximately 10 seconds. Period calculations for each
trace will be inaccurate as the times of frame arrivals in the
original trace are never in the set of times t ∈ N. For example
the 12kb frame arrival times occur just after 40, 50, 60, . . .
seconds. The large frame arrivals occur just before 50, 70, . . .
seconds in x(p(t)). In the average acquisition trace µt−1(t),
the pulse amplitudes (frame sizes) vary in height, which makes
period detection hard. Finally the interpolated acquisition trace
xl (t) exhibits pulse amplitudes which vary each time they
appear with a period of 20 seconds. Estimates of the period
tell us when to expect the next burst of podcast data. The
ability to detect if this burst of data has arrived, or has arrived
late, is lost. This is because the exact times when bursts of
data arrive have been lost. Secondly, the sizes of the burst
have been lost; this is due to averaging or interpolation, or
because the previous observation was not part of the periodic
train of frames. The effect of using the last, average or
interpolated value over the previous second causes the period
information to be obscured. Averaging unevenly spaced time
series introduces ambiguity.

(2) Higher frequency information in the range up to
108Hz and above is lost in Fig 5. The acquisition techniques,
x(p(t)), µt−1(t) and xl (t) low-pass filter the original unevenly
spaced time-series. We posit that high-frequency variations
in this trace may help us detect sub-optimal network per-
formance. Choosing a low-pass filter in the acquisition step,
without reference to the rate of change of the time series, may



Fig. 6. High-rate periodic acquisition: Acquisition at 200 Hz does not
significantly improve the ability to estimate the period and rate of change
of the original data from the acquired time-series.

remove crucial monitoring and problem diagnosis information.
Remark: the amplitude and location in time of the acquired
stems (in Fig. 4) depend on the relative position of each
of the events in x relative to the acquisition times t ∈ N.
Shifting the acquisition times relative to the events in x, can
greatly increase or decrease the efficacy of acquisition and
monitoring. We have shown that for an arbitrary periodic
acquisition starting time that periodic acquisition is harmful
for higher-order functions such as monitoring and learning.

Higher acquisition rate: The periodic acquisition methods
above, with a period of 1Hz, remove crucially important infor-
mation about the fundamental frequency and the rate of change
of frame delivery in Fig 2. Loss of this information will reduce
the effectiveness of higher-order functions such as monitoring
and learning that consume the acquired performance data. The
PSD of the original unevenly spaced time-series experiences a
drop of 50dB at approximately 100Hz in Fig. 3. We consider
the effect of acquiring this time series using a significantly
higher acquisition rate of 200Hz to determine if this facilitates
the capture of crucial parameters such as the period and rate
of change of the underlying trace. In effect we are assuming
that the Nyquist rate of this unevenly spaced time series is
≈ 200Hz.

Increasing the rate of State Acquisition by a factor of
200 increases the bandwidth of the monitoring protocol that
consumes these metrics. Fig. 6 demonstrates that increasing
the acquisition rate 200-fold does not improve our ability to
estimate the period and rate of change of the time series. The
acquisition methods x(p(t)), µs (t) and xl (t) suffer to similar
problems as before; but they now consume more bandwidth
and storage.

IV. RATE OF CHANGE ESTIMATION

In this section we determine the appropriate way to acquire
periodic performance traces from audio and video streams by
estimating the rate of change, c, of the trace. Even if the

resulting rate of acquisition is unfeasibly high, knowledge
of this parameter can facilitate better design decisions. For
example, we can low-pass filter the signal and use this filtered
time series in learning algorithms for example, cognizant of
the fact that we cannot make predictions outside of a certain
range of frequencies. We appeal to classical evenly spaced
sampling theory for guidance with the challenge of rate of
change estimation for unevenly spaced time series.
The problem with unevenly spaced time series: The
periodic time-series we observe for video and audio stream
applications, x, consist of a sum of weighted and delayed Dirac
pulses, δ(t), e.g.

N∑
n=1

x(tn)δ(t − tn). (11)

When these pulses form an infinitely long sequence of evenly
spaced pulses, spaced T seconds apart, and the pulses have
identical heights, this is called a Dirac comb [23]. It is a known
result in Signal Processing that the Fourier transform of a
Dirac comb with period Ts produces another Dirac comb in
the frequency domain with period 1

T Hz. As these Dirac pulses
are spaced by 1

T Hz in the frequency domain, to avoid aliasing,
we must ensure that the spectral content of the signal we wish
to acquire is confined to a region of c = 1

2T Hz, which is
the maximum permissible rate-of-change of this evenly spaced
time series.

Unlike the uniform case, the Fourier transform of the
unevenly spaced time series in Eqn. 11 will generally not
be a Dirac Comb, that is, a sequence of uniformly spaced
delta functions; the symmetry in the Dirac comb is broken
by uneven spacing of the pulses, which leads to information
rich transform we observe in Fig. 3. This is because in the
Fourier domain, the locations and heights of the Dirac delta
functions are related to the intervals between the time domain
observations. Randomizing the observation times, randomizes
the locations and heights of the Fourier domain peaks and
heights.

To leverage the results of classical sampling [23] to estimate
c for an unevenly spaced time series, we express a unevenly
spaced time series as a evenly spaced time series. To this end,
we determine the Dirac comb which has Dirac deltas that align
exactly with each of the pulses in the unevenly spaced time
series. In other words, we need to determine the largest Ta

such that each tn ∈ T (x) can be written as tn = α + nTa, for
integers n and an arbitrary time offset α.

Definition (1) Accurate acquisition: To accurately acquire an
unevenly spaced time series the acquisition period Ta should
satisfy the condition

∆t(x) mod Ta = 0, ∀tn ∈ TN (12)

Definition (2) Rate-of-Change: The rate of change of the
unevenly spaced time series x is c = 1

2Ta if Ta satisfies the
condition

∆t(x) mod Ta = 0, ∀tn ∈ TN (13)



Fig. 7. The time durations between consecutive frame arrivals ∆t (x) are
plotted (stem height) on the LHS versus experiment time (x-axis). These
durations are sorted from smallest to largest on the RHS. Very few of the
consecutive arrival times exhibit a large delay.

Finding the value of Ta that ensures that acquisition is being
performed at a sufficiently high rate, leads to acquisitions
rates which are impractical for real-world applications. If
observation times are recorded to d decimal places, the largest
rate of change is determined by machine precision.

To make progress, we use a rough upper bound on Ta,
which consists of examining the minimum separation between
consecutive frame arrivals:

min∆t(x). (14)

As the traces we will consider are generally base-band signals,
we desire a value of Ta which captures most of the spectral
energy of the trace x.
Analysis: The smallest difference between two time-stamps,
min∆t(x) in Fig. 2 is 10−7 seconds. This would necessitate ac-
quiring the signal at an unfeasibly high rate, > 107 Hz, which
is impractical most networking applications. We propose a
Greedy Acquisition solution to solve this problem and examine
a trade-off between the accuracy of the acquired time-series,
the bandwidth of different versions of the acquired time-series.

V. GREEDY ACQUISITION

A Greedy Acquisition algorithm for unevenly spaced time-
series is presented that acquires observations at a rate which is
consistent with the rate of change of the original time series,
c.

Fig. 7 demonstrates the number of time intervals between
consecutive values in x (the audio trace) that are greater than
1 second (on the RHS). In summary, only 1.5% of these
time intervals are greater than 1s; the majority of the time
spacings between events are much smaller. A useful rule of
thumb for periodic acquisition is that if we increase the time
between acquisitions in the acquisition routine, we decrease
the range of frequencies that we can observe in the trace
[23]. It is challenging to perform accurate acquisition using
a periodic acquisition scheme because the time-step must be
sufficiently small to capture a range of rates of change. Using
a fixed, periodic acquisition rate which is of the order of
1Hz (in [5] and [7]) or even one kilohertz (in [6]) will not
yield an accurate representation of the performance of x. For
example, for the audio streaming trace in Fig. 2, an acquisition
rate of 1Hz is significantly too low an acquisition rate for

98.5% of the frame arrivals in this time-series. Averaging
these values over a one-second interval, removes all frequency
components above ≈ 1Hz, which make subsequent functions
such as problem diagnosis difficult. Similarly in the case of
fixed periodic acquisition rate of 1kHz (which is the time-step
used by Prometheus [8]) this rate is too low for 94.25% of
the frame arrivals in Fig. 2.

From inspection of Fig. 7 it is clear that locally in time, the
value of min∆t(x) may be much higher than it would for the
entire time series. This means that an acquisition performed at
a rate that is consistent with the local rate of change of the time
series, could be expected to significantly reduce the bandwidth
required to accurately represent the underlying event steam
x, over a periodic acquisition scheme with the same level
of fidelity. We investigate an adaptive acquisition protocol,
where the value of Ta changes with time, and posit that it
should give a more accurate time series representation, using
less bandwidth than before.

A greedy approximation for the time series x is generated
by summing a finite number of functions gi taken from a
dictionary of such functions D. For example, the function g1
consists of a sum of Diracs which are weighted by the largest
value of the time series x, e.g. m1 = max(V (x)), which gives
the function

g1 = m1
∑
k

δ(t − t1(k)) (15)

where t1 is the set of times where x = m1 and there are k
elements in this set.

The next function in the dictionary D is g2. It consists of a
sum of Diracs which are weighted by the second largest value
of the time series x, m2 = max(V (x) \ m1). In words, we
remove all of the instances of the maximum value of x from
x and then find the next largest value, m2. We then construct
the function g2 which has Dirac pulses of height m2 every
time x = m2,

g2 = m2
∑
k

δ(t − t2(k)). (16)

Similar to the previous case, t2 is the set of times where x =
m2; there are k elements in this set. Continuing this process,
we construct the entire dictionary D = {gi }.

A j-th order approximation of x, which is denoted yj , is
obtained by summing up the first j elements of the dictionary

yj :=
j∑

i=1
gi . (17)

The accuracy of the jth order approximation is computed using
the Frobenius norm,

ε j =

√∫
(x − yj )2dt, (18)

where yj (tn) = 0 if we have not acquired a value at time t = tn
for the jth approximation.

The set of values m1,m2, . . . are the values of the frame
sizes sorted from largest to smallest. Because these frames
are generated as part of well-defined protocols, which have



Data: input: real-time process for acquisition from x and
β.

Result: acquired time series (tn, yn).
initialization: sorted list of frame sizes mi from historical

data;
while still receiving stream do

read current value;
if x > β then

acquire time tn = t;
acquire the value yn = xn;

else
do not acquire value or time;

end
end

Algorithm 1: Online Greedy Acquisition Algorithm

Fig. 8. Frame arrival process statistic acquisition for the SoundCloud trace
using Greedy Acquisition: The error in the acquisition time-series decreases
as the number of acquisitions per second increases. We examine the first
through to the sixtieth order approximation of x. The error achieved when 25
measurements are acquired on average per second is impressively low, given
that we are computing the Frobenius norm of frame sizes of up to 12kbits.

predetermined frame sizes for an array of scenarios, the
number of different values of mi that we can expect is finite,
and generally, quite small. It is possible to determine the set
{mi }i a-priori for any given service.

An online real-time version of the Greedy Acquisition
algorithm presented above, is presented in Alg. 1. It consists
of determining whether or not the current frame arrival has
a frame size which is larger than a user defined threshold,
β. The value of β determines the accuracy of the achieved
approximation. If an incoming frame size is larger than β, the
frame size and time are recorded as part of the unevenly spaced
acquired time series (tn, yn). Greedy approximation has the
following properties. (1) the accuracy of the approximation
increases monotonically as β decreases, because each increase
in the order of the approximation j, reduces the error in

Fig. 9. Comparison of the acquisition accuracy bandwidth trade-off achieved
using tradition periodic acquisition methods (last observation, average and
interpolation) and using Greedy Acquisition. The greedy approach is signifi-
cantly better.

the approximation of x. (2) The bandwidth requirement of
greedy approximation increases as j increases, but it increases
efficiently, in line with the rate-of-change of x. (3) Because the
original frame arrival times are used, the periodic component
of the time series is generally captured by (tn, yn); moreover,
the rate-of-change of the time-series (tn, yn) is generally
consistent with that of (tn, xn), in comparison with a periodic
acquisition algorithm, which chooses the acquisition period in
an arbitrary way, and is thus, not always suited to the process
being observed.

VI. NUMERICAL EVALUATION

We examine the accuracy of different acquisition methods
using a simple video and audio use-case. We focus on audio
and video because according to Cisco, by 2021, 82% of all
consumer Internet traffic will be IP video traffic [24]. The
ability to acquire measurements from the traces clients receive
will be crucial. Higher quality acquisition data will improve
next-generation monitoring protocols.

Our hypothesis is that Greedy Acquisition yields more
accurate estimates of the observed process than traditional pe-
riodic monitoring approaches. Moreover, we posit that Greedy
Acquisition uses less bandwidth and storage, and that the
acquired time-series preserve important statistical features of
the observed trace, such as its period. In our comparison we
implement acquisition functions which estimate x(p(t)), µs (t)
and xl (t). The reason that we do not use off-the-shelf tools
such as SAR [5] is that they have a minimum acquisition
rate of 1Hz (in the case of SAR), a rate which we would
like to significantly increase, in order to fully evaluate the
potential of periodic acquisition. We consider a frame arrival
process because TCPDUMP [22] provides easy access to high



resolution time-stamps for a widely available unevenly spaced
time series, which is representative of what we might observe
at many other intermediate points in the network.

Experimental set-up: In the first scenario a client streams
a podcast from an online audio distribution platform, a Sound-
Cloud instance [14]. In 2014 SoundCloud boasted 75 million
unique monthly listeners, which demonstrates the popularity
of the service, and motivates the need to be able to accurately
acquire measurements from the audio traces. In the second
scenario a client streams a video from a video server of an
Irish public service broadcaster [25].

During our evaluation of both scenarios, the client requested
the service and then TCPDUMP [22] was used to capture
a description of the contents of the frames received on the
client’s network interface. Once the media session had ter-
minated, we converted the captured .pcap file to text format
using tshark, and we greped the resulting text file for the frame
arrival times, tn, and frame sizes xn, forming the unevenly
spaced time series (tn, xn). Frame arrival times were captured
in terms of hours, minutes, seconds, and fractions of a second
since midnight. We recorded the size of received frames using
the “bytes on wire” field, in bits. We stored frame arrival
times using double-precision according to IEEE Standard 754
for double precision, which bounded the precision of rate-of-
change estimates. The frame sizes were integer-valued. For
the SoundCloud session, the maximum frame received was
11792 bits, and 60 different frame sizes were observed during
this session, which gave us 60 different potential acquisition
accuracies. In all cases we streamed data for ≈ 15 minutes.

Discussion: Fig. 8 illustrates the error (Eqn. 18) versus
bandwidth trade-off achieved for a SoundCloud session by
varying β in the online Greedy Acquisition algorithm. As
the value of β is decreased, the accuracy of the greedy
representation improves. This accuracy comes at the cost of
25 acquisitions per second on average.

This result is significant, particularly when it is compared
with the periodic, last-observation, averaging and interpolation
schemes currently used (x(p(t)), µs (t) and xl (t)). Fig. 9
illustrates the accuracy of x(p(t)), µs (t) and xl (t) as a function
of the bandwidth consumed by these acquisition approaches.
The bandwidth is increased by increasing the resolution of the
acquisition time-step. For the periodic acquisition methods,
the trend is for the error to decrease as the rate of acquisition
increases. We increase the rate of acquisition from 1Hz up to
250Hz in steps of 1Hz.

In this trace the times of the arrivals of the largest frame
sizes tend to determine the periodic component of the time
series. Preserving the exact times of events is important. The
ability to so, is determined by the rate of acquisition. The
Greedy Acquisition algorithm acquires a trace at a rate which
is consistent with the rate of change of time series. For
the 1st approximation y1, the minimum time-step between
consecutive frame arrivals min∆t(y1) does not change as we
increase the order of the approximation. The 1st approximation
y1, and all subsequent approximations have the possibility of
capturing the fastest changes in the observed trace, depending

Fig. 10. PSD of frame arrival time series for video streaming session. This
trace has a periodic component at 5.4Hz, which implies that acquiring this
trace at 1Hz is insufficient.

on their importance (frame size).
The traditional periodic approaches have time steps in the

range 1/ps where p = 1 . . . 250Hz in these experiments. These
periodic approaches cannot observe the fastest changes in the
observed process, or at the maximum rate of change of the
process. In conclusion, periodic acquisition approaches yield
an error which is 5 times worse than the error of Greedy
Acquisition, using 5 times the bandwidth to do so. Finally,
important statistics of the observed traces are typically not
preserved by periodic approaches.

In the case of the video streaming session, we illustrate the
PSD of the time-series in order to provide initial estimates
for the period and the rate-of-change of x. This trace has a
periodic component at 5.4Hz, which implies that acquiring
this trace using a periodic acquisition method at 1Hz is insuf-
ficiently accurate. Note that even the recommended reporting
rate of RTCP (5Hz) is not sufficiently large to capture the
period of this trace. In addition, the PSD of this trace exhibits
significant power up to 100Hz. Similar to the audio streaming
scenario, increasing the acquisition rate of periodic acquisition
algorithms does not significantly improve the accuracy of the
acquired time series.

With regard to the rate of change of this trace, 0.16% of
consecutive frame arrivals have an inter-arrival time of greater
than 1s, and 1.3% have an inter-arrival time of greater than
10−3s. The minimum inter-arrival time is less than 10−7s.
Given the definition of the rate of change of unevenly spaced
times series, periodic acquisition at 1Hz is insufficient.

These statistics underline the difficulty of choosing a time-
step for periodic acquisition that would yield sufficiently high
accuracy. We evaluate Greedy Acquisition, to see if acquiring
measurements at a rate which is consistent with the rate of
change of the trace, is accurate. Fig. 11 demonstrates that
accurate acquisition is achieved by taking 300 acquisitions per
second using Greedy Acquisition. The average acquisition rate
for video that achieves the same accuracy as audio acquisition
is approximately ×10 the acquisition rate for audio. Once
again Greedy Acquisition out-performs each of the periodic
acquisition approaches – by an order of magnitude drop in
the error of the representation – when 300 acquisitions are
made per second.

Recommendations: Many current periodic acquisition ap-



Fig. 11. Frame arrival process statistic acquisition for video trace using
Greedy Acquisition: The error in the acquisition time series decreases as
the number of acquisitions per second increases. The error achieved when
300 measurements are acquired on average per second is impressively low.
The periodic acquisition methods x(p(t)), µ−1 (t) and xl (t) are illustrated for
completeness.

proaches acquire time-series without knowledge of the under-
lying rate of change of the time series under observation.
We have argued that knowledge of the rate of change of
the process under observation, should drive the process of
deciding when to acquire measurements of this process. Many
networking time-series exhibit properties such as periodicity.
These properties should be preserved by acquisition routines.
One point of note from this work is that the times of events
T (x) are as important as the values recorded for these events
V (x). Periodic acquisition routines such as Nagios, record
values with greater precision than times, due the default time
resolution of 10−3s. A second point of note is that the wide
array of off-the-shelf acquisition routines means that little
research is being done in the area. The received wisdom is that
metric acquisition routines exist, and thus, there is little point
in re-inventing them. Finally, we have provided evidence that
Greedy Acquisition gives improved acquisition performance.

VII. CONCLUSIONS

In this paper we showed that acquiring a system or service’s
state at a rate which was consistent with the rate of change
of the system (or service) provided a high-quality record of
the state of the system. Research on capturing system state has
lagged behind the growth of networks and the applications that
use these networks as a substrate. Today, many monitoring and
learning solutions rely on standard periodic State Acquisition
solutions, which acquire the system state at a frequency of
1Hz. These solutions do not capture important characteristics
of the signals they acquire, for example, periodicity and rate of
change. For periodic traces, the ability to estimate the period
from an acquired representation of the trace is fundamental.
We demonstrated that the rate of change of many applications
is much greater than 1 Hz, and then, we demonstrated that

present-day acquisition techniques do not capture information
which is crucially important for problem diagnosis. Our exper-
iments with real-world voice and video traces demonstrate that
high quality State Acquisition is possible if the time-stamps
and magnitudes of events are recorded at the rate of change
of the application.
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